α-Dicarboxyle in Lebensmitteln und glucosehaltigen Lösungen der Peritonealdialyse

Dissertation
zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr.rer.nat.)

vorgelegt
der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von

Kai U. Weigel
Diplom-Lebensmittelchemiker
geboren am 11. Dez. 1973 in Hoyerswerda

Gutachter:
Prof. T. Henle, Institut für Lebensmittelchemie, TU Dresden
Prof. B. Johannsen, Institut für Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf
Dr. R. Deppisch, Gambro Renal Care GmbH, Hechingen

Eingereicht am: 9. Juni 2004

Tag der Disputation: 2. Nov. 2004

Prof. Thomas Henle möchte ich an dieser Stelle für die interessante Aufgabenstellung, das geduldige Vertrauen sowie die stete Bereitschaft zum Gespräch bei offenen Fragen und anderen Herausforderungen danken.

Herrn Dr. Reinhold Deppisch und der Gambro Renal Care R+D GmbH, Hechingen danke ich für die finanzielle und wissenschaftliche Unterstützung, ohne die die Bearbeitung des Schwerpunktes Hochdruckbehandlung von PD-Lösungen nicht möglich gewesen wäre.

Dem Kollegenkreis des Institutes für Lebensmittelchemie gilt mein Dank für die freundliche, kooperative Atmosphäre. Im besondere sei dabei Dr. Uwe Schwarzenbolz für die Durchführung der LC-MS Messungen sowie Frau Dipl. Ing. (FH) Karla Schlosser für die Durchführung unzähliger Aminosäureanalysen gedankt.

Des weiteren danke ich für den wissenschaftlichen Austausch und unkomplizierte Hilfe den Mitarbeitern der Gambro Renal Care R+D GmbH, im Besonderen: Anders Wieslander, Dr. Werner Beck, Ulrike Haug, und Rose Speidel für den „Lehrgang Cytotoxizitätsmessung“.

Dank auch dem Institut für Lebensmittelverfahrenstechnik der TU München, Weihenstephan und dem Institut für organische Chemie der TU Dresden und deren Mitarbeitern für die freundliche Einführung und Nutzungsmöglichkeit der jeweiligen Hochdruckanlagen sowie des mikrobiologischen Labors in Weihenstephan.

Inhaltsverzeichnis

1 Einleitung und Aufgabenstellung...1

2 Theoretische Grundlagen..3
 2.1 Reaktionen von Kohlenhydraten ...3
 2.1.1 Reaktionen ohne Beteiligung von Aminoverbindungen3
 2.1.2 Reaktionen mit Beteiligung von Aminoverbindungen8
 2.2 Bedeutung von frühen Maillard-Produkten in Lebensmitteln und in vivo11
 2.2.1 Lebensmittel ...12
 2.2.2 Maillard-Produkte in vivo ..17
 2.3 Honig ...24
 2.4 Peritonealdialyse ..25
 2.5 Hochdruck-Behandlung ..28
 2.5.1 Inaktivierung von Mikroorganismen mittels Hochdruck28
 2.5.2 Beeinflussung chemischer Reaktionen mittels Hochdruck ...31

3 Material und Methoden ...34
 3.1 Chemikalien, Reagenzien und Geräte34
 3.1.1 Chemikalien ...34
 3.1.2 Reagenzien ...35
 3.1.3 Geräte ...36
 3.2 Bestimmung von 5-Hydroxymethylfurfural37
 3.3 Bestimmung von \(\alpha \)-Dicarbonylen38
 3.3.1 Bestimmung in PD-Lösungen ..39
 3.3.2 Bestimmung im Honig ..39
 3.4 Isolierung und Charakterisierung des 1-Chinoxalin-2-yl-butan-1,2,3,4-tetraol .
 ...40
 3.4.1 Semipräparative RP-HPLC ..40
 3.4.2 LC-MS ..41
 3.4.3 NMR Spektroskopie ..41
 3.4.4 Bildungsstudien ...42
 3.5 Hauptinhaltsstoffe der Honigproben43
 3.5.1 Glucose und Fructose ...43
 3.5.2 Wasser ..44
 3.5.3 Bestimmung der freien Aminosäuren44
Inhalts- und Abbildungsverzeichnisse

3.5.4 pH-Wert..44
3.6 Hochdruckbehandlung von PD-Lösungen...45
3.7 Keimzahlbestimmung nach Hochdruckbehandlung.........................46
3.8 Bestimmung der Cytotoxizität ...46
3.9 Analytik von Maillard-Produkten ...47
 3.9.1 Inkubationsexperiment ...47
 3.9.2 Fluoreszenz-Messung ..47
 3.9.3 Bestimmung von Pyrralin ..47

4 Ergebnisse und Diskussion...49
 4.1 Methodische Aspekte ..49
 4.1.1 Analytik von 5-Hydroxymethylfurfural ...49
 4.1.2 Analytik der α-Dicarboxylle ..50
 4.1.3 Bestimmung der freien Aminosäuren im Honig55
 4.1.4 Bestimmung von Pyrralin ...56
 4.2 Zuckerabbauprodukte im Honig ..57
 4.2.1 Honigproben ...57
 4.2.2 Lagerversuche ..63
 4.2.3 Diskussion und Konsequenzen der Zuckerabbauprodukte in Honig ..66
 4.2.4 D-Arabino-2-hexosulose (Glucoson) in Honig69
 4.3 Hochdruckbehandlung von PD-Lösungen ...80
 4.3.1 Inaktivierung von Bakteriensporen mittels Hochdruckbehandlung80
 4.3.2 Zuckerabbauprodukte in druckbehandelten PD-Lösungen84
 4.3.3 Cytotoxizität druckbehandelter PD-Lösungen89
 4.3.4 Potential zur Bildung von Maillard-Produkten von druckbehandelten PD-
 Lösungen ..91

5 Zusammenfassung ...99

6 Literatur ..102
Inhalts- und Abbildungsverzeichnisse

Abbildungsverzeichnis

Abbildung 2.1.1-1 Abbauwege von Kohlenhydraten am Beispiel von Glucose 1 und Fructose 2 zu α-Dicarboxylverbindungen sowie Furan- und Pyranderivaten........... 3

Abbildung 2.1.1-2 Retroal dolreaktion von 3-Desoxyglucosulose (3-DG, 5) zu Methylglyoxal (MGO, 10) (Weenen, 1998)... 5

Abbildung 2.1.1-4 Autoxidation von Monosacchariden unter Beteiligung von Übergangsmetallionen nach Wolff und Dean, (1987).. 7

Abbildung 3.1.3-1 Derivatisierungsreaktion der α-Dicarboxylen mit o-Phenylendiamin 29 zu entsprechenden Chinoxalinen.. 38

Abbildung 3.4.1-1 Semipräparative RP-HPLC: Fraktionierung einer Honigprobe nach Umsetzung mit o-Phenylendiamin mit Kennzeichnung der gesammelten Fraktionen. Im Fokus: Trennbild der Fraktionen F1 (Chinoxalin des Glucoson) und F3 (Chinoxalin des 3-DG) zur ersten Rechromatographie unter analogen Bedingungen ... 41

Abbildung 4.1.1-1 RP-HPLC zur Bestimmung von HMF; 2 Honigproben mit Gehalten von 0,9 und 6,5 mg HMF / kg im Vergleich zur Referenzlösung mit einer Konzentration von 1 μM HMF (entspricht 0,02 nmol im Injektionsvolumen)...... 49
Abbildung 4.1.2-1 Verlauf der Bildung der entsprechenden Chinoxaline bei der Reaktion von 3-DG, GO und MGO mit OPD
Abbildung 4.1.2-2 RP-HPLC der Chinoxalinderivate zur Analytik der α-Dicarbonyle in PD-Lösungen; Chromatogramm einer autoklavierten PD-Lösung (Verdünnung vor Injektion 1+1, Gehalte: 499 µM 3-DG, 1 µM GO, 7,7 µM MGO); im Fokus: jeweils die Trennung von GO und MGO in der Probe sowie Referenzen (je 0,1 nmol GO und MGO je 20 µL) zum Vergleich der Retentionszeiten
Abbildung 4.1.2-3 RP-HPLC der Chinoxalinderivate zur Analytik der α-Dicarbonyle in PD-Lösungen; Chromatogramm einer autoklavierten PD-Lösung (Verdünnung vor Injektion 1+1, Gehalte: 499 µM 3-DG, 1 µM GO, 7,7 µM MGO); im Fokus: jeweils die Trennung von GO und MGO in der Probe sowie Referenzen (je 0,1 nmol GO und MGO je 20 µL) zum Vergleich der Retentionszeiten
Abbildung 4.1.2-4 RP-HPLC der Chinoxalinderivate von α-Dicarbonylen in Honig; Trennbild der Referenzsubstanzen 3-DG, GO und MGO mit Gehalten von 0,8 bzw. 3,0 nmol 3-DG und je 0,06 bzw. 0,24 nmol GO und MGO in 20 µL Injektionsvolumen; im Fokus Trennung der Chinoxaline von GO und MGO
Abbildung 4.1.2-5 RP-HPLC der Chinoxalinderivate von α-Dicarbonylen in Honig; Trennbild einer Honigprobe mit Gehalten (in mg / kg) von 3-DG: 166, GO: 1,9 sowie MGO: 2,4 im Vergleich zu einem Referenzgemisch von 3-DG (3,0 nmol), GO (0,24 nmol) und MGO (0,24 nmol) im Injektionsvolumen von 20 µL
Abbildung 4.2.1-1 Gegenüberstellung der Gehalte an HMF und 3-DG in den Honigproben
Abbildung 4.2.1-2 Gegenüberstellung von Inhaltsstoffen der Honige zum Gehalt an HMF; links: die Summe von Glucose- und Fructosegehalt (Glc+Frc) sowie der pH-Wert vs. HMF-Gehalt; rechts: Gehalt an freien Aminosäuren und Wasser vs. HMF-Gehalt Konzentration an 3-DG
Abbildung 4.2.1-3 Gegenüberstellung von Inhaltsstoffen der Honige zum Gehalt an 3-DG; links: die Summe von Glucose- und Fructosegehalt (Glc+Frc) sowie der pH-Wert vs. Konzentration an 3-DG; rechts: Gehalt an freien Aminosäuren und Wasser vs. Konzentration an 3-DG
Abbildung 4.2.2-1 Bildung von HMF und 3-DG in einem Honig im Verlauf der Lagerung
Abbildung 4.2.2-2 Konzentration von GO und MGO im Honig im Verlauf der Lagerung
Inhalts- und Abbildungsverzeichnisse

Abbildung 4.2.2-3 Gegenüberstellung von Gehalten an HMF und 3-DG der Honigproben sowie der Lagerversuche bei 35 und 45 °C, die Linie verdeutlicht den gesetzlichen Grenzwert von 40 mg HMF / kg Honig

Abbildung 4.2.4-1 RP-HPLC zweier Honigproben mit unbekanntem Signal bei ca. 7 min Retentionszeit im Vergleich zum Referenzgemisch (gepunktete Line) aus 3-DG, GO und MGO

Abbildung 4.2.4-2 analytische RP-HPLC der isolierten, unbekannten Verbindung nach semipräparativer RP-HPLC und zweimaliger Rechromatographie

Abbildung 4.2.4-3 UV-Spektren der isolierten Verbindungen; links: Chinoxalinderivat des 3-DG nach Umsetzung mit OPD; rechts: unbekannte Verbindung

Abbildung 4.2.4-4 Massenspektrum des unbekannten Chinoxalin

Abbildung 4.2.4-5 Strukturvorschläge für die unbekannte Verbindung nach UV-Spektroskopie und Massenspektrometrie, A: 1-Chinoxalin-2-yl-butan-1,2,3,4-tetraol; B: 1-(3-Hydroxymethyl-chinoxalin-2-yl)-propan-1,2,3-triol; C: 1-[3-(1,2-Dihydroxy-ethyl)-5-propenyl-pyrazin-2-yl]-ethan-1,2-diol

Abbildung 4.2.4-6 Beobachtete Spinkopplungen beim HSQC- und HMBC-Experiment der unbekannten Verbindung

Abbildung 4.2.4-7 Struktur des 1-Chinoxalin-2-yl-butan-1,2,3,4-tetraol sowie die Struktur der 2-Hexosulose

Abbildung 4.2.4-8 Gehalt an D-Arabo-2-hexosulose (Glucoson) einer Honigprobe während der Lagerung bei 35 und 45 °C

Abbildung 4.2.4-9 Bildung von D-Arabo-2-hexosulose (Glucoson) in Honig-, Glucose- und Fructose-Lösungen bei Lagerung bei 37 °C für 15 h mit verschiedenen Konzentrationen an Wasserstoffperoxid

Abbildung 4.2.4-10 Pyranose- und Furanosestrukturen von Glucose und Fructose

Abbildung 4.2.4-11 Pyranose- und Furanosestrukturen des Glucoson

Abbildung 4.3.1-1 Inaktivierung von Sporen von Bacillus subtilis in PD-Lösungen mittels Hochdruck bei verschiedener Temperatur. Dargestellt sind die Keimzahlen lgN nach der Druckbehandlung im Vergleich zur jeweiligen Anfangskeimzahl lgN₀

Abbildung 4.3.1-2 Inaktivierung von Sporen von Bacillus stearothermophilus in PD-Lösungen mittels Hochdruck bei verschiedenen Temperatur. Dargestellt sind die Keimzahlen lgN nach der Druckbehandlung im Vergleich zur jeweiligen Anfangskeimzahl lgN₀
Abbildung 4.3.2-1 RP-HPLC zur Analytik der α-Dicarbonyle in PD-Lösungen nach Derivatisierung mit o-Phenylendiamin (OPD), unbehandelte PD-Lösung unterlegt mit dem Trennbild der Referenzen 3-DG (50 µM), GO (5 µM) und MGO (5 µM)...
... 85

Abbildung 4.3.2-2 RP-HPLC zur Analytik der α-Dicarbonyle in PD-Lösungen nach Derivatisierung mit o-Phenylendiamin (OPD), autoklavierte PD-Lösung unterlegt mit dem Trennbild der Referenzen 3-DG (50 µM), GO (5 µM) und MGO (5 µM)...
... 85

Abbildung 4.3.2-3 RP-HPLC zur Analytik der α-Dicarbonyle in druckbehandelter PD-Lösungen (2fach je 800 bar für 0,5 h und anschließend 6000 bar für 1 h bei 50 °C) unterlegt mit dem Trennbild der Referenzen 3-DG (50 µM), GO (5 µM) und MGO (5 µM)...86

Abbildung 4.3.2-4 RP-HPLC zur Analytik der α-Dicarbonyle in druckbehandelter PD-Lösungen (6000 bar für 6 h bei 60 °C) unterlegt mit dem Trennbild der Referenzen 3-DG (50 µM), GO (5 µM) und MGO (5 µM)...87

Abbildung 4.3.2-5 RP-HPLC zur Analytik der α-Dicarbonyle in druckbehandelter PD-Lösungen (2000 bar für 24 h bei 40 °C) unterlegt mit dem Trennbild der Referenzen 3-DG (50 µM), GO (5 µM) und MGO (5 µM)...88

Abbildung 4.3.2-6 Protonierung von Glucose 1 als Start der säurekatalysierten Reaktion zu 3-DG 5 und HMF 8...89

Abbildung 4.3.3-1 Cytotoxizität [% ICG] ausgewählter druckbehandelter PD-Lösungen im Vergleich zur sterilfiltrierter PD-Lösung, die Druckprogramme sind angegeben mit dem Druck [bar] die Dauer der Druckbehandlung [h] und die Prozesstemperatur [°C] ...91

Abbildung 4.3.4-1 Fluoreszenzintensitäten von BSA-Proben (1,5 mg Protein /mL) nach Inkubation mit sterilfiltrierter, autoklavierter PD-Lösung sowie druckbehandelten PD-Lösungen (Druckprogramme 2000 bis 3000 bar für 2 bis 24 h bei 40 °C) ...94

Abbildung 4.3.4-2 Gehalte an Pyrralin in den BSA-Proben nach Inkubation mit sterilfiltrierter, autoklavierter PD-Lösung sowie druckbehandelten PD-Lösungen (Druckprogramme 2000 bis 3000 bar für 2 bis 24 h bei 40 °C) ...95

VI
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>chemische Verschiebung</td>
</tr>
<tr>
<td>3-DG</td>
<td>3-Desoxyglucosulose</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>AU</td>
<td>Absorptionseinheiten (absorption units)</td>
</tr>
<tr>
<td>Bac.</td>
<td>Bacillus</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>CAPD</td>
<td>kontinuierliche ambulante Peritonealdialyse</td>
</tr>
<tr>
<td>d</td>
<td>Duplett</td>
</tr>
<tr>
<td>D</td>
<td>Dalton</td>
</tr>
<tr>
<td>DEPT</td>
<td>distortionless enhancement by polarization transfer</td>
</tr>
<tr>
<td>Frc</td>
<td>Fructose</td>
</tr>
<tr>
<td>Glc</td>
<td>Glucose</td>
</tr>
<tr>
<td>GO</td>
<td>Glyoxal</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>HD</td>
<td>Haemodialyse</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear multiple bond correlation</td>
</tr>
<tr>
<td>HMF</td>
<td>5-Hydroxy-2-methylfurfural</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear single quantum coherence</td>
</tr>
<tr>
<td>KBE</td>
<td>koloniebildende Einheiten</td>
</tr>
<tr>
<td>LgN</td>
<td>dezimaler Logarithmus der Keimzahl N</td>
</tr>
<tr>
<td>m</td>
<td>Multiplett</td>
</tr>
<tr>
<td>MetOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MGO</td>
<td>Methylglyoxal</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotin-Adenin-Dinucleotidphosphat, reduzierte Form</td>
</tr>
<tr>
<td>OPD</td>
<td>ortho-Phenylendiamin</td>
</tr>
<tr>
<td>PD</td>
<td>Peritonealdialyse</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>reversed phase high performance liquid chromatography</td>
</tr>
<tr>
<td>s</td>
<td>Singulett</td>
</tr>
<tr>
<td>t</td>
<td>Triplett</td>
</tr>
<tr>
<td>vs.</td>
<td>versus (gegenüber)</td>
</tr>
</tbody>
</table>
1 Einleitung und Aufgabenstellung

Eine Anzahl von Maillard-Produkten, die aus Modellversuchen bekannt sind, wurden auch in Lebensmitteln identifiziert. Meist handelte es sich dabei um Produkte die einen hohen Protein- oder Zuckeranteil aufweisen und die einer thermischen Behandlung unterzogen wurden. Beispiele sind Trockenmilchprodukte oder Dörrobst. Der Gehalt an einzelnen Maillard-Produkten wird häufig zur Qualitätskontrolle herangezogen. Bekannt sind vor allem das Amadori-Produkt Fructoselysin, ein Produkt der frühen Maillard-Reaktion, und Hydroxymethylfurfural (HMF), dessen Entstehung aus der α-Dicarbonylverbindung 3-Deoxyglucosulse (3-DG) formuliert wird. 3-DG wiederum ist als Produkt der Karamelisierung sowie der Maillard-Reaktion bekannt. HMF dient als
Marker für die technologische Verarbeitung und Qualität eines Lebensmittels. So ist für das Lebensmittel Honig ein gesetzlicher Grenzwert von HMF vorhanden, der Verfälschungen des Honigs und Qualitätsbeeinträchtigungen durch unsachgemäße Verarbeitung und Lagerung erkennen lässt.

Schwerpunkt des ersten Teiles dieser Arbeit ist die Analyse von α-Dicarbonylen im Lebensmittel Honig, um die Frage zu beantworten in welchen Maß Precursors von Maillard-Produkten vorhanden sind. Im Honig sind neben Glucose und Fructose auch Aminosäuren und Proteine enthalten, die eine Bildung von Karamelisierungs- und Mailard-Produkten möglich macht. Der Bestand an ausgewählten α-Dicarbonylen in mehreren Honigen wird analysiert und dem Gehalt an anderen Inhaltsstoffen gegenübergestellt. Im Lagerversuch soll der Verlauf der Bildung von α-Dicarbonylen sowie deren Eignung als Qualitätsparameter untersucht werden.

2 Theoretische Grundlagen

2.1 Reaktionen von Kohlenhydraten

2.1.1 Reaktionen ohne Beteiligung von Aminoverbindungen

(Karamelisierung)

Abbildung 2.1.1-1 Abbauwege von Kohlenhydraten am Beispiel von Glucose 1 und Fructose 2 zu α-Dicarbonylverbindungen sowie Furan- und Pyranderivaten (Belitz und Grosch, 1992; Hollnagel et al., 1998; Weenen et al., 1998; Thornalley et al., 1999)

Abbildung 2.1.1-2 Retroaldolreaktion von 3-Desoxyglucosulose (3-DG, 5) zu Methylglyoxal (MGO, 10) (Weenen, 1998)

2. Theoretische Grundlagen

2.1.2 Reaktionen mit Beteiligung von Aminoverbindungen
(Maillard-Reaktion)

Die Reaktion beginnt mit dem nucleophilen Angriff des Aminstickstoff am Carbonylkohlenstoff. Das unter Wasserabspaltung gebildete Imin, auch Schiffscche Base genannt, bildet nach Cyclisierung die entsprechenden Glycosylamine. Eine fortlauende Reaktion ist die Umlagerung über das Enaminol zum Amadori-Produkt für Aldosen und Heyns-Produkt für Ketosen (Abbildung 2.1.2-1) (Ledl und Schleicher, 1990; Belitz und
2. Theoretische Grundlagen

Oxidative Prozesse in Kombination mit der Maillard-Reaktion werden auch als Glycoxidation bezeichnet. So wird die Bildung von D-arabino-2-hexosulose (Glucoson)

Pentosidin (19, Abbildung 2.1.2-2) ist ein Beispiel für ein fluoreszierendes Produkt der fortgeschrittene Maillard-Reaktion, das für Proteinquervernetzungen verantwortlich ist. Ein C5-Körper verbindet dabei die Seitenketten von Lysin und Arginin zu einem Imidazopyridiniumsystem (Sell et al., 1988).

Weitere Produkte der Maillard-Reaktion unter Beteiligung der Seitenketten von Lysin und Arginin sind beispielhaft in Abbildung 2.1.2-2 aufgeführt.
2. Theoretische Grundlagen

Abbildung 2.1.2-2 Beispiele von Maillard-Produkten ausgehend von den Aminosäuren Lysin und Arginin nach der Reaktion mit Carbonylverbindungen; 15 Fructoselysin, 16 und 17 Vesperlysin A und B, 18 Pyrralin, 19 Pentosidin, 20 Nδ-[5-(3-hydroxypropyl)-4-oxo-imidazolon-2-yl]-L-ornithin (PIO) , 21 und 22 Carboxymethyl- und Carboxyethyllysine, 23 und 24 GOLD und MOLD - Glyoxal- und Methylglyoxallyllysindimer, 25 GLARG - 1-(4-Amino-4-carboxybutyl)-2-imino-5-oxo-imidazolidin, 26 N7-Carboxymethylarginin, 27 Argpyrimidin - Nδ-(5-hydroxy-4,6-dimethylpyrimidin-2-yl)-L-ornithin, 28 Imidazolinon C; (Sengl et al., 1989; Sell et al., 1989; Ledl und Schleicher, 1990; Henle et al., 1994; Nakarmura et al., 1997; Schwarzenbolz et al., 1997; Glomb et al., 2001b; Ahmed et al., 2002; Mavric et al., 2004)

2.2 Bedeutung von frühen Maillard-Produkten in Lebensmitteln und in vivo

2. Theoretische Grundlagen

weiterer α-Dicarbonyle in fermentierten Lebensmitteln durch Lactobacillus-, Streptococcus- und Leuconostoc-Arten bekannt (Hayashi et al., 1985; Berdnarski et al., 1989; Yamaguchi et al., 1994).

2.2.1 Lebensmittel

Die Tabelle 2.2-1 gibt einen Überblick über den Gehalt von α-Dicarbonyle in Lebensmitteln. Hauptsächlich werden kurzkettige Verbindungen gefunden, deren Bildung meist auf die Fermentation und damit auf Stoffwechselprozesse von Mikroorganismen zurückgeführt wird. So wird der hohe Gehalt an Glyoxal (GO, bis zu 41 ppm) und Methylglyoxal (MGO, bis zu 11 ppm) in Käse mit der Aktivität der beteiligten Mikroorganismen wie Lactobacillus bulgaricus erklärt (Bednarski et al., 1989). Auch die geringen Gehalte an α-Dicarbonyle in Wein und Sherry (0,1 bis zu 2,9 ppm GO und MGO) werden durch das Stadium der Gärung und die Art der beteiligten Mikroorganismen beeinflusst (de Revel, et al., 1993; de Revel et al., 2000). Die hohen Gehalte an MGO in Kaffee (bis zu 47 ppm), Soya Sauce (bis zu 7,6 ppm) und Ahorn Sirup (2,5 ppm) können auf die Röstung bei hoher Temperatur, die intensive mikrobielle Fermentation und den hohen Zucker gehalt zurückgeführt werden.
Tabelle 2.2-1 Gehalte der α-Dicarbonyle Methylglyoxal (MGO), Glyoxal (GO), Diacetyl (DiAc) und 2,3-Pentandion (2,3-P) in Lebensmitteln

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>Mengen [ppm]</th>
<th>Analytik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MGO</td>
<td>GO</td>
</tr>
<tr>
<td>gebrühter Kaffee</td>
<td>25</td>
<td>47</td>
</tr>
<tr>
<td>entkoffein. Kaffee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>löslicher Kaffee</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Kakao</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>löslicher Tee</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>Milchpulver, fettfrei</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>Soja Sauce A</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>Soja Sauce B</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>Soja Paste</td>
<td>0,76</td>
<td></td>
</tr>
<tr>
<td>Cola</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td>Root Beer</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>Bier</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td>Weißwein</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td>Apfelsaft</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>Tomatensaft</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Ahornsirup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheddar Käse</td>
<td>10,89</td>
<td>4,29</td>
</tr>
<tr>
<td>Schweizer Käse</td>
<td>1,98</td>
<td>41,14</td>
</tr>
<tr>
<td>Mozarella</td>
<td>4,06</td>
<td>6,06</td>
</tr>
<tr>
<td>Rotwein</td>
<td>0,1-0,4</td>
<td>0,2</td>
</tr>
<tr>
<td>Sherry</td>
<td>0,7-1,8</td>
<td>0,4-1,6</td>
</tr>
<tr>
<td>Joghurt</td>
<td>0,6-1,3</td>
<td>0,6-0,9</td>
</tr>
<tr>
<td>Bier</td>
<td>0,09-0,24</td>
<td>0,02-0,04</td>
</tr>
<tr>
<td>Rotwein</td>
<td>0,9</td>
<td>0,7</td>
</tr>
<tr>
<td>Weißwein</td>
<td>2,9</td>
<td>0,5</td>
</tr>
<tr>
<td>Brandy</td>
<td>1,9</td>
<td>2,1</td>
</tr>
<tr>
<td>Butter</td>
<td>0</td>
<td>0,5</td>
</tr>
<tr>
<td>Weinessig</td>
<td>~2</td>
<td>1,4</td>
</tr>
<tr>
<td>Bier</td>
<td>0,07</td>
<td>0,03</td>
</tr>
<tr>
<td>Weißwein</td>
<td>0,7-2,9</td>
<td>0,4-1,5</td>
</tr>
<tr>
<td>Wein</td>
<td>0,1-1,0</td>
<td>0,15-2,0</td>
</tr>
</tbody>
</table>
2. Theoretische Grundlagen

Die Beeinflussung des Gehaltes an α-Dicarbonylen durch die Lagerung von Lebensmitteln wird nicht näher diskutiert. Für die Veränderung von Erzeugnissen bei der Lagerung oder durch Verarbeitung wird häufig Fructoselysin und dessen analytisches Folgeprodukt Furosin (siehe 3.9.4) als Marker verwendet (Resmini et al., 1990; Henle et al., 1991b; Henle et al., 1995; Villamiel et al., 2001; Marconi et al., 2002; Rada-Mendoza et al., 2002). Eine Auswahl an Gehalten von Amadori-Produkten in Lebensmitteln, gemessen als Furosin, gibt Tabelle 2.2-2.

Tabelle 2.2-2 Gehalte an Fructoselysin und Lactuloselysin in Lebensmitteln, gemessen als Furosin (Resmini et al., 1990; Henle et al., 1995; Villamiel et al., 2001; Marconi et al., 2002; Rada-Mendoza et al., 2002)

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>Gehalt an Furosin [mg /100 g Protein]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohmilch</td>
<td>3,5 – 5,5</td>
</tr>
<tr>
<td>Pasteurisierte Milch</td>
<td>4,8 – 7,5</td>
</tr>
<tr>
<td>UHT-Milch</td>
<td>50 – 180</td>
</tr>
<tr>
<td>Milchpulver</td>
<td>180 – 1200</td>
</tr>
<tr>
<td>Baby-Trockennahrung</td>
<td>930 – 1890</td>
</tr>
<tr>
<td>Backprodukte</td>
<td>20 – 600</td>
</tr>
<tr>
<td>Honig</td>
<td>439 – 1362</td>
</tr>
<tr>
<td>Gelee Royal</td>
<td>37,1 – 113,3</td>
</tr>
<tr>
<td>Pfirsich-Marmelade</td>
<td>15,1 – 629,3</td>
</tr>
</tbody>
</table>

Neben Furosin dient HMF (Tabelle 2.2-3) als Marker für die Behandlung von Lebensmitteln. Hervorgehoben seien hierbei die gesetzlich festgelegten Werte zum Gehalt an HMF in Honig (Honig-Verordnung, in der Fassung vom 2.04.2003). Wird Honig bei zu hoher Temperatur gewonnen (siehe 2.3), transportiert und gelagert, kann der Grenzwert von 40 mg HMF / kg Honig überschritten werden (White et al., 1964; Taschan, 2001). Bei Honigen mit geringerem Gehalt an Enzymen, ausgedrückt durch die Diastasezahl, ist ein Grenzwert von 15 mg HMF / kg festgelegt. Im frischen, unbehandelten Honig liegt die Konzentration an HMF im Bereich von 0 bis 20 mg / kg, wobei der Großteil der Honige einen HMF-Gehalt von unter 10 mg / kg zeigt (White et al., 1980; Sanz et al., 2003). Die Bestimmung von HMF dient außerdem zur Erkennung von Honigverfälschungen, bei dem Honig mit Invertzucker vermischt wird (White et al., 1980).
2. Theoretische Grundlagen

Tabelle 2.2-3 Gehalten an HMF (mg / kg bzw. mg / L) in Lebensmitteln

(Bachmann et al., 1997)

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>Bereich</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trockenpflaumensaft</td>
<td>510 – 2850</td>
<td>1350</td>
</tr>
<tr>
<td>Karamelprodukte</td>
<td>110 – 9500</td>
<td>220</td>
</tr>
<tr>
<td>Dörrobst</td>
<td>26 – 3500</td>
<td>140</td>
</tr>
<tr>
<td>Brot</td>
<td>3,2 – 220</td>
<td>15</td>
</tr>
<tr>
<td>Kaffee (trinkfertig)</td>
<td>3,2 – 72</td>
<td>12</td>
</tr>
<tr>
<td>Honig</td>
<td>< 0,1 – 57</td>
<td>3,6</td>
</tr>
<tr>
<td>Fruchtsäfte</td>
<td><0,1 – 10</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Neben Lebensmitteln sind auch weitere Quellen bekannt, über die α-Dicarbonyle aufgenommen werden können. So gelang der Nachweis und die Quantifizierung von Diacetyl, MGO, GO und 2,3-Pentandion im Zigarettenrauch (Moree-Testa et al., 1981).
2. Theoretische Grundlagen

2.2.2 Maillard-Produkte in vivo

2. Theoretische Grundlagen

Tabelle 2.2-4 Gehalt von 3-Desoxyglucosulose (3-DG), Methylglyoxal (MGO) und Glyoxal (GO) sowie Hydroxymethylfurfural (HMF) in glucosehaltigen PD-Lösungen. Die Bestimmungen erfolgten mittels RP-HPLC und UV-Detektion, wobei die Dicarbonyle mit dem angegebenen Agenz umgesetzt wurden (Derivat.).

<table>
<thead>
<tr>
<th>PD-Lösung; Behandlung und Glucosegehalt in % (w/v)</th>
<th>3-DG [µmol/L]</th>
<th>MGO [µmol/L]</th>
<th>GO [µmol/L]</th>
<th>HMF [µmol/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Nilsson-Thorell et al., 1993) Derivat.: o-Phenylendiamin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab-made, sterilfiltriert; 1,5 und 1,36 %</td>
<td>< 2</td>
<td>< 3,0</td>
<td>< 4</td>
<td></td>
</tr>
<tr>
<td>Lab-made, autoklaviert; 1,5 und 1,36 %</td>
<td>23</td>
<td>< 3,0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>kommerzielle PD; 1,5 und 1,36 %</td>
<td>2 - 12</td>
<td>< 3,0 - 14</td>
<td>120 - 420</td>
<td></td>
</tr>
<tr>
<td>(Wieslander et al., 1995a) Derivat.: o-Phenylendiamin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>konventionell 1,5 %</td>
<td>22,7 ± 0,5</td>
<td>5,5 ± 0,3</td>
<td>2,2 ± 0,1</td>
<td></td>
</tr>
<tr>
<td>PD-BIO 1,5 %</td>
<td>< 2,8</td>
<td>5,8 ± 0,3</td>
<td>8,3 ± 0,2</td>
<td></td>
</tr>
<tr>
<td>konventionell 4 %</td>
<td>33,3 ± 1,4</td>
<td>7,5 ± 0,1</td>
<td>6,9 ± 0,1</td>
<td></td>
</tr>
<tr>
<td>PD-BIO 4 %</td>
<td>< 2,8</td>
<td>6,6 ± 0,3</td>
<td>22,5 ± 1,4</td>
<td></td>
</tr>
<tr>
<td>(Linden et al., 1998) Derivat.: 2,3-Diaminonaphtalin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gambrosol; 1,5 %</td>
<td>118 ± 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gambrosol BIO; 1,5 %</td>
<td>12,3 ± 1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab-made, autoklaviert; 1,5 %</td>
<td>154 ± 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab-made, sterilfiltriert; 1,5 %</td>
<td>< 1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Schalkwjik, et al., 1999) Derivat.: 1,2-Diamino-4,5-dimethoxybenzol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dianal® 1,36 %</td>
<td>224 ± 6</td>
<td>4,0 ± 0,5</td>
<td>3,5 ± 0,7</td>
<td></td>
</tr>
<tr>
<td>2,27 %</td>
<td>335 ± 1</td>
<td>5,1 ± 0,3</td>
<td>6,2 ± 1,3</td>
<td></td>
</tr>
<tr>
<td>3,86 %</td>
<td>525 ± 51</td>
<td>6,9 ± 0,9</td>
<td>9,4 ± 2,2</td>
<td></td>
</tr>
<tr>
<td>Gambrosol® 1,5 %</td>
<td>221 ± 3</td>
<td>7,5 ± 0,7</td>
<td>11,3 ± 1,3</td>
<td></td>
</tr>
<tr>
<td>2,5 %</td>
<td>381 ± 9</td>
<td>11,7 ± 0,7</td>
<td>12,8 ± 2,4</td>
<td></td>
</tr>
<tr>
<td>4,0 %</td>
<td>540 ± 9</td>
<td>13,8 ± 0,8</td>
<td>22,6 ± 8,2</td>
<td></td>
</tr>
<tr>
<td>Lockolys® 1,5 %</td>
<td>179 ± 11</td>
<td>9,5 ± 1,0</td>
<td>6,0 ± 0,6</td>
<td></td>
</tr>
<tr>
<td>2,3 %</td>
<td>245 ± 32</td>
<td>9,2 ± 1,6</td>
<td>8,9 ± 2,5</td>
<td></td>
</tr>
<tr>
<td>4,25 %</td>
<td>418 ± 32</td>
<td>12,0 ± 1,3</td>
<td>16,2 ± 0,6</td>
<td></td>
</tr>
<tr>
<td>(Miyata et al., 2000) Derivat.: 2,4-Dinitrophenylhydrazin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterilfiltriert; 1,36 bis 3,86 %</td>
<td>42 - 70</td>
<td>3,5 - 6,2</td>
<td>11 - 17</td>
<td></td>
</tr>
<tr>
<td>Autoklaviert; 1,36 bis 3,86 %</td>
<td>0,6 - 2,0</td>
<td>0,07</td>
<td>0,6 - 3,0</td>
<td></td>
</tr>
</tbody>
</table>

Die Bildung von Maillard-Produkten lässt sich auch während der Peritonealdialyse beobachten. In den genutzten PD-Lösungen (PD-Effluate genannt) wurden nach bestimmten Verweilzeiten im Körper der Gehalt an Fructoselysin (als Furosin ermittelt) und Pentosidin bestimmt. Der Gehalt von Furosin in PD-Effluaten für Nicht-Diabetiker lag zur Startzeit (750 bis 900 pmol / mg Protein) in der Größenordnung wie der Gehalt im Serum (700 bis 800 pmol / mg Protein) (Wu et al., 1995; Friedlander et al., 1996). Bei Diabetikern lag der Anfangsgehalt an Furosin im PD-Effluat (750 pmol / mg Protein) unter dem Gehalt im Serum (1250 pmol / mg Protein). Nach 2 und 4 Stunden waren die Gehalte in den Effluaten deutlich über den Serumgehalt angestiegen (Nicht-Diabetiker: 1250 pmol / mg Protein, Diabetiker: 1700 pmol / mg Protein). Nach 10 Stunden Verweilzeit sank der Furosingehalt in den Effluaten (Nicht-Diabetiker: 1200 pmol / mg Protein; Diabetiker: 1400 pmol / mg Protein) und konnte teilweise nicht mehr signifikant vom Gehalt im Serum unterschieden werden (Friedlander et al., 1996). Dieser Verlauf wird mit dem Einströmen von glycosyierten Protein in das Peritoneum (Wu et al., 1995; Friedlander et al., 1996) und mit der Neubildung im Peritoneum durch den hohen Glucosegehalt der PD-Lösungen erklärt (Kumano et al., 1996).
2. Theoretische Grundlagen

Das Absinken des Furosingehaltes deutet auf fortschreitende Reaktionen des Amadori-Poduktes und auf eine Einstellung des Gleichgewichtes zwischen Bauchraum und Serum hin (Wu et al., 1995; Friedlander et al., 1996; Monnier et al., 1996).

Ein ähnliches Bild ergab sich bei der Betrachtung der Pentosidinegehalte in Plasma und PD-Effluent. Die Konzentration in den Effluaten der Peritonealdialyse (27 bis 30 pmol / mg Protein) lagen allerdings schon zur Startzeit deutlich über den Gehalten im Plasma (15 bis 17 pmol / mg Protein) (Friedlander et al., 1996; Monnier et al., 1996).

Im weiteren Verlauf stieg der Gehalt an proteingebundenem Pentosidin in den PD-Effluaten geringfügig. Da in Modellversuchen dieses Produkt der fortgeschrittenen Maillard-Reaktion nur langsam gebildet wird, diskutiert man einen selektiven Transport ins Peritoneum (Friedlander et al., 1996; Monnier et al., 1996).

Bei der Interpretation solcher Beobachtungen ist der klinische Status der Patienten (wie die renale Restfunktion) und die Dauer und Art der Dialyse zu beachten. Des weiteren ist der zu beobachtende Effekt auch von der verwendeten Dimension abhängig. So erscheint der zeitliche Verlauf der Furosinbildung während der Peritonealdialyse deutlich steiler, wenn die Gehalte in pmol / mL PD-Effluent in Gegensatz zu pmol / mg Protein angegeben werden (Kumano et al., 1997).

Verringerung des CML-Gehaltes im Plasma der Patienten beobachtet (Zeier et al., 2003).

Ultrafiltration wurden signifikante Unterschiede im 3-DG-Gehalt der identischen Proben gefunden (Ultrafiltration: 9,5 ± 1,0 ng / mL vs. Ethanol: 277,0 ± 121,5 ng / mL). Zwischen den einzelnen Werten der identischen Proben war bei verschiedener Probenvorbereitung kein konstantes Verhältnis erkennbar (Lal et al., 1997). Einige Autoren diskutieren die verschiedenen Analysenwerte als frei vorliegendes 3-DG und als gesamt vorhandenes 3-DG. Eine Bindung von 3-DG an Makromoleküle, wie Proteine, wird vermutet (Lal et al., 1997; Niwa, 1999).

Tabelle 2.2-5 Gehalte an 3-Desoxyglucosulose (3-DG) in menschlichem Plasma und Serum in Abhängigkeit des klinischen Status (normal - gesunder Mensch, DM - Diabetes mellitus, NP - Nephropathie, CAPD - Patienten unter kontinuierlicher Peritonealdialyse, HD - Patienten unter Hämodialyse)

<table>
<thead>
<tr>
<th>Probe und klinischer Status</th>
<th>Gehalt an 3-DG [ng / mL]</th>
<th>Analytik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma normal</td>
<td>10 ± 2</td>
<td>GC-MS nach Reduktion zu Desoxyhexitol (Knecht et al., 1992)</td>
</tr>
<tr>
<td>Serum normal</td>
<td>314 ± 27</td>
<td>GC-MS nach Methoxim-Derivatisierung (Niwa et al., 1993)</td>
</tr>
<tr>
<td>DM, NP</td>
<td>513 ± 68</td>
<td></td>
</tr>
<tr>
<td>DM, keine NP</td>
<td>1235 ± 345</td>
<td></td>
</tr>
<tr>
<td>Serum normal</td>
<td>270 ± 22</td>
<td>GC-MS nach Methoxim-Derivatisierung (Niwa et al., 1996)</td>
</tr>
<tr>
<td>DM</td>
<td>694 ± 115</td>
<td></td>
</tr>
<tr>
<td>CAPD</td>
<td>1715 ± 198</td>
<td></td>
</tr>
<tr>
<td>NP, kein DM</td>
<td>1078 ± 148</td>
<td></td>
</tr>
<tr>
<td>vor HD</td>
<td>1484 ± 202</td>
<td></td>
</tr>
<tr>
<td>nach HD</td>
<td>491 ± 79</td>
<td></td>
</tr>
<tr>
<td>Plasma normal</td>
<td>12,8 ± 5,2</td>
<td>RP-HPLC nach Derivatisierung mit 2,3-Diaminonaphtalin (Hamada et al., 1997)</td>
</tr>
<tr>
<td>DM</td>
<td>31,8 ± 11,3</td>
<td></td>
</tr>
<tr>
<td>Plasma normal</td>
<td>9,5 ± 2,3</td>
<td>GC-MS nach Derivatisierung mit 2,3-Diaminonaphtalin (Lal et al., 1997)</td>
</tr>
<tr>
<td>DM</td>
<td>16,0 ± 5,5</td>
<td></td>
</tr>
<tr>
<td>Plasma normal</td>
<td>26 ± 16</td>
<td>LC-MS nach Derivatisierung mit 2,3-Diaminonaphtalin (Odani et al., 1999)</td>
</tr>
<tr>
<td>DM</td>
<td>81 ± 20</td>
<td></td>
</tr>
<tr>
<td>NP, kein DM</td>
<td>59 ± 13</td>
<td></td>
</tr>
</tbody>
</table>

Auch kleinmolekulare α-Dicarboxyle wurden im menschlichen Plasma gemessen. Dabei zeigt sich ebenfalls eine erhöhte Konzentration von Methylglyoxal (MGO) und...
2. Theoretische Grundlagen

Glyoxal (GO) bei Diabetes mellitus (DM) (MGO: 159 ± 64 ng / mL; GO: 78 ± 28 ng / mL) und eingeschränkter Nierenfunktion (MGO: 110 ± 18 ng / mL; GO: 221 ± 28 ng / mL) im Vergleich zu gesunden Probanden (MGO: 47 ± 12 ng / mL; GO: 67 ± 20 ng / mL) (Odani et al., 1999). In ähnlicher Weise wie in der Analytik vom 3-DG, scheint auch für die Messung von MGO die Analysenmethode der Probe einen Einfluss auf das Ergebnis auszuüben. Die oben genannten Werte wurden nach Derivatisierung mit 2,3-Diaminonaphtalin mittels ESI-LC-MS ermittelt. Bei vergleichbarer Aufarbeitung (Proteinfällung mit Perchlorsäure) und flüssigchromatographischer Trennung nach Derivatisierung mit phenolischen Diaminen wurden an anderer Stelle deutlich geringere Gehalte von MGO im Plasma gemessen [normal: 8,9 ± 2,7 ng / mL; DM: 13,6 ± 2,8 ng / mL (Beisswenger et al., 1999) und normal: 18,4 ± 6,6 ng / mL; DM: 34,5 ± 3,5 ng / mL (McLellan et al., 1992)]. Die Detektion erfolgte mittels UV-Absorption und Fluoreszenzmessung. Die Differenzen in den Analysergebnissen können mit Unterschieden in der Aufarbeitung sowie mit den unterschiedlichen Detektionsmethoden begründet werden. Nicht auszuschließen ist auch eine hohe biologische Schwankungsbreite des Gehaltes an MGO im menschlichen Plasma.

Weitere Gehalte an 3-DG wurde in Erythrocyten gemessen. Analog zu den Befunden im Serum zeigte sich eine erhöhte Konzentration bei Patienten mit eingeschränkter Nierenfunktion im Vergleich zum gesunden Probanden (2,2 ± 0,3 µg / g Hb). Durch Haemodialyse (HD) wird der Gehalt auch in den roten Blutzellen gesenkt (vor HD: 11,2 ± 1,3 µg / g Hb; nach HD: 5,7 ± 0,6 µg / g Hb) (Tsukushi et al., 1999b).

Im Organismus werden α-Dicarboxylyl über verschiedene Systeme metabolisiert. Für 3-DG wurden zwei Mechanismen beschrieben. Einerseits erfolgt die Reaktion von 3-DG in den Erythrocyten durch Oxoaldehyd-Dehydrogenasen zu 2-Keto-3-desoxygluconsäure (3-DGA). Der Gehalt dieses Metaboliten ist bei Patienten mit Diabetes Mellitus im Vergleich zum gesunden Menschen deutlich erhöht (990 ± 370 vs. 527 ± 194 nmol 3-DGA / g Hb) (Fujii et al., 1995). Andererseits wird 3-DG durch Aldolreduktase zu 3-Desoxyfructose (3-DF) umgesetzt und über den Urin ausgeschieden (Niwa, 1999). Beim Vorliegen von Diabetes Mellitus werden höhere Konzentrationen an 3-DF im Urin im Vergleich zu gesunden Probanden (69,9 ± 44,2 vs. 38,7 ± 16,1 nmol / mg Kreatinin) beobachtet (Wells-Knecht et al., 1994).

Durch Aldolreduktase wird auch MGO metabolisiert. In einer zweistufigen Reaktion wird MGO unter Beteiligung von NADPH zu Acetol und weiter zu L-1,2-Propandiol
umgesetzt (Vander et al., 1992). Die α-Dicarbonyle GO und MGO werden auch durch das Glyoxalase-Enzymsystem metabolisiert. Im ersten Schritt findet die Kopplung an Glutathion, enzymatisch katalysiert von Glyoxalase I statt. Durch Glyoxylase II erfolgt die Umsetzung des α-Dicarbonylverbindung zur entsprechenden α-Hydroxy-carbonsäure (Thornalley, 1990; Abordo et al., 1999).

Die Konzentration an Glucoseabbauprodukten im Plasma wird neben dem klinischen Status auch von der Ernährung beeinflusst. So konnte bei nicht Insulin abhängigen Diabetikern die Konzentration von 3-DG im Plasma durch strenge Diät zur Glucosekontrolle deutlich gesenkt werden (Hamada et al., 1997).

2.3 Honig

Tabelle 2.3-1 Bestandteile des Honig (*White, 1978*)

<table>
<thead>
<tr>
<th>Inhaltsstoff</th>
<th>Wertebereich</th>
<th>Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser [%]</td>
<td>13,4 – 22,9</td>
<td>17,2</td>
</tr>
<tr>
<td>Fructose</td>
<td>27,3 – 44,3</td>
<td>38,2</td>
</tr>
<tr>
<td>Glucose</td>
<td>22,0 – 40,8</td>
<td>31,3</td>
</tr>
<tr>
<td>Saccharose</td>
<td>0,3 – 7,6</td>
<td>1,3</td>
</tr>
<tr>
<td>Maltose</td>
<td>2,7 – 16,0</td>
<td>7,3</td>
</tr>
<tr>
<td>weitere Zucker</td>
<td>0,1 – 13,2</td>
<td>1,5</td>
</tr>
<tr>
<td>Mineralstoffe</td>
<td>0,02 – 1,03</td>
<td>0,17</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>0 – 0,13</td>
<td>0,04</td>
</tr>
<tr>
<td>freie Säure [mval / kg]</td>
<td>6,75 – 47,19</td>
<td>22,03</td>
</tr>
<tr>
<td>Gesamtsäure</td>
<td>8,68 – 59,49</td>
<td>29,12</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>3,42 – 6,10</td>
<td>3,91</td>
</tr>
</tbody>
</table>

2.4 Peritonealdialyse

2. Theoretische Grundlagen

In Lösungen zur Peritonealdialyse sind neben Salzen vor allem Pufferverbindungen und die osmotisch wirksamen Substanzen (Osmotika) enthalten. Trotz einiger Nachteile (siehe Tabelle 2.4-1) wird hauptsächlich Glucose in Konzentrationen von 1,5 bis 4% (w/v) eingesetzt. Die Verwendung anderer Osmotika (siehe Tabelle 2.4-2) hat sich auf Grund deren Nachteile wenig durchgesetzt (Colombi, 1988).

Tabelle 2.4-1 Nachteile von Glucose als Osmotikum bei der CAPD (Colombi, 1988)

<table>
<thead>
<tr>
<th>Physiologische Wirkung</th>
<th>Klinische Manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucosebelastung</td>
<td>Adipositas, Inappetenz (Fettsucht, Appetitlosigkeit)</td>
</tr>
<tr>
<td>Hyperglykämie</td>
<td>Erhöhter Insulinbedarf</td>
</tr>
<tr>
<td>Hyperlipidämie</td>
<td>Beschleunigte Atheromatose (Degeneration der Arterie)</td>
</tr>
<tr>
<td>rasche peritoneale Resorption</td>
<td>Ultrafiltrationsverlust</td>
</tr>
<tr>
<td>tiefer Dialysat-pH-Wert</td>
<td>Einlaufschmerz, reduzierte Phagozytose</td>
</tr>
<tr>
<td>hohe Osmolarität</td>
<td>reduzierte Phagozytose</td>
</tr>
<tr>
<td>Karamelisierung, HMF-Bildung</td>
<td>peritoneale Reizung</td>
</tr>
</tbody>
</table>
2. Theoretische Grundlagen

Tabelle 2.4-2 Nachteile weiterer Osmotika bei der CAPD (Colombi, 1988)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Nachteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>Kosten</td>
</tr>
<tr>
<td>Aminosäuren</td>
<td>Kosten</td>
</tr>
<tr>
<td>Dextrane</td>
<td>Elimination, Effektivität</td>
</tr>
<tr>
<td>Fructose</td>
<td>Hypertriglyceridämie (erhöhter Blutfettgehalt)</td>
</tr>
<tr>
<td>Gelatine</td>
<td>Allergie, Lagerung</td>
</tr>
<tr>
<td>Glycerol, Mannitol, Polyglucose</td>
<td>Serumhyperosmolararität</td>
</tr>
<tr>
<td>Synthetische Polymere</td>
<td>Toxizität</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>Zerebrale Störungen</td>
</tr>
<tr>
<td>Xylitol</td>
<td>Gastrointestinale Störungen, Leberschäden</td>
</tr>
</tbody>
</table>

2. Theoretische Grundlagen

Im allgemeinen führt eine Erhöhung des Druckes, erhöhte Temperatur sowie eine Verlängerung der Druckhaltezeit zu stärkerer Abtötung von Mikroorganismen (Butz et al., 1986; Butz et al., 1990; Ludwig et al., 1992; Müller et al., 1996). Wobei die Erhöhung der Temperatur am effektivsten erscheint, während für die Druck und Behandlungsdauer jeweils optimale Bedingungen gefunden werden müssen. In Modellversuchen werden meist wässrige Lösungen mit lebenden Zellen oder Sporen verwendet und die koloniebildenden Einheiten (KBE) vor und nach den Druck-Experimenten ermittelt. Je nach eingesetzten Arten an lebenden Keimen und Druck-Temperatur-Kombination (500 bis 4500 bar, 5 bis 60 °C, bis zu 24 h) werden Inaktivierungsraten von 10^2 bis 10^8 KBE erreicht (Butz et al., 1986; Butz et al., 1990; Ludwig et al., 1992; Nakayama et al., 1996; Mills et al., 1998). Da bei solchen Experimenten eine Vielzahl von Kombinationen an Druck, Zeit, Temperatur und Art des Testkeimes möglich sind, sollen hier nur einige Beispiele für die Inaktivierung von Mikroorganismen genannt werden. Ausgehend von einer anfänglichen Keimzahl von

Die Abtötung von Mikroorganismen mittels Druck wird für eine Anzahl von Lebensmitteln vor allem in Japan angewandt (Hoover et al., 1989; Tauscher, 1995). Die Anwendung der Drucksterilisation auf pharmazeutische Produkte wird ebenfalls diskutiert. Eine Hochdruckbehandlung (4000 bis 6000 bar, 20 °C, 10 min) zeigte beispielweise wenig Einfluss auf die Spezifität von Antikörpern (Rigaldie et al., 2002).
2.5.2 Beeinflussung chemischer Reaktionen mittels Hochdruck

Neben der Veränderung physikalischer Eigenschaften (z.B. Viskosität, Siedepunkt, Löslichkeit) wird durch erhöhtem Druck auch die Lage des chemischen Gleichgewichtes einer Reaktion beeinflusst (Klärner, 1989; Tauscher, 1995). Die Einstellung des Gleichgewichts, dargestellt durch die Gleichgewichtskonstante K, in Abhängigkeit vom Druck p lässt sich durch die Formel

$$\frac{d \ln K}{dp} = -\frac{\Delta V}{RT}$$

Theoretische Grundlagen

Mit der Anwendung der Hochdrucktechnik in der Lebensmitteltechnologie erfolgten auch Untersuchungen zur Druckabhängigkeit der Maillard-Reaktion und der Reaktion von Kohlenhydraten. In Modellsystemen von Glucose oder anderen Aldehyden mit Aminosäuren und Peptiden wurde vor allem die Bräunung durch die fortgeschrittene Maillard-Reaktion sowie die Bildung von Amadori-Produkten untersucht. Im Druckbereich von 4000 und 6000 bar (bei 50 und 60 °C über 1 bis zu 20 h) erfolgt bei hohen pH-Wert eine stärkere Bräunung der Modelllösung im Vergleich zum Normaldruck. Liegt der pH-Wert der Lösung bei 8,2 bis 7,5 oder niedriger, wird die Bräunungsreaktion in den Modellösungen aus Glucose oder anderen Aldehyden und Aminosäuren stark unterdrückt (Tamaoka et al., 1991; Hill et al., 1996; Moreno et al., 2003a). Die Bildung von Amadori-Produkten, gemessen als Furosin oder als Abnahme des Gehaltes an freien Aminogruppen wird durch eine Druckbehandlung (2000 bis 4000 bar, 50 bis 60 °C, 15 min bis 3 h) im sauren bis leicht basischem Milieu (pH-Bereich 5,2 und 9,2) wenig beeinflusst (Tamaoka et al., 1991; Moreno et al., 2003a). Erst in alkalischer Lösung (pH 10,2) wird die Bildung und auch die Abbaureaktionen des Amadori-Produktes unter erhöhtem Druck beschleunigt (Moreno et al., 2003a).

In Modellsystemen aus Glycin und Lysin (pH-Wert 10,1) wurde außerdem eine verringernte Bildung von flüchtigen Verbindungen, wie Pyrazine und Pyranone bei einer Druckbehandlung (6000 bar, 60 °C, 5h) dokumentiert (Hill et al., 1999). Demgegenüber wurde beobachtet, dass die Bildung von Pentosidin in Lösungen aus Aminosäuren oder Casein und Ribose mit steigendem Druck der Behandlung (2000 bis 6000 bar, 60 °C, 2 h, pH 7,4) zunimmt (Schwarzenbolz et al., 2000).

Wenig ist über das Verhalten von Kohlenhydraten bei einer Druckbehandlung veröffentlicht. So wurde eine geringere Isomerisierung von Lactose im basischen
Medium unter Druck (4000 bar, 60 °C, 3h) im Vergleich zur Behandlung unter Normaldruck festgestellt. Nach der Druckbehandlung zeigte sich eine geringere Abnahme pH-Wertes als nach vergleichbarer Wärmebehandlung (Moreno et al., 2003b). Die verringerte Bräunungsreaktion von Lactose bei einer Druckbehandlung wurde nur in gepufferter Lösung verfolgt (Moreno et al., 2003b). Bei einer Druckbehandlung (4000 bar, 60 °C, 1 bis 3 h) von Glucoselösung mit unterschiedlichem pH-Werten wurde neben der verstärkten Bräunung mit steigendem pH-Wert auch die Inhibierung der Bräunungsreaktion durch hohen Druck bei hohem pH-Wert beobachtet. Im leicht basischen bis saurem pH-Bereich erfolgt auch bei Normaldruck keine Zunahme der Bräunung (Moreno et al., 2003a).
3 Material und Methoden

3.1 Chemikalien, Reagenzien und Geräte

3.1.1 Chemikalien

3-Desoxyglucosulose, Präparat der TU München, Synthese nach Henle et al. (1996)
5-Hydroxymethylfurfural, 99 % (H 40807) Fluka, Taufkirchen
Acetonitril, gradient grade (20059.326) Merck, Darmstadt
Aminopeptidase M (porcine kidney) 20 U/mL, (102768) Boehringer Mannheim, Darmstadt
Calciumchlorid Dihydrat, z.A.(1.02382.0250) Merck, Darmstadt
D-Glucose, wasserfrei, für biochemische Zwecke (1.08337.0250) Merck, Darmstadt
EDTA (Dinatriumdihydrogenlythylendiamintetraacetat), reinst, HB Laborchemikalien, Sebnitz
Enzymkit Fructose / Glucose (0139106) Boehringer Mannheim, Darmstadt
Essigsäure, 100 %, z.A. (2004.298) Merck, Darmstadt
Ethanol, abs. HPLC-grade (E 0665) Chromatographie Handel Müller, Fridolfing
Glyoxal, 40 % (G 3140) Sigma, Taufkirchen
Kaliumchlorid, z.A. (1049360250) Merck, Darmstadt
Kaliumdihydrogenphosphat, für Puffergemische (B581/4261) Riedel-de-Haen, Seelze
Kationentauscher, AG-50W-X8, 100-200 mesh (143-5441) Bio Rad, München
Magnesiumchlorid Hexohydrat, z.A. (1.05833.0250) Merck, Darmstadt
Methanol, gradient grade (20834.325) Merck, Darmstadt
Methylglyoxal, 40 % (M 0252) Sigma, Taufkirchen
Natriumchlorid, p.a. (71380) Fluka, Taufkirchen
di-Natriumhydrogenphosphat, p.A. (1.06580.1000) Merck, Darmstadt
Natriumhydroxid, z.A. (28244.295) Merck, Darmstadt
Natriumlaktat, mind 99 % (71718) Fluka, Taufkirchen
o-Phenylendiamin, mind. 99 % (78410) Fluka, Taufkirchen
Pentan-1-sulfonsäure Natriumsalz, für Ionenaar-HPLC (513015)

Chromatographie-Handel Müller, Fridolfing
Pepsin (porcine gastric mucosa), 10 U/mg (1.07192.0001) Merck, Darmstadt
Prolidase (porcine kidney), 46 U/mg (33562) Serva, Ingelheim
Pronase E (Streptomyces griseus), für biochemische Zwecke (1.07433.0001) Merck, Darmstadt
Pyrralin, Präparat der TU München, Synthese nach Henle et al. (1996)
Rinderserumalbumin (BSA), mind. 96 % (A-3912), Sigma, Steinheim
Salzsäure, 37 %, Baker Analysed ACS (6011) J.T. Baker, Niederlande
Sporensuspension Bacillus stearothermophilus (1.11499.0001), Merck, Darmstadt
Sporensuspension Bacillus subtilis (1.10649.0001), Merck, Darmstadt
Tabletten zu Herstellung von Ringer-Lösung (1.15525.0001) Merck, Darmstadt
Trishydroxymethylaminomethan (TRIS), z.A. (1.08387.0500) Merck, Darmstadt
3. Material und Methoden

3.1.2 Reagenzie

Peritonealdialyse-Lösung:
Die wässrige Lösung enthält in 1 L: 40 g D-Glucose, 4,5 g Natriumlaktat, 4,5 g Natriumchlorid, 0,199 g Calciumchlorid Dihydrat und 51 mg Magnesiumchlorid Hexahydrat. Den pH-Wert auf 5,5 eingestellt.

Phosphatgepufferte Kochsalzlösung (PBS):
Die Konzentrationen in der wässrigen Lösung sind 0,15 M Phosphat und 0,16 M Kochsalz, der pH-Wert wird auf 7,4 eingestellt. Zur Herstellung von 500 mL Puffer folgende Mengen einwiegen: 8,5 g di-Natriumhydrogenphosphat, 2,0 g Kalium-dihydrogenphosphat und 4,5 g Natriumchlorid.

Phosphatpuffer mit BSA zur Inkubation von PD-Lösungen mit Protein:
10 g BSA werden in 100 mL PBS Puffer zur Inkubation (0,15 M Phosphat; 0,16 M Natriumchlorid; 0,5 mM EDTA; pH 7,4) gelöst. Zur Herstellung von 500 mL Puffer zur Inkubation folgende Mengen einwiegen: 8,5 g di-Natriumhydrogenphosphat, 2,0 g Kaliumdihydrogenphosphat, 4,5 g Natriumchlorid und 93 mg EDTA. Den pH-Wert auf 7,4 einstellen.

Ringer-Lösung zur Verdünnung der Proben zur Keimzahlbestimmung:
(bereitgestellt durch das Institut für Lebensmittelverfahrenstechnik der TU München) :
2 Tabletten zur Herstellung von Ringerlösung werden in 1 L Wasser gelöst. (entspricht ¼ Ringer-Lösung)

Nähragar zur Keimzahlbestimmung
(bereitgestellt durch das Institut für Lebensmittelverfahrenstechnik der TU München) :
Ein Liter Nähragar enthält 12 g Agar-Agar, 2,5 g Hefeextrakt, 5,0 g Caseinhydrolisat (Trypton), 1 g D-Glucose und 1 g Magermilchpulver. Der pH-Wert des Nähragar ist auf 7 eingestellt.
3. Material und Methoden

3.1.3 Geräte

analytische HPLC:

semipräparative HPLC:

LC-MS:
Flüssig Chromatographie System 1100 Series, Agilent Technologies, USA und ESI-TOF Massen Spektrometer, PerSeptive Biosystem, USA.

NMR:
Aufnahme der NMR-Spektren erfolgte am Institut für Organische Chemie, TU Dresden mit einem DRX 500, Bruker Biospin, Rheinstetten.

Fluoreszenz-Messung:
Durchführung am Institut für Biochemie, TU Dresden mit einem Luminescence Spektrometer LS50B, Perkin Elmer, Boston USA.

Hochdruckanlagen:
1. Eigenbau mit 8 temperierbaren Autoklaven für jeweils ca. 5 mL Probenvolumen. Druckmedium ist Polyethylenglycol. (Institut für Lebensmittelverfahrenstechnik in Weihenstephan der TU München)
3. Material und Methode

Weitere Geräte und Materialien:
Brutschrank BE 400, Memmert, Schwabach
Dialysemembran, Typ 27 cut off 12-16 kD, pore size 25 Å, Biomol, Hamburg
Gefriertrocknung, alpha 1-2, Christ, Osterode
Membranfilter, Spartan 13/0,45 µm RC, Schleicher&Schuell, Dassel
pH-Meter, inolab pH level 1, WTW, Weilheim
Poly-Prep Chromatography-Säulen (leer), (731-1550) Bio Rad, München
Reaktionsgefäße, 1,5 mL und 2 mL, Eppendorf-Netheler-Hinz, Hamburg
Refraktometer, nach Abbé, VEB Carl-Zeiss Jena
Rotationsverdampfer, Laborota 4002, Heidolph, Schwabach
Ultraschallbad, Sonorex RK 52H, Bandeln electronic, Berlin
Vakuumschrénézentrator, Speed Vac SC 11AR, Savant, USA
Zentrifuge, 5804, Eppendorf-Netheler-Hinz, Hamburg
Zentrifugalfilter, Ultrafree® -CL, cut off 5000 D, Millipore, USA

3.2 Bestimmung von 5-Hydroxymethylfurfural

Das Zuckerabbauprodukt 5-Hydroxymethylfurfural wird mittels RP-HPLC bestimmt (Nilsson-Thorell et al., 1993). Die Probenlösungen im Falle der PD-Lösungen ohne Verdünnung nach Membranfiltration zur RP-HPLC einsetzen. Im Falle der Honige 15 g Honig in ca. 30 mL Wasser ohne Erwärmung lösen und auf 50 mL auffüllen. Diese 30 %ige Lösung nach Membranfiltration zur RP-HPLC einsetzen. Folgende Parameter anwenden:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluß:</td>
<td>1 mL / min</td>
</tr>
<tr>
<td>isokratische Elution:</td>
<td>Methanol / 0,05 M Phosphatpuffer pH 5,5; 15 / 85 (v/v)</td>
</tr>
<tr>
<td>Laufzeit:</td>
<td>25 min</td>
</tr>
<tr>
<td>Trennsäule:</td>
<td>Knauer Eurospher 100-C18, 5 µm, 4,6 x 250 mm</td>
</tr>
<tr>
<td>Säulentemperatur:</td>
<td>30 °C</td>
</tr>
<tr>
<td>Injektionsvolumen:</td>
<td>20 µL</td>
</tr>
<tr>
<td>Detektion:</td>
<td>UV 283 nm, Empfindlichkeit 0,1 AU</td>
</tr>
</tbody>
</table>

Die Kalibration erfolgt mit externem Standard. Dazu wird eine Stammlösung von 1 mM HMF in Wasser (Einwaage: 63 mg in 500 mL Stammlösung) hergestellt und vor Verwendung entsprechend auf Konzentrationen von 95 µM bis 0,5 µM verdünnt. Die
Zuordnung des Signals einer Probe erfolgt mittels Retentionszeitvergleich sowie bei Bedarf durch Dotierung der Probe mit Standardsubstanz.

3.3 Bestimmung von α-Dicarbonylen

Die Bestimmung der α-Dicarbonyle erfolgt mittels RP-HPLC und UV-Detektion. nach Derivatisierung mit o-Phenylendiamin \(29\), siehe Abbildung 3.1.3-1). Die gebildeten entsprechenden Chinoxalinderivate zeigen eine charakteristische UV Absorption und sind im Vergleich zu den Ausgangsprodukten weniger reaktiv.

\[
\text{NNH}_2 \quad \text{O} \quad \text{R} \\
\text{NH}_2 \quad \text{O} \quad \text{R} \\
\text{GO: R - H} \\
\text{MGO: R - CH}_3 \\
\text{3-DG: R - CH}_2-(CH_2OH)_{2}-CH_3OH
\]

Abbildung 3.1.3-1 Derivatisierungsreaktion der α-Dicarbonyle mit o-Phenylendiamin \(29\) zu entsprechenden Chinoxalinen

Die Kalibration erfolgt mit externem Standard. Die wässrige Stammlösungen enthalten jeweils 3-Desoxyglucosulose (3-DG), Glyoxal (GO) und Methylglyoxal (MGO) in Konzentrationen von 10 mM für 3-DG (Einwaage: 162 mg in 100 mL Stammlösung) und 1 mM für GO (Einwaage: 72,5 mg in 500 mL Stammlösung) und 1 mM für MGO (Einwaage: 90 mg in 500 mL Stammlösung). Die Lösungen werden vor Verwendung je nach Bedarf in verschiedenen Volumenverhältnissen vermischt (z.B. je ein Teil 3-DG, GO und MGO mit 7 Teilen Wasser für Konzentrationen von 1 mM 3-DG, 0,1 mM GO und 0,1 mM MGO) und die gemeinsame Referenzlösung zur Kalibration entsprechend verdünnt. Die Zuordnung der Signale in den Proben erfolgt über den Vergleich der Retentionszeiten der Standardverbindungen sowie bei Bedarf mittels der Dotierung von Proben mit Standardsubstanzen.
3.3.1 Bestimmung in PD-Lösungen

Die Bestimmung der α-Dicarbonyle 3-DG, MGO und GO erfolgt mittels RP-HPLC nach Derivatisierung in Anlehnung an beschriebene Methoden (Ohmori et al., 1987; Nilsson-Thorell et al., 1993). 1 mL der PD-Lösung mit 0,6 mL einer 0,2 % (w/v) wässrigen o-Phenylendiamin-Lösung vermischen. Die Reaktion 12 Stunden in Abwesenheit von Licht bei Raumtemperatur ablaufen lassen. Nach Membranfiltration zur RP-HPLC einsetzen.

Fluss:	1 mL / min
Eluenten:	A: Wasser; B: Acetonitril; C: 0,05 M Phosphatpuffer pH 5,5
linearer Gradient:	(A / B / C, v/v/v) 0 min 75 / 25 / 0; 25 min 65 / 35 / 0; 27 min 0 / 50 / 50; 33 min 75 / 25 / 0
Äquilibration:	für 7 min 75 / 25 / 0, (A / B / C, v/v/v)
Trennsäule:	Knauer Eurospher 100-C18, 5 µm, 4,6 x 250 mm
Säulentemperatur:	30 °C
Injektionsvolumen:	20 µL
Detektion:	UV 312 nm, Empfindlichkeit 0,1 AU

3.3.2 Bestimmung im Honig

Die RP-HPLC Methode wurde aus der in 3.3.1 beschriebenen weiterentwickelt. Jeweils 15 g der Honigproben in ca. 30 mL Wasser lösen und auf 50 mL auffüllen. Zur Derivatisierung 1,0 mL wässrige Honiglösung mit 0,3 mL einer 0,4 %igen wässrigen o-Phenylendiamin-Lösung und 0,3 mL Phosphatpuffer (0,15 M; pH 7,4) mischen. Die Reaktion erfolgt bei Raumtemperatur über 12 Stunden in Abwesenheit von Licht. Nach Membranfiltration zur RP-HPLC einsetzen.

Fluss:	1 mL / min
Eluenten:	A: 0,075 % (v/v) Essigsäure; B: Methanol / Eluent A, 80 / 20 (v/v)
linearer Gradient:	(A / B, v/v) 0 min 60 / 40; 20 min 0 / 100 ; 23 min 60 / 40
Äquilibration:	für 7 min 60 / 40 (A / B, v/v)
Trennsäule:	Knauer Eurospher 100-C18, 5 µm, 4,6 x 250 mm
Säulentemperatur:	30 °C
Injektionsvolumen:	20 µL
Detektion:	UV 312 nm, Empfindlichkeit 0,1 AU
3. Material und Methoden

3.4 Isolierung und Charakterisierung des 1-Chinoxalin-2-yl-butan-1,2,3,4-tetraol

3.4.1 Semipräparative RP-HPLC

Zur Derivatisierung 30 g Honig in ca. 70 mL 0,2 % wässriger o-Phenylendiamin-Lösung lösen und auf 100 mL mit 0,2 % wässriger o-Phenylendiamin-Lösung auffüllen. Die Reaktion erfolgt bei Raumtemperatur über 12 Stunden in Abwesenheit von Licht. Nach Zugabe von 10 mL Eisessig mit 120 mL Ethylacetat extrahieren. Organische Phase sammeln und Lösungsmittel unter Vakuum entfernen. Aufnahme des trockenen Rückstandes in 5 mL Methanol. Nach Membranfiltration zur semipräparativen RP-HPLC einsetzen.

<table>
<thead>
<tr>
<th>Fluss:</th>
<th>8 mL/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluente: A: Wasser; B: Methanol</td>
<td></td>
</tr>
<tr>
<td>linearer Gradient: (A / B, v/v) 0 min 90 / 10; 22 min 50 / 50 ; 25 min 50 / 50; 29 min 90 / 10</td>
<td></td>
</tr>
<tr>
<td>Äquilibierung:</td>
<td>für 11 min 90 / 10 (A / B, v/v)</td>
</tr>
<tr>
<td>Trennsäule:</td>
<td>Knauer Eurospher 100-C18; 15 µm; 16 x 250 mm</td>
</tr>
<tr>
<td>Säulentemperatur:</td>
<td>25 °C</td>
</tr>
<tr>
<td>Injektionsvolumen:</td>
<td>1 mL</td>
</tr>
<tr>
<td>Detektion: UV 312 nm, Empfindlichkeit 1 AU</td>
<td></td>
</tr>
</tbody>
</table>

Das Trennbild der semipräparativen RP-HPLC in mehrere Fraktionen unterteilen. Die gesuchte Verbindung ist in der Fraktion 1 (F1, Retentionszeit 12 bis 14 min, siehe Abbildung 3.4.1-1) enthalten. Das Chinoxalin des 3-DG eluiert in Fraktion 3 (F3, Retentionszeit 17 bis 19 min, siehe Abbildung 3.4.1-1). Die Zuordnung der Fraktionen zu den einzelnen Verbindungen erfolgt durch Vergleich der Retentionszeiten an der analytischen RP-HPLC. Fraktionen sammeln und Lösungsmittel unter Vakuum entfernen. Danach erfolgt zweimalige Rechromatographie unter semipräparativen Bedingungen zur Reinigung der isolierten Fraktionen. Die Kontrolle der chromatographischen Reinheit unter den analytischen RP-HPLC-Bedingungen durchführen. Für die Fraktionierung wird insgesamt 350 g handelsüblicher Honig zur Gewinnung von ca. 15 mg des 1-Chinoxalin-2-yl-butan-1,2,3,4-tetraol, dem Chinoxalinderivates des Glucoson, eingesetzt.
Abbildung 3.4.1-1 Semipräparative RP-HPLC: Fraktionierung einer Honigprobe nach Umsetzung mit o-Phenyldiamin mit Kennzeichnung der gesammelten Fraktionen. Im Fokus: Trennbild der Fraktionen F1 (Chinoxalin des Glucoson) und F3 (Chinoxalin des 3-DG) zur ersten Rechromatographie unter analogen Bedingungen

3.4.2 LC-MS

Die chromatographische Trennung erfolgt mit einem Gradienten analog der analytischen RP-HPLC- Parameter (siehe 3.3.2). Verwendete Trennsäule war Agilent Zorbax RP18 (3 µm, 150 x 2,1 mm) bei einem Fluss von 0,2 ml / min. Detektion erfolgt durch Messung der Absorption bei 312 nm und durch electro-spray-ionisation time-of-flight mass spectrometry im positiven Modus (ESI-TOF-MS).

3.4.3 NMR Spektroskopie

Zur Aufnahme von \(^1\)H- und \(^{13}\)C- NMR Spektren wurden die Proben in deuteriertem DMSO gelöst. Die Aufnahme der NMR-Spektren erfolgt mit 125 MHz für \(^1\)H-NMR und 500 MHz für \(^{13}\)C-NMR.
3. Material und Methoden

3.4.4 Bildungsstudien

400 µL einer 20 % (w/v) Honiglösung mit Wasserstoffperoxidlösung (siehe Tabelle 3.4-1) versetzen und 15 Stunden bei 37 °C in verschlossenen Gefäßen inkubieren. Die Konzentration der Wasserstoffperoxidlösung so einzustellen, dass folgende Verhältnisse von H₂O₂ und Honig im Ansatz vorliegen: 75, 188, 375, 1500 mg H₂O₂ / kg Honig. Analog Lösungen von Glucose und Fructose (jeweils 20 % (w/v), pH 3,9) mit Wasserstoffperoxidlösung (siehe Tabelle 3.4-1) versetzten und inkubieren. Die Lösungen nach Inkubation mittels analytischer RP-HPLC auf α-Dicarboxylen untersuchen (siehe 3.3.2).

Tabelle 3.4-1 Pipettierschema zur Bildungsstudie des Glucoson, Inkubation von Lösungen von Honig, Glucose und Fructose mit Wasserstoffperoxidlösung (H₂O₂)

<table>
<thead>
<tr>
<th>Lösungen [µL]</th>
<th>Proben (20 %-ige Lösungen von Honig, Glucose und Fructose)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blind</td>
</tr>
<tr>
<td>Honig/Glucose/Fructose</td>
<td>400</td>
</tr>
<tr>
<td>H₂O₂, 0,3 % (w/v)</td>
<td>-</td>
</tr>
<tr>
<td>H₂O₂, 0,03 % (w/v)</td>
<td>-</td>
</tr>
<tr>
<td>Wasser</td>
<td>100</td>
</tr>
<tr>
<td>H₂O₂ / Honig [mg / kg]</td>
<td>-</td>
</tr>
</tbody>
</table>
3.5 Hauptinhaltsstoffe der Honigproben

Tabelle 3.5-1 zeigt die Honigproben, die freundlicherweise durch den Dresdner Imkerverein e.V. zur Verfügung gestellt wurden. Die Bemerkungen sind interne Kennzeichnungen des Imkervereines. Die Honigproben sind, mit Ausnahme von Nr. 7, nicht älter als 6 Monate.

Tabelle 3.5-1 Honigproben

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Bezeichnung</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Robinie</td>
<td>L 300</td>
</tr>
<tr>
<td>2</td>
<td>Frühlingsblüten</td>
<td>L 1/99</td>
</tr>
<tr>
<td>3</td>
<td>Sommertracht</td>
<td>L 400</td>
</tr>
<tr>
<td>4</td>
<td>Sonnenblume</td>
<td>L 799 zum Abfüllen auf 40°C erwärmt</td>
</tr>
<tr>
<td>5</td>
<td>Sommerblüte</td>
<td>L 3/99 zum Abfüllen auf 40°C erwärmt</td>
</tr>
<tr>
<td>6</td>
<td>Sommerblüte</td>
<td>L 999 zum Abfüllen auf 40°C erwärmt</td>
</tr>
<tr>
<td>7</td>
<td>Waldhonig</td>
<td>aus dem Jahre 1985</td>
</tr>
<tr>
<td>8</td>
<td>Blütenhonig</td>
<td>L IX0499807</td>
</tr>
<tr>
<td>9</td>
<td>Blütenhonig</td>
<td>L 2000/2 SI.</td>
</tr>
<tr>
<td>10</td>
<td>Blütenhonig</td>
<td>L 100</td>
</tr>
<tr>
<td>11</td>
<td>Blütenhonig</td>
<td>7/00-01.07 Brb.</td>
</tr>
<tr>
<td>12</td>
<td>Blütenhonig</td>
<td>5/00-25.05 Brb.</td>
</tr>
<tr>
<td>13</td>
<td>Blüte I</td>
<td>Whe</td>
</tr>
<tr>
<td>14</td>
<td>Blüte II</td>
<td>Whe</td>
</tr>
<tr>
<td>15</td>
<td>Blüte III</td>
<td>Whe</td>
</tr>
<tr>
<td>16</td>
<td>Linde</td>
<td>L 500 zum Abfüllen auf 40°C erwärmt</td>
</tr>
<tr>
<td>17</td>
<td>Sommertracht mit Linde</td>
<td>L 200</td>
</tr>
<tr>
<td>18</td>
<td>Blütenhonig Nr.10</td>
<td>mit Mikrowelle (Stufe 1) 6 min erwärmt</td>
</tr>
<tr>
<td>19</td>
<td>Blütenhonig Nr.10</td>
<td>mit Mikrowelle (Stufe 1) 3 min erwärmt</td>
</tr>
<tr>
<td>20</td>
<td>Blütenhonig Nr.10</td>
<td>mit Mikrowelle (Stufe Auftauen) 6 min erwärmt</td>
</tr>
<tr>
<td>21</td>
<td>Wabenhonig</td>
<td>ohne Bearbeitung noch in der Wabe</td>
</tr>
</tbody>
</table>

3.5.1 Glucose und Fructose

3. Material und Methoden

3.5.2 Wasser

3.5.3 Bestimmung der freien Aminosäuren

Die Bestimmung der freien Aminosäuren im Honig erfolgte nach einer Anreicherung am Kationentauscher (Adams, 1974) und Messung mittels Aminosäureanalyse (Henle et al., 1991a). 1,5 g Kationentauscher (AG 50W X8) in Poly Prep Säule (Bio Rad, 0,8 x 4 cm konisch, Säulenvolumen 2 mL, Reservoir 10 mL) füllen. Konditionieren mit 5 mL 6 N Salzsäure und spülen mit 50 mL Wasser. Aufgabe von 10 mL 30 % (w/v) wässriger Honiglösung und waschen mit 50 mL Wasser. Elution mit 50 mL 6 N Salzsäure / Methanol (90 / 10; v/v). Zur Desaminierung von Asparagin und Glutamin Inkubation des Eluates bei 60 °C für 24 Stunden, anschließend auf 50 mL auffüllen. 2 mL Eluat zur Trockene einengen und mit Loading-Puffer (Citratpuffer, pH-Wert 2,2 entsprechend Henle et al., 1991a) aufnehmen. Nach Membranfiltration zur Aminosäureanalyse einsetzen. Die Parameter der Aminosäureanalyse sind beschrieben in Henle et al. (1991a).

3.5.4 pH-Wert

Der pH-Wert wird mittels einer Glaselektrode in den 30 % (w/v) wässrigen Honiglösungen bestimmt.
3.6 Hochdruckbehandlung von PD-Lösungen

Die Druckbehandlung der PD-Lösung erfolgte einerseits am Institut für Lebensmittelverfahrenstechnik der TU München in Weihenstephan, andererseits am Institut für Organische Chemie der TU Dresden. Die Druckbehandlung wurde im Bereich von 2000 bis 6000 bar für 0,5 bis 24 Stunden und 40 bis 60 °C durchgeführt (Tabelle 3.6-1). Der Druck wird mit ca. 200 bar pro Minute aufgebaut. Bei mehrfacher Behandlung einer Probe erfolgt vollständige Entspannung vor dem erneuten Druckaufbau. Die Volumina der behandelten Lösungen waren durch die technischen Gegebenheiten begrenzt und lagen bei ca. 5 mL für die Druckprogramme bei 50 und 60 °C (TU München) sowie bei ca. 10 mL für die Druckprogramme bei 40 °C (TU Dresden).

Tabelle 3.6-1 Hochdruckbehandlungen von PD-Lösung bei verschiedener Temperatur und anschließender Analytik

<table>
<thead>
<tr>
<th>40 °C</th>
<th>50 + 60 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druckprogramme [bar / h]</td>
<td>ZAP</td>
</tr>
<tr>
<td>2000 / 2</td>
<td>X</td>
</tr>
<tr>
<td>2000 / 4</td>
<td>X</td>
</tr>
<tr>
<td>2000 / 12</td>
<td>X</td>
</tr>
<tr>
<td>2000 / 24</td>
<td>X</td>
</tr>
<tr>
<td>2x (2000 / 1)</td>
<td>X</td>
</tr>
<tr>
<td>3x (2000 / 2)</td>
<td>X</td>
</tr>
<tr>
<td>2500 / 2</td>
<td>X</td>
</tr>
<tr>
<td>2500 / 4</td>
<td>X</td>
</tr>
<tr>
<td>2500 / 12</td>
<td>X</td>
</tr>
<tr>
<td>2500 / 24</td>
<td>X</td>
</tr>
<tr>
<td>2x (2500 / 1)</td>
<td>X</td>
</tr>
<tr>
<td>3x (2500 / 2)</td>
<td>X</td>
</tr>
<tr>
<td>3000 / 2</td>
<td>X</td>
</tr>
<tr>
<td>3000 / 4</td>
<td>X</td>
</tr>
<tr>
<td>3000 / 12</td>
<td>X</td>
</tr>
<tr>
<td>3000 / 24</td>
<td>X</td>
</tr>
<tr>
<td>2x (3000 / 1)</td>
<td>X</td>
</tr>
<tr>
<td>3x (3000 / 2)</td>
<td>X</td>
</tr>
</tbody>
</table>

ZAP - Analytik der α-Dicarbonyle, HMF sowie der Cytotoxicität; MiBio - Versuche zur Inaktivierung von Bakteriensporen; BSA - Inkubation der Proben mit Protein und anschließender Bestimmung des Pyrralingehaltes sowie der Fluoreszenz der Proteinfraktion
3. Material und Methoden

3.7 Keimzahlbestimmung nach Hochdruckbehandlung

5 mL der PD-Lösungen werden mit 0,5 mL Sporensuspensionen von Bacillus subtilis und Bacillus stearothermophilus dotiert, einer Druckbehandlung (siehe Tabelle 3.6-1) unterzogen und nachfolgend die Keimzahl mit dem Gussplattenverfahren auf Einschichtplatten (Wallhäußer, 1988) bestimmt. Verdünnungsmedium ist Ringerlösung entsprechend 3.1.2. Die Ausgangskeimzahl der Suspension wird analog zu jeder Versuchsreihe ermittelt. Die Inkubationstemperatur ist für Bacillus subtilis 30 °C und für Bacillus stearothermophilus 55 °C. Das Auszählen erfolgt nach 48 und 72 Stunden.

3.8 Bestimmung der Cytotoxizität

\[
ICG_P = \frac{A_K - A_P}{A_K} \times 100 \quad ICG = ICG_{Proble} - ICG_{Vergleich}
\]

A_K: Absorption der Kontrolle (unbehandelte Zellen)

A_P: Absorption der Probe, Vergleichsprobe oder Positivprobe

ICG: Hemmung des Zellwachstums [%]

Als Positivprobe dient Acrylamid-Lösung (10 µL einer 70 mM Lösung in 1 mL Nährmedium). Die Auswertung erfolgt mit der Differenz aus Wachstumshemmung der Probe zur Vergleichsprobe, einer sterilfiltrierten PD-Lösung gleicher Glucosekonzentration. Im Bereich 0 bis 15 % ICG spricht man von keiner Beeinflussung des Zellwachstums, bis 30 % ICG geht man von geringer Inhibierung.
3. Material und Methoden

aus. Erst oberhalb von 30 % ICG in Gegenüberstellung zur Vergleichsprobe ist die Beeinflussung des Zellwachstums signifikant.

3.9 Analytik von Maillard-Produkten

3.9.1 Inkubationsexperiment

Bildung von Maillard-Produkten:
3 mL der hochdruckbehandelten PD-Lösungen mit 3 mL BSA-Lösung (siehe 3.1.) vermischen und für 3 Wochen bei 37 °C inkubieren. Den Ansatz gegen Wasser dialysieren (cut off 12-16 kD) und das Retentat gefriertrocknen. Die so gewonnenen Proteinproben für die Bestimmung von Pyrralin und der Messung der Fluoreszenz einsetzen.

3.9.2 Fluoreszenz-Messung

7,5 mg der gefriergetrockneten Proteinproben aus 3.9.1 in 5 mL 0,01 M Phosphatpuffer (pH 7,4) lösen und nach Membranfiltration zur Messung in 1 cm Küvetten einsetzen. Mit der Wellenlängenkombination ex 350 nm / em 430 nm die Fluoreszenzintensität bei einer Raumtemperatur von 22 °C messen. Weitere gerätetechnische Parameter der Fluoreszenzmessung: scan mode: emission; data mode: fluorescence; scan speed 1200; ex slit: 10 nm; em slit 10 nm; PMT voltage: 700; response: automatic; shutter control : on.

3.9.3 Bestimmung von Pyrralin

Die Bestimmung erfolgt mittels Ionenpaar-HPLC nach enzymatischer Hydrolyse in Anlehnung an Bachmann (1994). Einen externen Standard für die Kalibration verwenden. Die Konzentration der Stammlösung (ca. 25 µM) durch Messung der UV-Absorption bei 297 nm überprüfen (Extinktionskoeffizient $\varepsilon_{297\text{nm}} = 14454 \text{ L/cm·mol}$). Die enzymatische Hydrolyse von 4 mg Protein entsprechend Henle et al. (1991b) durchführen. Dazu die Enzyme Pepsin, Pronase E, Aminopeptidase und Prolidase nacheinander im Abstand von 24 h zugeben. Zur Einstellung der optimaler Hydrolysebedingungen die Probelösung vor Pepsinzugabe in 0,02 N Salzsäure lösen und vor Zugabe von Pronase E alkalischen TRIS-Puffer zuzumischen. Im letzten Hydrolyseschritt die Enzyme Aminopeptidase und Prolidase zur Probe geben. Nach
3. Material und Methoden

Ablauf der Hydrolyse (insgesamt 72 h), die gesamte Lösung sofort gefriertrocknen. Die
trockene Probe mit 1 mL Fließmittel aufnehmen und nach Membranfiltration zur
Ionenpaar-HLPC einsetzten.

<table>
<thead>
<tr>
<th>Materielles und Methoden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluss: 1,6 mL / min</td>
</tr>
<tr>
<td>isokratische Elution: 7,5 mM Pentansulfonsäure mit 10 % (v/v) Ethanol (pH 3,0); pH-Wert mit Propionsäure einstellen</td>
</tr>
<tr>
<td>Trennsäule: Knauer Eurospher 100-C18; 15 µm; 4,6 x 150 mm</td>
</tr>
<tr>
<td>Säulentemperatur: 25 °C</td>
</tr>
<tr>
<td>Injektionsvolumen: 50 µL</td>
</tr>
<tr>
<td>Detektion : UV 297 nm, Empfindlichkeit 0,1 AU</td>
</tr>
</tbody>
</table>
4 Ergebnisse und Diskussion

4.1 Methodische Aspekte

4.1.1 Analytik von 5-Hydroxymethylfurfural

5-Hydroxymethylfurfural (HMF) wird beim Abbau von Kohlenhydraten und bei der Maillard-Reaktion gebildet. Es dient als ein Marker für die thermische Belastung von zuckerhaltigen Produkten. Mittels RP-HPLC (siehe 3.2.) wurde HMF in Honigproben sowie in Lösungen der Peritonealdialyse (PD) quantifiziert. Die Kalibration erfolgte mit externem Standard im Bereich von 0,02 nmol bis 1,9 nmol HMF bei einem Injektionsvolumen von 20 µL. Die Nachweisgrenze wurde auf 0,01 nmol HMF abgeschätzt. Bei der Analyse können somit 0,2 mg HMF / kg Honig und 0,5 µM HMF in PD-Lösungen nachgewiesen werden. In Abbildung 4.1.1-1 werden beispielhaft die Trennbilder zweier Honigproben mit unterschiedlichem Gehalt an HMF dargestellt. Die Analyse der Honige erfolgt nach Membranfiltration der Honiglösungen (30 %, w/v).

Abbildung 4.1.1-1 RP-HPLC zur Bestimmung von HMF; 2 Honigproben mit Gehalten von 0,9 und 6,5 mg HMF / kg im Vergleich zur Referenzlösung mit einer Konzentration von 1 µM HMF (entspricht 0,02 nmol im Injektionsvolumen)
4. Ergebnisse und Diskussion

4.1.2 Analytik der α-Dicarbonyle

Abbildung 4.1.2-1 Verlauf der Bildung der entsprechenden Chinoxaline bei der Reaktion von 3-DG, GO und MGO mit OPD. Die relativen Peakflächen wurden jeweils auf die Signalintensität nach 4 Stunden bezogen.

Analytik in PD-Lösungen:

Die Methode für die Bestimmung von 3-Desoxyglucosulose (3-DG), Glyoxal (GO) und Methylglyoxal (MGO) in Lösungen der Peritonealdialyse (PD) basiert auf ein beschriebenes Verfahren (Nilsson-Thorell et al., 1991), wobei der zeitliche Verlauf des Acetonitril / Wasser Gradienten leicht verändert wurde. Die Kalibration erfolgte mittels externen Standards bei einem Injektionsvolumen von 20 µL im Bereich von 0,05 bis 2,0 nmol (2,5 bis 100 µM) für 3-DG und von 0,02 bis 0,3 nmol (1,0 bis 15 µM) für GO und MGO. Die abgeschätzten Nachweisgrenzen lagen bei 0,02 nmol (1 µM) für 3-DG und bei 0,01 nmol (0,5 µM) für GO und MGO. In Abbildung 4.1.2-2 ist das Trennbild der Referenzverbindungen der RP-HPLC dargestellt.
Abbildung 4.1.2-2 RP-HPLC der Chinoxalinderivate zur Analytik der α-Dicarbonyle in PD-Lösungen; Chromatogramm der Referenzen 3-DG, GO und MGO (1 nmol 3-DG, je 0,1 nmol GO und MGO in 20 µL Injektionsvolumen); im Fokus: GO und MGO in Konzentrationen von 0,02 und 0,1 nmol in 20µL Injektionsvolumen

Abbildung 4.1.2-3 zeigt beispielhaft das Chromatogramm einer autoklavierten PD-Lösung nach Derivatisierung mit OPD. Für die quantitative Auswertung war in diesem Fall eine Verdünnung der autoklavierten PD-Lösung vor der Derivatisierung nötig. Der Gehalt an 3-DG übersteigt anderenfalls den Bereich der Kalibration. Die Bestimmung an GO und MGO erfolgte aufgrund der wesentlich geringeren Gehalte in der unverdünnten Probe. In der Darstellung (Abbildung 4.1.2-3) wurde die autoklavierte PD-Lösung 1+1 mit Wasser verdünnt, um die Signale von 3-DG, GO und MGO nebeneinander sichtbar zu machen.
Abbildung 4.1.2-3 RP-HPLC der Chinoxalinderivate zur Analytik der α-Dicarbonyle in PD-Lösungen; Chromatogramm einer autoklavierten PD-Lösung (Verdünnung vor Injektion 1+1, Gehalte: 499 µM 3-DG, 1 µM GO, 7,7 µM MGO); im Fokus: jeweils die Trennung von GO und MGO in der Probe sowie Referenzen (je 0,1 nmol GO und MGO je 20 µL) zum Vergleich der Retentionszeiten

4. Ergebnisse und Diskussion

Analytik der Honigproben:

Mit der zweiten RP-HPLC Methode konnten die α-Dicarbonyl-Verbindungen 3-DG, GO und MGO in Honigen bestimmt werden. Die Elution erfolgte im Gegensatz zur Methode für PD-Lösungen (Acetonitril / Wasser) mit einem Gradienten aus Methanol und Essigsäure. Mit externem Standard und bei einem Injektionsvolumen von 20 µL wurde im Bereich von 0,04 bis 4,0 nmol µM für 3-DG und im Bereich 0,02 bis 0,2 nmol für GO und MGO kalibriert. Die Nachweisgrenzen wurden zu 0,02 nmol für 3-DG und 0,01 nmol für GO und MGO bei einem Injektionsvolumen von 20 µL abgeschätzt. Bei der Verwendung von 30 %igen (w/v) wässrigen Honiglösungen entsprechen diese Mengen folgenden Gehalten an den α-Dicarboxylen im Honig: 0,5 mg 3-DG / kg, 0,1 mg GO / kg und 0,1 mg MGO / kg. Beispiele für die Trennung der Standards sind in Abbildung 4.1.2-4 dargestellt.

Abbildung 4.1.2-4 RP-HPLC der Chinoxalinderivate von α-Dicarbonylen in Honig; Trennbild der Referenzsubstanzen 3-DG, GO und MGO mit Gehalten von 0,8 bzw. 3,0 nmol 3-DG und je 0,06 bzw. 0,24 nmol GO und MGO in 20 µL Injektionsvolumen; im Fokus Trennung der Chinoxaline von GO und MGO
4. Ergebnisse und Diskussion

Abbildung 4.1.2-5 RP-HPLC der Chinoxalinderivate von α-Dicarbonylen in Honig:
Trennbild einer Honigprobe mit Gehalten (in mg/kg) von 3-DG: 166, GO: 1,9
sowie MGO: 2,4 im Vergleich zu einem Referenzgemisches aus 3-DG (3,0 nmol),
GO (0,24 nmol) und MGO (0,24 nmol) im Injektionsvolumen von 20 µL; im
Fokus: jeweils die Trennung von GO und MGO in der Probe sowie Referenzen
zum Vergleich der Retentionszeiten

4.1.3 Bestimmung der freien Aminosäuren im Honig

Die freien Aminosäuren in Honig stammen einerseits aus den Blütenpollen und
andererseits von den Bienen, die den gesammelten Pflanzensäften eigene Sekrete
zuführen (Deifel, 1990; White, 1978). Mit einem Gehalt von 80 mg / 100 g Honig
(Belitz und Grosch, 1992) bilden die freien Aminosäuren einen deutlichen Anteil am
Gesamtstickstoffanteil von 0,04 % im Honig (White, 1978). Zur Bewertung eines
möglichen Einflusses auf die Bildung von α-Dicarbonylen im Honig wurden die
Gehalte an freien Aminosäuren mittels Aminosäure-Analyse in den Honigproben
ermittelt. Dazu war ein vorheriger Aufarbeitungsschritt nötig, um die in den Honigen
enthaltenen Zucker von den Aminosäuren abzutrennen. Die Honige wurden in Wasser
gelöst, auf einen konditionierten Kationentauscher aufgebracht und nach dem Waschen
(Entfernung der Zucker) die Aminosäuren mit einem Salzsäure-Methanol-Gemisch
eluieren. Die Aufarbeitungsmethode wurde mit einem Aminosäurengemisch überprüft.
4. Ergebnisse und Diskussion

Tabelle 4.1-1 Wiederfindung von Aminosäuren nach Extraktion am Kationentauscher

<table>
<thead>
<tr>
<th>Aminosäure</th>
<th>eingesetzte Menge [mg]</th>
<th>gefundene Menge [mg]</th>
<th>Wiederfindung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolin</td>
<td>1,780</td>
<td>1,805</td>
<td>101</td>
</tr>
<tr>
<td>Phenylalanin</td>
<td>1,800</td>
<td>1,818</td>
<td>101</td>
</tr>
<tr>
<td>Histidin</td>
<td>1,805</td>
<td>1,295</td>
<td>72</td>
</tr>
<tr>
<td>Valin</td>
<td>1,930</td>
<td>1,963</td>
<td>102</td>
</tr>
</tbody>
</table>

4.1.4 Bestimmung von Pyrralin

Pyrralin ist ein Produkt der fortgeschrittene Maillard-Reaktion, das bei der Reaktion von 3-DG mit der ε-Aminogruppe des Lysin gebildet wird (Sengl et al., 1989). Die Bestimmung in Proteinen aus der Inkubation von BSA mit PD-Lösungen erfolgt mittels Ionenpaar-Chromatographie nach enzymatischer Hydrolyse. Mit externem Standard wurde im Bereich 5 bis 97 pmol kalibriert. Die abgeschätzte Nachweigrenze lag bei 2 pmol und entspricht 0,01 µmol / g Protein bei einem Injektionsvolumen von 50 µL und einer Probeneinwaage von 4 mg Protein.
4. Ergebnisse und Diskussion

4.2 Zuckerabbauprodukte im Honig

Im ersten Abschnitt dieser Arbeit werden erstmals die Konzentrationen an α-Dicarbonyle im zuckerreichen Lebensmittel Honig bestimmt. Es wurde geprüft, ob die gemessenen Gehalte im Zusammenhang stehen mit dem Gehalt an HMF und weiteren Inhaltsstoffen der Honige. Des weiteren wurde die Bildung von α-Dicarbonyle bei der Lagerung beobachtet. Eine unbekannte Verbindung im Honig wurde als 2-Hexosulose identifiziert. Das Vorkommen dieser α-Dicarboxylverbindung im Honig wurde bisher nicht beschrieben.

Ein Großteil der im folgenden dargestellten Ergebnisse wurden publiziert (Weigel et al., 2004).

4.2.1 Honigproben

Im Rahmen der Untersuchung wurde in 21 Honigproben der Gehalt an HMF, 3-DG, GO sowie MGO bestimmt. In Tabelle 4.2-1 sind die Gehalte an diesen Zuckerabbauprodukten im Überblick dargestellt. Die Honige wurden vom Imkerverein Dresden e.V. zur Verfügung gestellt und sind bis auf eine Ausnahme nicht älter als 6 Monate (siehe Tabelle 3.5-1). Die verzeichneten Behandlungen und Erwärme...
4. Ergebnisse und Diskussion

wurden vom Imkerverein durchgeführt und können deshalb nicht näher charakterisiert werden.

Tabelle 4.2-1 Gehalt an Zuckerabbauprodukten in Honigproben [mg / kg],
Hervorgehoben sind jeweils die maximalen und minimalen Gehalte sowie der Medianwert. Markiert wurden außerdem die Honige, die einer Erwärmung (*) unterlagen sowie der extrem lang gelagerte Honig (**).

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung</th>
<th>HMF [mg / kg]</th>
<th>3-DG</th>
<th>GO</th>
<th>MGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Robinie</td>
<td>0.8</td>
<td>80</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>Frühlingsblüten</td>
<td>5.0</td>
<td>321</td>
<td>0.2</td>
<td>1.8</td>
</tr>
<tr>
<td>3</td>
<td>Sommertracht</td>
<td>2.2</td>
<td>122</td>
<td>2.7</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>Sonnenblume *</td>
<td>10.1</td>
<td>456</td>
<td>1.7</td>
<td>5.0</td>
</tr>
<tr>
<td>5</td>
<td>Sommerblüte *</td>
<td>4.3</td>
<td>274</td>
<td>0.4</td>
<td>1.7</td>
</tr>
<tr>
<td>6</td>
<td>Sommerblüte *</td>
<td>1.8</td>
<td>168</td>
<td>2.1</td>
<td>2.7</td>
</tr>
<tr>
<td>7</td>
<td>Waldhonig **</td>
<td>43.9</td>
<td>1266</td>
<td>1.7</td>
<td>5.4</td>
</tr>
<tr>
<td>8</td>
<td>Blütenhonig</td>
<td>1.5</td>
<td>137</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>9</td>
<td>Blütenhonig</td>
<td>0.7</td>
<td>224</td>
<td>0.7</td>
<td>1.9</td>
</tr>
<tr>
<td>10</td>
<td>Blütenhonig</td>
<td>2.5</td>
<td>159</td>
<td>2.1</td>
<td>2.6</td>
</tr>
<tr>
<td>11</td>
<td>Blütenhonig</td>
<td>2.1</td>
<td>202</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>12</td>
<td>Blütenhonig</td>
<td>2.9</td>
<td>134</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>13</td>
<td>Blüte I</td>
<td>2.3</td>
<td>301</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td>14</td>
<td>Blüte II</td>
<td>1.8</td>
<td>182</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>15</td>
<td>Blüte III</td>
<td>0.7</td>
<td>273</td>
<td>0.6</td>
<td>1.8</td>
</tr>
<tr>
<td>16</td>
<td>Linde *</td>
<td>1.4</td>
<td>178</td>
<td>2.5</td>
<td>4.3</td>
</tr>
<tr>
<td>17</td>
<td>Sommertracht mit Linde</td>
<td>1.1</td>
<td>174</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>18</td>
<td>Blütenhonig Nr.10 *</td>
<td>3.0</td>
<td>182</td>
<td>1.9</td>
<td>2.6</td>
</tr>
<tr>
<td>19</td>
<td>Blütenhonig Nr.10 *</td>
<td>3.3</td>
<td>180</td>
<td>2.1</td>
<td>2.7</td>
</tr>
<tr>
<td>20</td>
<td>Blütenhonig Nr.10 *</td>
<td>2.3</td>
<td>166</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>21</td>
<td>Wabenhonig</td>
<td>0.5</td>
<td>79</td>
<td>1.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fast alle Honige zeigten einen sehr geringen Gehalt an HMF, was auf eine schonende Bearbeitung ohne große Temperaturbelastung hinweist. Das auch der unbehandelte Wabenhonig HMF enthält (0,5 mg / kg), zeugt von einer geringen Bildung von Zuckerabbauprodukten schon im Bienenstock. Unter normalen Bedingungen herrscht dort eine Temperatur von 30 bis 35 °C (Deifel, 1989). Eine Bildung von HMF auch bei Raumtemperatur ist von White et al. (1964) beobachtet worden. Auffällig bei den untersuchten Proben war der einzige lange gelagerte Honig (Nr.7; 5 Jahre alt), dessen
4. Ergebnisse und Diskussion

HMF-Konzentration in der Nähe des gesetzlichen Grenzwertes von 40 mg / kg lag. Auch ein zum Abfüllen auf 40 °C erwärmter Honig (Nr.4) zeigte einen deutlich höheren Gehalt (10,1 mg HMF / kg) als weitere vergleichbar behandelte und unbehandelte Honige (Nr. 5, 6, 16; 0,5 – 5,0 mg HMF / kg).

Im Vergleich zu HMF zeigten alle Honigproben einen hohen Gehalt an 3-DG. Diese α-Dicarbonylverbindung ist ein Intermediat bei der Abbaureaktion von Glucose und Fructose zu HMF. 3-DG wird aber auch beim Abbau des Amadori-Produktes während der Maillard Reaktion gebildet (siehe 2.1). Villamiel et.al. (2001) konnten zeigen, dass auch im Honig Produkte der frühen Maillard-Reaktion (im Mittel 8,2 mg Furosin / g Protein) zu finden sind. So sind für die Bildung von 3-DG mehrere Reaktionswege möglich, die das beobachtete Vorkommen von 3-DG im Honig erklären. Die höchsten Gehalte an 3-DG (1266 und 456 mg / kg) zeigten analog zum HMF einerseits der lang gelagerte Honig sowie ein erwärmter Honig (Nr. 7 und Nr. 4).

Im Honig konnten auch GO und MGO bestimmt werden. Mögliche Bildungswege für diese kleinmolekularen Dicarboxyle sind die Retroaldolreaktion von Deoxyosonen, wie beispielsweise 3-DG zu MGO (Weenen et al., 1998). GO entsteht auch bei der Autoxidation von Hexosen, wie zum Beispiel Glucose (Wells-Knecht et al., 1995; Weenen et al., 1998). Die Konzentrationen von GO und MGO in den Honigproben sind gegenüber dem Gehalt an 3-DG deutlich kleiner und liegen im Bereich der Gehalte in anderen Lebensmitteln (siehe Tabelle 2.2-1). Im Gegensatz zu einem Großteil der dort beschriebenen Lebensmittel sind bei der Herstellung von Honig keine Mikroorganismen beteiligt. Honig ist durch seine geringe Wasseraktivität kein optimaler Nährboden für Bakterien oder Hefen, so dass eine fermentative Bildung von MGO und GO weitgehend auszuschließen ist. Die Entstehung von GO und MGO ist damit eher auf die Reaktionen des Zuckerabbaues zurückzuführen. Maximale Werte für den Gehalt an MGO wurden für den lang gelagerten Honig (Nr. 7; 5,4 mg / kg) sowie einen erwärmten Honig (Nr. 4; 5,0 mg / kg) beobachtet. Die Gehalte an GO in den Honigen zeigen eine deutlich geringere Schwankungsbreite als die Konzentrationen von MGO. Maximale oder minimale Werte für den GO-Gehalt stehen nicht mit besonderen Probenspezifikationen in Zusammenhang. Insgesamt sind die prozentualen Spannweiten der Gehalte an GO und MGO deutlich geringer als bei HMF und 3-DG.
4. Ergebnisse und Diskussion

Abbildung 4.2.1-1 Gegenüberstellung der Gehalte an HMF und 3-DG in den Honigproben

Im folgenden wurden die 21 Honigproben auf den Gehalt an Glucose, Fructose, Wasser und freie Aminosäuren analysiert. Der pH-Wert wurde in wässrigen Lösungen der

Tabelle 4.2-2 Inhaltsstoffe der Honigproben [g / 100 g]

<table>
<thead>
<tr>
<th>Inhaltsstoffe</th>
<th>Wertebereich</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fructose</td>
<td>32,8 - 43,1</td>
<td>38,7</td>
</tr>
<tr>
<td>Glucose</td>
<td>25,4 - 39,9</td>
<td>35,2</td>
</tr>
<tr>
<td>Wasser</td>
<td>12,9 - 18,3</td>
<td>15,3</td>
</tr>
<tr>
<td>freie Aminosäuren</td>
<td>0,02 - 0,05</td>
<td>0,03</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>3,6 - 4,5</td>
<td>3,9</td>
</tr>
</tbody>
</table>

Abbildung 4.2.1-2 Gegenüberstellung von Inhaltsstoffen der Honige zum Gehalt an HMF; links: die Summe von Glucose- und Fructosegehalt (Glc+Frc) sowie der pH-Wert vs. HMF-Gehalt; rechts: Gehalt an freien Aminosäuren und Wasser vs. HMF-Gehalt Konzentration an 3-DG

Abbildung 4.2.1-3 Gegenüberstellung von Inhaltsstoffen der Honige zum Gehalt an 3-DG; links: die Summe von Glucose- und Fructosegehalt (Glc+Frc) sowie der pH-Wert vs. Konzentration an 3-DG; rechts: Gehalt an freien Aminosäuren und Wasser vs. Konzentration an 3-DG

4.2.2 Lagerversuche

Für die Untersuchung zur Bildung von α-Dicarbonylen neben HMF im Honig wurde eine handelsübliche Honigprobe für 70 Tage bei 35 und 45 °C verschlossen gelagert und in regelmäßigen Abständen der Gehalt an HMF, 3-DG, GO und MGO bestimmt.

Abbildung 4.2.2-1 Bildung von HMF und 3-DG in einem Honig im Verlauf der Lagerung
4. Ergebnisse und Diskussion

Während der Lagerung (Abbildung 4.2.2-1) konnte ein deutlicher Anstieg der Gehalte an HMF und 3-DG beobachtet werden. Die Bildung von HMF während der Lagerung zeigt vor allem bei 45 °C einen nichtlinearen Verlauf. Bei einem Anfangsgehalt von 1 mg HMF / kg ist erst ab dem 40. Tag (35 °C) bzw. dem 20. Tag (45 °C) ein deutlicher Anstieg der Konzentration von HMF erkennbar. Der gesetzliche Grenzwert von 40 mg HMF / kg Honig wird am 70. Tag (35 °C) bzw. am 35. Tag der Lagerung (45 °C) erreicht. Demgegenüber zeigt die Bildung von 3-DG einen nahezu linearen Anstieg mit der Lagerzeit in Abhängigkeit beider Lagertemperaturen. Nach 70 Tagen Lagerung werden Gehalte von 1230 mg 3-DG / kg (35 °C) und 1930 mg 3-DG / kg (45 °C) erreicht und haben sich im Vergleich zum Anfangsgehalt (550 mg 3-DG / kg) mehr als verdoppelt beziehungsweise verdreifacht. Die Ausgangskonzentrationen von GO und MGO waren wie schon bei den vorherigen Honigproben sehr gering. Während der Lagerung (Abbildung 4.2.2-2) zeigt sich ein anderer Verlauf, als für HMF und 3-DG beobachtet. Ausgehend von 1 mg GO / kg Honig sinkt der Gehalt von GO und ist nach 49 Tagen bei 35°C und 45°C nicht quantifizierbar. Der Gehalt an MGO sinkt sofort nach Lagerungsbeginn und steigt im Verlauf wieder an, so dass am Ende die Ausgangskonzentration von 3,2 mg MGO / kg leicht übertroffen wird (4,0 mg / kg bei 35 °C und 5,1 mg / kg bei 45 °C).

Abbildung 4.2.2-2 Konzentration von GO und MGO im Honig im Verlauf der Lagerung

Abbildung 4.2.2-3 Gegenüberstellung von Gehalten an HMF und 3-DG der Honigproben sowie der Lagerversuche bei 35 und 45 °C, die Linie verdeutlicht den gesetzlichen Grenzwert von 40 mg HMF / kg Honig

Die frischen Honigproben zeigten bei geringem, vergleichbarem Gehalt von HMF (ca. 2 mg / kg) einen weiten Konzentrationsbereich an 3-DG (80 bis 500 mg / kg). Eine Bildung von 3-DG erfolgt sehr schnell und ist auf Grund des beobachteten weiten Konzentrationsbereiches, wahrscheinlich leicht zu beeinflussen. Die Folgereaktion vom 3-DG zum HMF findet in diesen unbehandelten oder gering erwärmten Honigen nur in kleinem Umfang statt. Es ist vorstellbar, dass die Bildung von Zuckerabbauprodukten

4.2.3 Diskussion und Konsequenzen der Zuckerabbauprodukte in Honig

66
stark ansteigenden relativen Bildungsraten im Verlauf der Lagerung bei 35 und 45 °C aus Abbildung 4.2.2-1 und Abbildung 4.2.2-3 deutlich wird.

Durch die Bestimmung von 3-DG in Honigproben können demnach auch geringe Wärmebehandlungen ermittelt werden, die sich im Gehalt an HMF nicht nachweisen lassen. Die Funktion des HMF als Marker für einen Abbau von Kohlenhydraten im Honig kann auch vom 3-DG übernommen werden. Honige ohne starke Wärmebehandlung zeigen in der vorliegenden Untersuchung einen Gehalt von unter 500 mg 3-DG / kg. Übersteigt der Gehalt im Honig 1000 mg 3-DG / kg, ist mit einer Konzentration an HMF in der Nähe des Grenzwertes von 40 mg / kg zu rechnen.

Über eine toxikologische Wirkung der α-Dicarbonyle nach Aufnahme über die Nahrung ist wenig bekannt. Als Vergleich sollen deshalb glucosehaltige Lösungen zur Peritonealdialyse (PD) dienen. Die cytotoxische Wirkung von Glucoseabbauprodukten, die bei der Hitzesterilisation solcher Lösungen entstehen, wurde in Abhängigkeit der Glucosekonzentration zu 53 bis zu 75 % ICG ermittelt (Wieslander et al., 1991; Wieslander et al., 1993; Wieslander et al., 1995a; Wieslander et al. 2001). Die beobachtete Hemmung des Zellwachstums ist zurückzuführen auf mehrere Abbauprodukte mit verschiedenem cytotoxischem Potential. So wird dem α-Dicabonyl 3,4-Didesoxyglucoson-3-en die bisher stärkste Cytotoxizität zugesprochen. Die Konzentration dieser Verbindung liegt dabei bei 9 bis 22 µM (Linden et al., 2002). Weitere Abbauprodukte tragen über ihren hohen Gehalt zur cytotoxischen Wirkung bei. So wurden beispielsweise in konventionellen PD-Lösungen je nach Glucosegehalt zwischen 118 und 540 µM 3-DG (entsprechend 19 bis 87 mg 3-DG / L) bestimmt (siehe Tabelle 2.2-4). Bei PD-Lösungen mit deutlich geringerem Gehalt an 3-DG, das als eine Markerverbindung des Glucoseabbaus dienen kann, wurde auch eine deutlich geringere Cytotoxizität beobachtet (Wieslander et al., 1995a; Wieslander et al. 2001).

Für die untersuchten Honigen wurden nun deutlich höhere Konzentrationen an 3-DG (79 bis 1266 mg / kg) ermittelt. Eine prinzipiell mögliche cytotoxische Wirkung müsste daraus ableitbar sein, da bzw. selbst eine 10 %ige Honiglösung (w/v) mit PD-Lösungen vergleichbare und höhere Gehalt an 3-DG haben. Wichtiger Unterschied in Bezug auf eine physiologische Wirkung ist die jeweilige Exposition. Die Patienten der PD benötigen täglich 8 bis 20 L Lösung, die direkt in eine Körperhöhle (Peritoneum) eingefüllt werden und mit Mesothelzellen in Kontakt treten. Über das große Volumen an PD-Lösung wird eine entsprechend große Mengen α-Dicarbonyle zugeführt (Wieslander et al., 2001). Im Falle des Lebensmittels Honig kann von wesentlich
4. Ergebnisse und Diskussion

geringeren täglichen Aufnahme ausgegangen werden. So lag der jährliche Verbrauch an Honig im Jahr 2001 bei 1,2 kg pro Person (Langnese-Honig, 2002). Die aufgenommene, kleine Menge an α-Dicarboxylen aus dem Honig unterliegt außerdem den teilweise extremen Einflüssen (z.B. Wechsel des pH-Wertes) der Verdauung, so dass Folgereaktionen zum Abbau der α-Dicarbonyle oder zur Bildung von Maillard-Produkten anzunehmen sind. Des weiteren besitzt der menschliche Organismus Enzyme, die α-Dicarboxylen metabolisieren und der Ausscheidung zuführen (siehe 2.2.2). Eine akute „Gefährdung“ durch die im Honig enthaltenen α-Dicarboxylen bei der Nahrungsaufnahme besteht demnach sicherlich nicht.

Ergebnisse und Diskussion

am Wirkungsort ein. Die cytotoxische, wachstumshemmende Wirkung von α-Dicarbonylen ist bereits nachgewiesen und ihr Vorkommen im Honig mit dieser Arbeit erstmals beschrieben. Eine Überprüfung einer wachstumshemmenden, bakteriostatischen Wirkung von α-Dicarbonylen im Honig sollte über die Verwendung eines Honigs mit unterschiedlichen Gehalten an α-Dicarbonylen durchgeführt werden, um den Einfluss durch weitere Inhaltsstoffe zu unterdrücken.

4.2.4 D-Arabino-2-hexosulose (Glucoson) in Honig

Bei der Bestimmung der α-Dicarbonyle konnte in den Chromatogrammen der Honigproben neben den bekannten Signalen der Chinoxaline von 3-DG, GO und MGO auch ein unbekanntes, quantitativ bemerkenswertes Signal beobachtet werden. (Abbildung 4.2.4-1) Bei allen Honigproben erscheint dieses Signal mit unterschiedlicher Intensität bei ca. 7 min zwischen o-Phenyldiamin (OPD) und 3-DG. Durch Fraktionierung mittels semipräparativer HPLC konnten aus 350 g Honig ca. 15 mg der unbekannten Verbindung isoliert werden (Abbildung 4.2.4-2). Im folgenden erfolgte die Identifizierung mittels spektrometrischer Methoden. Als Vergleich diente das ebenfalls aus Honig isolierte Chinoxalinderivat des 3-DG.

Abbildung 4.2.4-1 RP-HPLC zweier Honigproben mit unbekanntem Signal bei ca. 7 min Retentionszeit im Vergleich zum Referenzgemisch (gepunktete Line) aus 3-DG, GO und MGO
Abbildung 4.2.4-2 analytische RP-HPLC der isolierten, unbekannten Verbindung nach semipräparativer RP-HPLC und zweimaliger Rechromatographie

Durch den Vergleich der UV-Spektren der unbekannten Verbindung mit dem Chinoxalin des 3-DG konnte auch für die isolierte Verbindung eine Chinoxalinstruktur angenommen werden, die aus der Umsetzung einer unbekannten α-Dicarbonylverbindung mit dem Derivatisierungsreagenz (OPD) gebildet wird. (Abbildung 4.2.4-3).

Aus den Messungen mittels LC-MS konnten die in Abbildung 4.2.4-4 dargestellten Massenspektren der Chinoxaline von 3-DG und der unbekannten Verbindung aufgenommen werden. Nach positiver Elektro-Spray-Ionisation konnten für die unbekannte Verbindung die Massen MH$^+$ von 251 m/z und MNa$^+$ von 273 m/z zugeordnet werden. Daraus ergibt sich eine Molmasse von 250 für das unbekannte Chinoxalinderivat. Eine vergleichbare Zuordnung konnte für die Massensignale des 3-DG-Chinoxalins MH$^+$ 235 m/z und MNa$^+$ 257 m/z getroffen werden. Die in allen Massenspektren auftretende Masse von 227 m/z ist möglicherweise auf Verunreinigung zurückzuführen, da dieses Signal auch im Leerlauf mit Methanol erscheint.
4. Ergebnisse und Diskussion

Abbildung 4.2.4-3 UV-Spektren der isolierten Verbindungen; links: Chinoxalinderivat des 3-DG nach Umsetzung mit OPD; rechts: unbekannte Verbindung

Abbildung 4.2.4-4 Massenspektrum des unbekannten Chinoxalin im Vergleich zum Chinoxalin des 3-DG sowie ein Massenspektrum aus einem Leerlauf mit Methanol
4. Ergebnisse und Diskussion

Aus den in der Massenspektrometrie ermittelten Massenzahlen und unter Berücksichtigung einer Chinoxalininstruktur kann für die unbekannte Verbindung folgende Summenformel aufgestellt werden: C_{12}O_{4}N_{2}H_{14}. Wird der unbekannten Substanz eine α-Dicarbonylstruktur zugrunde gelegt, die mit den im Honig vorkommenden Monosacchariden vergleichbar ist, lassen sich die in Abbildung 4.2.4-5 dargestellten 3 Strukturvorschläge formulieren.

Abbildung 4.2.4-5 Strukturvorschläge für die unbekannte Verbindung nach UV-Spektroskopie und Massenspektrometrie, A: 1-Chinoxalin-2-yl-butan-1,2,3,4-tetraol; B: 1-(3-Hydroxymethyl-chinoxalin-2-yl)-propan-1,2,3-triol; C: 1-[3-(1,2-Dihydroxy-ethyl)-5-propenyl-pyrazin-2-yl]-ethan-1,2-diol

Die Auswertung der aufgenommenen 13C- und 1H-NMR Spektren erfolgte unter Beachtung der vorgeschlagenen Strukturen. Die einzelnen Signale in den Spektren wurden folgendermaßen zugeordnet:

13C-NMR (500MHz, DMSO-D6), δ/ppm: 63,49 (t, C12), 71,13 (d, C11), 72,44 (d, C9), 74,40 (d, C10), 128,60 (d, C4), 128,85 (d, C7), 129,23 (d, C5), 129,93 (d, C6), 140,82 (s, C3), 140,99 (s, C8), 145,29 (d, C2), 159,61 (s, C1)

1H-NMR (125MHz, DMSO-D6), δ/ppm: 3,43-3,47 (m, H12b), 3,63-3,68 (m, H12a, H11, H10), 5,15 (d, H9), 7,78-7,85 (m, H5, H6), 8,03-8,09 (m, H4, H7), 9,09 (s, H2)

Die Anzahl der C-Atome (12) der unbekannten Verbindung, die über das Massenspektrum ermittelt wurde, konnte mit der Anzahl der Signale im 13C-Spektrum bestätigt werden. Damit lässt sich auch Verbindung C aus Abbildung 4.2.4-5 wegen ihrer hohen Symmetrie ausschließen. Außerdem zeigte sich im DEPT Experiment (distortionless enhancement by polarization transfer) nur ein Signal für eine CH$_2$-Gruppe, damit können die Strukturen B und C aus Abbildung 4.2.4-5 mit ihren jeweils zwei sekundären C-Atomen (-CH$_2$-) ausgeschlossen werden. Im Folgenden wurden auch die HSQC- und HMBC- Kopplungstechniken für die Zuordnung der Signale der
4. Ergebnisse und Diskussion

NMR-Spektren angewandt. Dabei wurden die in Abbildung 4.2.4-6 dargestellten 13C-1H-Spinkopplungen über eine (HSQC, heteronuclear single quantum coherence) bzw. 2 bis 4 (HMBC, heteronuclear multiple bond connectivity) Bindungen beobachtet.

Abbildung 4.2.4-6 Beobachtete Spinkopplungen beim HSQC- und HMBC-Experiment der unbekannten Verbindung

Zusammenfassend konnte die unbekannte Verbindung als 1-Chinoxalin-2-yl-butan-1,2,3,4-tetraol (Abbildung 4.2.4-7) identifiziert werden, dem Chinoxalinderivat einer 2-Hexosulose (Abbildung 4.2.4-7).

Abbildung 4.2.4-7 Struktur des 1-Chinoxalin-2-yl-butan-1,2,3,4-tetraol sowie die Struktur der 2-Hexosulose

Unter der Annahme, dass diese Verbindung aus der im Honig hauptsächlich vorkommenden Monosaccharide Glucose und Fructose entstanden ist, kann die 2-Hexosulose auch als D-Arabino-2-hexosulose (Glucoson) identifiziert werden.

Nach der Strukturaufklärung wurden die bisher untersuchten Honige mit dem Fokus auf das Glucoson im Honig erneut betrachtet. Dabei wurden die Mengen der Verbindung mittels der Kalibration des 3-DG abgeschätzt. In den Honigproben wurden so Gehalte von 18 bis zu 262 mg / kg (Median 92 mg /kg) ermittelt. Ein Korrelation zu den bisher
4. Ergebnisse und Diskussion

analysierten α-Dicarboxylen oder ausgewählten Honiginhaltsstoffen konnte nicht ermittelt werden. Während der Lagerung eines Honigs bei 35 und 45 °C wurde anfangs ein leichter Anstieg im Glucosongehalt beobachtet (siehe Abbildung 4.2.4-8). Nach 7 beziehungsweise 21 Tagen sank der Gehalt wieder und lag nach 70 Tagen in der Nähe des Gehaltes zum Ausgangspunkt (84 mg / kg) des Experimentes. Ausgehend von dem hohen Gehalt an Monosacchariden im Honig, die wahrscheinlich die Ausgangsstoffe auf dem Bildungsweg zur D-Arabino-2-hexosulose darstellen, ist der Verlauf während der Lagerung so zu interpretieren, dass für die Bildung des Glucoson weitere Reaktionspartner nötig sind, die im Honig aber nur in begrenztem Umfang zur Verfügung stehen. Anderenfalls kann man von einem sich mit der Lagerzeit einstellendem Gleichgewicht von Folgereaktionen der D-Arabino-2-hexosulose und der Bildung von Vorstufen oder weiterer Reaktionsteilnehmer ausgehen.

Abbildung 4.2.4-8 Gehalt an D-Arabino-2-hexosulose (Glucoson) einer Honigprobe während der Lagerung bei 35 und 45 °C

Reaktion in den Modellversuchen ist die Anwesenheit von Kupferionen mit bis zu 500 µM. Da die Reaktion auch bei geringer Kupferionenkonzentration abläuft, ist dieser Bildungsweg für die D-Arabino-2-hexosulose im Honig nicht auszuschließen. Villamiel et al. (2001) konnte den Gehalt an Amadori-Produkt in Honigen nach Hydrolyse mit ca. 8 M Salzsäure zu durchschnittlich 8,2 mg Furosin / g Protein bestimmen. Bei einem Proteingehalt von 3,6 mg / kg Honig stehen dem oben beschriebenen Reaktionsweg ca. 79 mg Amadori-Produkt pro kg Honig zur Verfügung. (Berücksichtigt wurde dabei ein Umrechnungsfaktor von 2,2 von Furosin zum Fructoselysin gemäß Krause et al., 2003).

Für die Bildung von D-Arabino-2-hexosulose aus dem Amadori-Produkt im Honig muss dieses also ständig nachgebildet werden, was auf Grund der hohen Glucosekonzentration im Honig möglich ist. Für den speziellen Fall des Honigs wurde der Verlauf der Bildung von Amadori-Produkt aber noch nicht beschrieben.

Die Analogie zu Monosachariden und die an Sauerstoff reiche Struktur der D-Arabino-2-hexosulose lassen eine oxidative Umsetzung der Glucose oder Fructose auch ohne Beteiligung von Aminoverbindungen vermuten. Als mögliches Oxidationsmittel steht
4. Ergebnisse und Diskussion

Wasserstoffperoxid zur Verfügung, das im Honig bis zu 50 mg / kg enthalten ist (Deifel, 1989). Wasserstoffperoxid entsteht im Honig bei der enzymatischen Oxidation der Glucose zu Gluconsäure (Deifel, 1989).

In anfänglichen Studien wurden Honiglösungen (20 %, w/v) mit Wasserstoffperoxid versetzt und für 15 Stunden bei 37 °C inkubiert (siehe Abbildung 4.2.4-9). Die Konzentration an Wasserstoffperoxid (75 bis 1500 mg H₂O₂ / kg Honig) lag dabei deutlich über den normalen Gehalten im Honig (50 mg / kg; Deifel, 1989). Analog wurden leicht saure (pH 3,9) Fructose- und Glucose-Lösungen (20 %, w/v) unter gleichen Bedingungen mit Wasserstoffperoxid inkubiert und mittels der Analytik für α-Dicarboxyle analysiert. Zur Auswertung wurden die Peakflächen relativ zur Zuckerkonzentration herangezogen.

Abbildung 4.2.4-9 Bildung von D-Arabino-2-hexosulose (Glucoson) in Honig-, Glucose- und Fructose-Lösungen bei Lagerung bei 37 °C für 15 h mit verschiedenen Konzentrationen an Wasserstoffperoxid

Glucoseoxidase im Honig sein. Andererseits kann Wasserstoffperoxid durch im Honig enthaltene Katalase abgebaut werden.

4. Ergebnisse und Diskussion

Diese strukturbedingten Reaktivitätsunterschiede sind auch bei der Betrachtung des Endproduktes Glucoson feststellbar. Für die D-Arabino-2-hexosulose (Glucoson) sind 3 Pyranose- bzw. Furanosestrukturen formulierbar (Abbildung 4.2.4-11), die sich aus den jeweiligen Ausgangsstoffen Glucose (Pyranose1) bzw. Fructose (Pyranose2, Furanose) ableiten. Dabei wird deutlich, dass das Oxidationsprodukt Glucoson nur mit geringer Wahrscheinlichkeit als Pyranose 1, wie in Abbildung 4.2.4-11 dargestellt, vorliegt. Die Ausbildung der Doppelbindung hat auch eine Veränderung der Bindungswinkel zur Folge, so dass die Stabilität bzw. die Ausbildung eines Pyranoseringes stark beeinträchtigt sein wird. Demgegenüber wird die Pyranose 1 von Griffhorn (2000) auch als Hydrat formuliert, so dass durch die nun 4 Bindungspartner am C2 keine Veränderung der Bindungswinkel vorliegt. Im Vergleich dazu kann die Oxidation von Fructose zum Glucoson unabhängig von der für das Monosaccharid stabilen Pyranosestruktur bzw. Furanosestruktur formuliert werden. Die entsprechenden Konfigurationen sind in Abbildung 4.2.4-10 und Abbildung 4.2.4-11 (Pyranose 2 und Furanose) dargestellt.

Abbildung 4.2.4-10 Pyranose- und Furanosestrukturen von Glucose und Fructose
Das Vorkommen der D-Arabino-2-hexosulose (Glucoson) in Honig wurde in dieser Arbeit erstmals beschrieben. Das Vorkommen dieser Substanz in weiteren Lebensmitteln ist nach bisheriger Literaturrecherche nicht dokumentiert. Über Konsequenzen bei der Aufnahme dieser α-Dicarbonylverbindung mit der Nahrung sind, wie schon für andere α-Dicarbonyle im Abchnitt 4.2.3 dargelegt, keine gesicherten Aussagen vorhanden.

4. Ergebnisse und Diskussion

4.3 Hochdruckbehandlung von PD-Lösungen

4.3.1 Inaktivierung von Bakteriensporen mittels Hochdruckbehandlung

spielt vor allem deren Vegetationsform eine entscheidende Rolle. So sind vegetative Keime deutlich druckempfindlicher als Sporen.

Für die Versuche im Rahmen dieser Arbeit wurden als Testkeime Sporen der Bakterien Bacillus subtilis und Bacillus stearothermophilus eingesetzt. Sporensuspensionen wurden zu einer Lösung der Peritonealdialyse (PD) gegeben und der Druckbehandlung unterworfen. Dabei wurde eine möglichst große Anfangskeimzahl (bis zu 10^8 KBE / mL) angestrebt, da erst bei einer Kontaminationswahrscheinlichkeit von weniger als eins zu einer Million die Sterilität gewährleistet ist (Wallhäuser, 1988). Die Ausgangskeimzahlen $\lg N_0$ wurden zu jeder Versuchsreihe ermittelt. Die Druckanwendung erfolgte bei 50 und 60 °C mit den jeweils zugesetzten Sporen im Druckbereich von 3000 bis 6000 bar über ein bis zu 3 Stunden. Dabei wurden auch mehrfache Druckbehandlungen mit einer Vorbehandlung bei 800 bar über 30 min angewandt. In der folgenden Auswertung werden zu leichteren Handhabung meist die dezimalen Logarithmen der Keimzahlen $\lg N$ (in KBE / mL, KBE = Koloniebildende Einheiten) verwendet. Zur Verdeutlichung der Inaktivierung wird teilweise die Differenz der Keimzahlen ($\lg N_0 - \lg N = \lg N_i$) herangezogen.

Durch die angewandte Hochdruckbehandlung konnten vor allem für Bacillus subtilis deutliche Abtötungsraten erreicht werden (Abbildung 4.3.1-1). Ausgehend von Anfangskeimzahlen $\lg N_0$ von 6,3 bis 6,8 wurden maximal eine Inaktivierung um $\lg N_i 5,8 \ (4000 \text{ bar / } 2 \text{ h})$ und minimal um $\lg N_i 4,8 \ (800 \text{ bar / } 0,5 \text{ h} + 6000 \text{ bar / } 1 \text{ h})$ beobachtet. Ein Wechsel der Temperatur von 50 auf 60°C zeigt kaum Einfluss auf die Abtötung der Sporen von Bacillus subtilis.

4. Ergebnisse und Diskussion

Abbildung 4.3.1-1 Inaktivierung von Sporen von Bacillus subtilis in PD-Lösungen mittels Hochdruck bei verschiedener Temperatur. Dargestellt sind die Keimzahlen \(\lg N \) nach der Druckbehandlung im Vergleich zur jeweiligen Anfangskeimzahl \(\lg N_0 \).

Abbildung 4.3.1-2 Inaktivierung von Sporen von Bacillus stearothermophilus in PD-Lösungen mittels Hochdruck bei verschiedener Temperatur. Dargestellt sind die Keimzahlen \(\lg N \) nach der Druckbehandlung im Vergleich zur jeweiligen Anfangskeimzahl \(\lg N_0 \).
Die geringere Empfindlichkeit der Sporen von Bacillus stearothermophilus gegenüber einer Druckbehandlung im Vergleich zu Bacillus subtilis (Butz et al., 1990) konnte durch die eigenen Experimente bestätigt werden. Durch die angewandten Druckbehandlungen konnten Inaktivierungen um maximal \(\text{lgN} = 4,5 \) [zweimalige Druckbehandlung (800 bar für 0,5 h anschließend 6000 bar für 1 h), 60°C] erreicht werden (Abbildung 4.3.1-2). Bemerkenswert ist der Temperatur Einfluss auf die Inaktivierung der Sporen von Bacillus stearothermophilus. So ist die Abtötung nach Anwendung von 3000 und 6000 bar bei 60 °C größer gegenüber gleicher Druckbehandlung bei 50 °C. Dieser Trend ist bei 4000 bar umgekehrt, durch die Behandlung bei 50 °C wird eine höhere Inaktivierung erreicht als bei 60 °C.

Hayakawa et al. (1994a) beschreiben zyklische und oszillatorische Druckanwendungen (6000 und 4000 bar für 1 bis 5 min) bei denen Sporen von Bacillus stearothermophilus (\(\text{lgN}_0 \) 6) vollständig inaktiviert wurden. Diese Prozesse wurde bei einer Temperatur von 70 °C durchgeführt. Ludwig et al. (1992) erreichten eine Inaktivierung auf \(\text{lgN} = 2 \) (\(\text{lgN}_0 \) 9) durch Behandlung mit 2500 bar für 4 h bei 60 °C. Die Steigerung der Inaktivierung von Bacillus stearothermophilus Sporen durch erhöhte Prozesstemperatur und erhöhtem Druck wird von Seyderhelm und Knorr (1992) dokumentiert. Mit einer Behandlung bei 2000 bar und 90°C wurden die Sporen vollständig inaktiviert (\(N_0 \) 3·10^6 KBE / mL), schon bei 70 °C wird bei einem Druck von 2000 bis zu 4000 bar nur eine teilweise Abtötung erreicht.

4. Ergebnisse und Diskussion

4.3.2 Zuckerabbauprodukte in druckbehandelten PD-Lösungen

Zur Beobachtung eines durch die Hochdruckbehandlung verursachten Zuckerabbaues wurde eine Lösung zur Peritonealdialyse (PD) mit 4 % Glucose (siehe 3.1.2) frisch hergestellt und nach Membranfiltration verwendet. Neben den zur Inaktivierung von Bakteriensporen angewandten Druckprogrammen, wurden weitere Behandlungen mit höherem Druck, längeren Druckhaltezeiten und auch geringerer Temperatur durchgeführt. Die Druckbehandlungen fanden bei 40, 50 und 60 °C statt. Die Lösungen wurden im Zeitraum von 1 bis zu 24 Stunden bei 2000 bis zu 6000 bar behandelt. Einige Proben wurden einer mehrfachen Druckanwendung und einer Vorbehandlung bei 800 bar für 30 min unterzogen (Druckprogramme siehe Tabelle 3.6-1). Als Vergleich wurden jeweils eine unbehandelte und ein autoklavierte (121 °C, 15 min) PD-Lösung betrachtet. Die Bestimmung der Zuckerabbauprodukte HMF, 3-DG, GO und MGO erfolgte mittels RP-HPLC. Abbildungen 4.3.2-1 und 4.3.2-2 zeigen die Chromatogramme der α-Dicarbonylanalytik der Vergleichsproben.
Abbildung 4.3.2-1 RP-HPLC zur Analytik der α-Dicarbonyle in PD-Lösungen nach Derivatisierung mit o-Phenylendiamin (OPD), unbehandelte PD-Lösung unterlegt mit dem Trennbild der Referenzen 3-DG (50 µM), GO (5 µM) und MGO (5 µM)

Abbildung 4.3.2-2 RP-HPLC zur Analytik der α-Dicarbonyle in PD-Lösungen nach Derivatisierung mit o-Phenylendiamin (OPD), autoklavierte PD-Lösung unterlegt mit dem Trennbild der Referenzen 3-DG (50 µM), GO (5 µM) und MGO (5 µM)
4. Ergebnisse und Diskussion

In allen druckbehandelten PD-Lösungen lagen die Gehalte an HMF, 3-DG, GO und MGO deutlich unter den Gehalten in einer autoklavierten PD-Lösung. Zur Diskussion wurden nur Proben mit deutlichen Gehalten an Zuckerabbauprodukten herangezogen. Nach Hitzesterilisation (121 °C; 15 min) wurden 1,6 µM HMF, 499 µM 3-DG, 1,0 µM GO und 7,7 µM MGO bestimmt. Diese Werte sind vergleichbar mit den bisher veröffentlichten Konzentrationen dieser Zuckerabbauprodukte (siehe Tabelle 2.2-4) (Linden et al., 1996; Miyata et al., 2000; Nilsson-Thorell et al., 1993; Schalkwijik et al., 1999). Nach den Druckbehandlungen konnten in allen PD-Lösungen kein HMF bestimmt werden, die Gehalte lagen unterhalb der Bestimmungsgrenze von 1 µM.

Abbildungen 4.3.2-3 bis 4.3.2-5 zeigen die Chromatogramme der α-Dicarboxylandlytik ausgewählter Druckexperimente. Neben einem Druckprogramm, das auch für die Inaktivierung von Sporen genutzt wurde sind 2 weitere Experimente mit längerer Haltezeit bei geringerem Druck und Temperatur sowie mit langer Haltezeit bei hohem Druck und Temperatur dargestellt.

Abbildung 4.3.2-3 RP-HPLC zur Analytik der α-Dicarbonyle in druckbehandelter PD-Lösung (2fach je 800 bar für 0,5 h und anschließend 6000 bar für 1 h bei 50 °C) unterlegt mit dem Trennbild der Referenzen 3-DG (50 µM), GO (5 µM) und MGO (5 µM)
Im Großteil der druckbehandelten Proben lagen die Konzentrationen der \(\alpha \)-Dicarbonyle unterhalb der Bestimmungs- oder Nachweigrenze (1,0 und 0,5 µM für HMF; 2,5 und 1 µM für 3-DG; 1,0 und 0,5 µM für GO und MGO). Nur nach folgenden, wenigen Druckversuchen bei 60 °C konnten geringe Mengen an \(\alpha \)-Dicarbonyle bestimmt werden. Die höchsten Gehalte an 3-DG (6,9 µM) und GO (4,1 µM) wurde nach einer Behandlung bei 6000 bar über 6 Stunden bei 60 °C ermittelt (siehe Abbildung 4.3.2-4). Nach einer Behandlung mit 2000 bar über 6 Stunden bei 60 °C wurde ein Gehalt an 3-DG von 2,5 µM bestimmt. Der gleiche Gehalt an 3-DG wurde nach einer mehrfachen Druckbehandlung (2x [800 bar / 0,5 h + 6000 bar / 1 h] bei 60 °C) in der PD-Lösung ermittelt. GO und MGO waren in dieser Probe nicht nachweisbar. Gehalte von 1,5 µM GO und 1 µM MGO wurden nach einer Druckbehandlung von 800 bar / 0,5 h + 6000 bar / 1 h beobachtet. Der Gehalt an 3-DG in dieser Probe lag unter der Nachweigrenze. Die letztgenannten zyklischen Druckprogramme (Vordruck mit Hauptbehandlung, teilweise wiederholt) zeigen in den Mikrobiologischen Experimenten die höchsten Inaktivierungsraten für die Sporen von Bacillus stearothermophilus. Die Bedingungen zur Inaktivierung von Sporen in PD-Lösung gehen also mit einer sehr geringen Bildung von \(\alpha \)-Dicarbonyle einher.

Abbildung 4.3.2-4 RP-HPLC zur Analytik der \(\alpha \)-Dicarbonyle in druckbehandelter PD-Lösungen (6000 bar für 6 h bei 60 °C) unterlegt mit dem Trennbild der Referenzen 3-DG (50 µM), GO (5 µM) und MGO (5 µM)
4. Ergebnisse und Diskussion

In allen Proben die bei 40 und 50 °C behandelt wurden lagen die Gehalte an HMF, 3-DG, GO und MGO unter der Bestimmungs- beziehungsweise Nachweisgrenze (siehe beispielhaft Abbildung 4.3.2-3 und Abbildung 4.3.2-5). Eine Tendenz oder Abhängigkeit der Gehalte an Zuckerabbauprodukten vom Druck oder von der Temperatur war hier nicht erkennbar.

Abbildung 4.3.2-5 RP-HPLC zur Analytik der α-Dicarbonyle in druckbehandelter PD-Lösungen (2000 bar für 24 h bei 40 °C) unterlegt mit dem Trennbild der Referenzen 3-DG (50 µM), GO (5 µM) und MGO (5 µM)

Der geringe Gehalt an Zuckerabbauprodukten in druckbehandelten Proben gegenüber der hitzesterilisierten PD-Lösung ist nicht allein auf die geringe Temperatur bei der Behandlung zurückzuführen. Verschiedene Arbeiten (Kjellstrand et al., 1995; Mannermaa et al., 1992) zeigten, dass bei der Entkeimung von PD-Lösungen bei geringerer Temperatur (z.B. 115 °C) deutlich mehr cytotoxische Abbauprodukte der Glucose entstehen. Um die gleiche Effektivität der Abtötung von Mikroorganismen bei geringerer Temperatur zu erreichen, musste die Behandlungsdauer erhöht werden. Die dabei untersuchten Temperaturbereiche lagen allerdings zwischen 115 und 140 °C, die Behandlungsdauer lag zwischen 10 und 50 min. Verfolgt man diesen aufgezeigten Trend, dass mehr cytotoxische Abbauprodukte bei langer Behandlung über geringe

![Chemische Strukturformeln](image)

Abbildung 4.3.2-6 Protonierung von Glucose 1 als Start der säurekatalysierten Reaktion zu 3-DG 5 und HMF 8

Die Druckbehandlung von Zuckerlösungen, wie sie hier durchgeführt wurden, führt nur zu sehr geringen Gehalten an α-Dicarbonylen und HMF. Eine Bildung weiterer kleinmolekularer Zuckerabbauprodukte ist wenig wahrscheinlich, muss und wird aber im Folgenden durch andere Methoden geprüft werden.

4.3.3 Cytotoxizität druckbehandelter PD-Lösungen

Alle druckbehandelten PD-Lösungen wurden zur Erfassung weiterer Zuckerabbauprodukte einem Test auf Cytotoxizität unterzogen. Messgröße war dabei
4. Ergebnisse und Diskussion

Abbildung 4.3.3-1 Cytotoxizität [% ICG] ausgewählter druckbehandelter PD-Lösungen im Vergleich zur sterilfiltrierter PD-Lösung, die Druckprogramme sind angegeben mit dem Druck [bar] die Dauer der Druckbehandlung [h] und die Prozesstemperatur [°C]

Das unveränderte, von den Proben nicht beeinflusste Zellwachstums lässt den Schluss zu, dass in den druckbehandelten Proben nur wenige Aldehyde und weitere Produkte des Glucoseabbaues (wie 3,4-DGE) entstanden sind. So sind 30 µM Formaldehyd in einer PD-Lösung ausreichend für eine Hemmung des Zellwachstums um 20 % (Wieslander et al., 1995b). Formaldehyd zeigt damit eine größere Wirksamkeit als MGO und GO. Die Ursachen für die geringe Bildung an solchen kleinmolekularen Verbindungen in druckbehandelten PD-Lösungen wird unter 4.3.2 diskutiert und kann auf die Ergebnisse der Cytotoxizitätsmessung übertragen werden.

4.3.4 Potential zur Bildung von Maillard-Produkten von druckbehandelten PD-Lösungen

Bei der Umsetzung von Proteinen mit Glucose entstehen je nach Reaktionsparameter (Zeit, Temperatur, pH-Wert, Konzentration) verschiedene Maillard-Produkte. Viele der gebildeten advanced glycation end-products (AGEs) der fortgeschrittenen Maillard-Reaktion haben fluoreszierende Eigenschaften, so dass die Messung der Fluoreszenz als

<table>
<thead>
<tr>
<th>Druckprogramm bei 40 °C [bar / h]</th>
<th>HMF [µM]</th>
<th>3-DG</th>
<th>GO</th>
<th>MGO</th>
<th>ICG [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>unbehandelte PD-Lösung</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0</td>
</tr>
<tr>
<td>hitzesterilisierte PD-Lösung</td>
<td>1,6</td>
<td>499</td>
<td>1,0</td>
<td>7,7</td>
<td>68</td>
</tr>
<tr>
<td>2000 / 2</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>3</td>
</tr>
<tr>
<td>2000 / 4</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>2</td>
</tr>
<tr>
<td>2000 / 24</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>1</td>
</tr>
<tr>
<td>2x 2000 / 1</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>4</td>
</tr>
<tr>
<td>3x 2000 / 1</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>7</td>
</tr>
<tr>
<td>2500 / 2</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>6</td>
</tr>
<tr>
<td>2500 / 4</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>-3</td>
</tr>
<tr>
<td>2500 / 24</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>0</td>
</tr>
<tr>
<td>2x 2500 / 1</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>1</td>
</tr>
<tr>
<td>3x 2500 / 1</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>-2</td>
</tr>
<tr>
<td>3000 / 2</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>-1</td>
</tr>
<tr>
<td>3000 / 4</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>1</td>
</tr>
<tr>
<td>3000 / 24</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>-3</td>
</tr>
<tr>
<td>2x 3000 / 1</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>-7</td>
</tr>
<tr>
<td>3x 3000 / 1</td>
<td>n.d.</td>
<td>n.q.</td>
<td>n.d.</td>
<td>n.q.</td>
<td>2</td>
</tr>
</tbody>
</table>
4. Ergebnisse und Diskussion

Auf Grund gerätetechnischer Grenzen (Anlage mit hohem Probenvolumen aber geringem Temperaturmaximum) und des relativ hohen Bedarfs an Probenvolumenta hochdruckbehandelter PD-Lösung, konnten hier nur Proben untersucht werden die bei einer Prozesstemperatur von 40 °C mit Druck behandelt wurden. Die Auswahl dieser druckbehandelter PD-Lösungen (2000 bis 3000 bar; 1 bis 24 h; 40 °C) wurden mit Rinderserumalbumin (BSA) unter annähernd physiologischen Bedingungen inkubiert, das Protein anschließend isoliert und die Fluoreszenz ermittelt sowie der Gehalt an Pyrallin bestimmt. Wie alle druckbehandelten Proben wurden diese PD-Lösungen vor der Inkubation auf ihren Gehalt an α-Dicarbonylen und HMF untersucht (siehe 4.3.2). Die Ermittlung einer Inaktivierung von Bakterienzellen durch die Druckprozesse bei 40 °C war nicht möglich.

Bei fast allen Proben wurde eine erhöhte Fluoreszenz im Vergleich zur Probe der sterilfiltrierten PD-Lösung beobachtet (Abbildung 4.3.4-1). Lediglich die Proben nach Druckbehandlung mit 2000 bar für 2mal eine Stunde sowie für 2 und 4 Stunden ließen keinen statistisch abgesicherten Unterschied (P = 95 %) zur Probe der sterilfiltrierten,
also der thermisch nicht belasteten PD-Lösung erkennen. Für die Probe der autoklavierten PD-Lösung wurde die höchste Fluoreszenzintensität gemessen.

Abbildung 4.3.4-1 Fluoreszenzintensitäten von BSA-Proben (1,5 mg Protein / mL) nach Inkubation mit sterilfiltrierter, autoklavierter PD-Lösung sowie druckbehandelten PD-Lösungen (Druckprogramme 2000 bis 3000 bar für 2 bis 24 h bei 40 °C), * kein signifikanter Unterschied (P = 0,95) zur sterilfiltrierten Probe

Innerhalb einer Probengruppe, die mit gleichem Druck behandelt wurden, zeigten die Proben mit der längsten Druckhaltezeit auch die höchste Intensität der Fluoreszenz. Bemerkenswert sind die ähnlichen Fluoreszenzintensitäten der bei 3000 bar druckbehandelten Proben. Die Dauer der Druckbehandlung, scheint hier die Ausbildung von Precursoren fluoreszierender Verbindungen weniger zu beeinflussen, als in den Proben die bei 2000 und 2500 bar behandelt wurden. Bei höherem Druck (2500 und 3000 bar) zeigt sich auch eine geringere oder ähnliche Fluoreszenzintensität bei mehrfacher Druckanwendung (2x und 3x je 1 h) im Vergleich zu einfachen Behandlung mit vergleichbarer Dauer (2 und 4 h).

Nach Inkubation der druckbehandelten PD-Lösungen mit BSA wurde außerdem der Gehalt an Pyrralin im Protein bestimmt (Abbildung 4.3.4-2). Dieses Maillard-Produkt ist ein Vertreter der AGEs ohne Fluoreszenzaktivität. Es bildet sich bei der Reaktion

Abbildung 4.3.4-2 Gehalte an Pyrralin in den BSA-Proben nach Inkubation mit sterilfiltrierter, autoklavierter PD-Lösung sowie druckbehandelten PD-Lösungen (Druckprogramme 2000 bis 3000 bar für 2 bis 24 h bei 40 °C)

Im Großen teil der Proben wurde ein Pyrralingehalt in der Größenordnung der Probe der sterilfiltrierten PD-Lösung ermittelt. Vorstufen zur Bildung von Pyrralin werden unter diesen Bedingungen der Hochdruckanwendung (2000 und 2500 bar, 2 bis 4 h) in PD-Lösungen demnach kaum gebildet, was auch durch die Ergebnisse der Bestimmung des 3-DG in den druckbehandelten PD-Lösungen bestätigt wird.

Die Gründe für die Unterschiede in der AGE-Bildung der druckbehandelten Proben im Vergleich zur autoklavierten bzw. sterilfiltrierten PD-Lösung, sind in der Bildung verschiedener Folge- und Abbauprodukte der Glucose in unterschiedlichem Maße durch die Druckbehandlung zu suchen.

Die druckbehandelten PD-Lösungen wurden auf ausgewählte Produkte des Abbau der Glucose (3-DG, GO, MGO, HMF; siehe 4.3.2) analysiert. Alle hier verwendeten, druckbehandelten Proben zeigten einen sehr geringen Gehalt an diesen Verbindungen im Vergleich zur autoklavierten PD-Lösung vergleichbar mit einer unbehandelten PD-Lösung (siehe Tabelle 4.3-1). Weiterhin kann aus den Ergebnissen der Cytotoxicitätsmessung (siehe Tabelle 4.3-1) nur auf sehr geringe Gehalte an weiteren Zuckerabbauprodukten geschlossen werden. Aber schon die geringe Bildung von
4. Ergebnisse und Diskussion

Aldehyden oder kurzketttigen Kohlenhydraten, die mit der durchgeführten Analytik (siehe 4.3.2) nicht erfasst werden, verändert das Produktspktrum nach Inkubation mit Proteinen. Beispielsweise wird die Bildung von Pentosidin, einem fluoreszierenden AGE, mit der Reaktion von Aminosäuren mit Ribose beschrieben (Sell et al., 1989).

Fructose ist als 2-Ketose leichter zur 1,2-Enolisierung befähigt als die Aldose Glucose (Belitz und Grosch, 1992). Folgeprodukte dieser Enolisierung wie 3-DG oder HMF sind in den druckbehandelten Proben kaum vorzufinden. Die Ursache liegt wahrscheinlich in der Hemmung der Wasserabspaltung im Reaktionsablauf durch den aufgewendeten hydrostatischen Druck, wie es schon für den Fall der Glucose unter 4.3.2 dargelegt wurde. Mit der Abwesenheit von HMF und 3-DG in den druckbehandelten Proben kann also nicht auf die Abwesenheit von Fructose geschlossen werden.

Die Ursachen für die relativ hohen Gehalte an Pyrralin sind unbekannt, zumal bei der Analyse der α-Dicarboxylke keine erhöhten Konzentrationen des 3-DG, des Reaktionspartners von Lysin zur Bildung von Pyrralin, ermittelt wurden. Denkbar ist aber eine Isomerisierung der Glucose zu Fructose durch die Druckbehandlung, die in
4. Ergebnisse und Diskussion

die Bestimmungen der α-Dicarboxyline und HMF sowie die Ermittlung der Cytotoxicität nicht erfasst wird. Erst bei der Inkubation der Druckbehandelten Proben werden dann Abbauprodukte von Fructose gebildet, die als Precursoren für die Bildung von AGEs verantwortlich sind. So ist mit der schon erwähnten 1,2-Enolisierung der Fructose die Bildung von 3-DG, dem Precursor des Pyrralin, erklärbar. Da Fructose mit der Möglichkeit einer 2,3-Enolisierung ein breiteres Spektrum an Folgeprodukten aufweist als Glucose, sollte die Bildung von Hexosen und Hexulosen durch die Druckbehandlung bei nachfolgenden Untersuchungen näher betrachtet werden.

5 Zusammenfassung

Im ersten Teil der Arbeit wurden α-Dicarboxylane im Lebensmittel Honig bestimmt. Durch den Vergleich der Gehalte der α-Dicarboxylane mit weiteren ausgewählten Inhaltsstoffen der Honige sollten Hinweise auf mögliche Bildungsmechanismen gewonnen werden. In einem Lagerungsexperiment wurde die Bildung von α-Dicarbonylen und HMF in einer Honigprobe verfolgt. Mit diesen Daten wurde geprüft, ob die Gehalte der enthaltenen α-Dicarboxylane als weiterer Qualitätsparameter genutzt werden kann. Zusätzlich konnte das Chinoxalinderivat der D-Arabinobiose (Glucoson) im Honig identifiziert werden. Die Ergebnisse dieser Untersuchungen sind im Folgenden kurz zusammengefasst:

Im Lebensmittel Honig wurden erstmals die Gehalte der α-Dicarboxylane 3-Desoxyglucosulose (3-DG), Methylglyoxal (MGO) und Glyoxal (GO) mittel RP-HPLC nach Derivatisierung mit o-Phenyldiamin bestimmt. Auffällend war die hohe Konzentration an 3-DG (79 bis 1266 mg / kg) im Vergleich zu Hydroxymethylfurfural (HMF, 0,5 bis 43,9 mg / kg). Alle Honige waren nicht älter als 6 Monate. Eine Ausnahme bildete ein lang gelagerter Honig der auch die höchsten Gehalte an HMF, 3-DG und MGO zeigte. Die Gehalte an MGO und GO aller Honige lagen in der Größenordnung des HMF (0,4 bis 5,4 mg MGO / kg; 0,2 bis 2,7 mg GO / kg). Haupteinflüsse für den Gehalt an diesen Zuckerabbauprodukten liegen wahrscheinlich

Im frischen Honig wurde im Vergleich zu hitzesterilisierten, konventionellen glucosehaltigen Lösung der Peritonealdialyse ein bis zu fünfmal höherer Gehalt an 3-DG ermittelt. Die cytotoxische Wirkung solcher PD-Lösungen wird auf Glucoseabbauprodukte zurückgeführt, so dass eine physiologische Wirkung auch von Honig nicht auszuschließen ist. Dabei sind Effekte weniger bei der regulären Nahrungsaufnahme zu erwarten. Vielmehr sind Glucoseabbauprodukte, wie die α-Dicarbonylverbindungen möglicherweise für die bekannte antibakterielle Wirkung mitverantwortlich und als weitere Klasse der Inhibine in Honig zu diskutieren.

Im Honig wurde das Vorkommen ein für Lebensmittel bisher nicht beschriebenes α-Dicarbonyl festgestellt. Nach Isolierung des Chinoxalinderivates konnte es als D-Arabino-2-hexosulose (Glucoson) mittels spektrometrischer Methoden (UV, MS, NMR) identifiziert werden. Erste Bildungsstudien bei denen Fructose, Glucose und Honig mit Wasserstoffperoxid umgesetzt wurden, deuten auf eine oxidative Umsetzung der Fructose und Glucose als Quelle des Glucoson hin.

5. Zusammenfassung

Den PD-Lösungen wurden einerseits Sporen zweier Bacillusarten zugesetzt und die Inaktivierung durch Hochdruckbehandlung (3000 bis 6000 bar, 2 bis 6 h, 50 und 60 °C) ermittelt. Sporen von Bacillus subtilis erwiesen sich drucksensitiver als die ebenfalls verwendeten Sporen von Bacillus stearothermophilus. Bei jeweils annähernd gleichen Ausgangskeimzahlen von lgN$_0$ 6,5 (Bac. subtilis) und lgN$_0$ 7 (Bac. stearothermophilus) wurden Inaktivierungen um maximal lgN 5,8 (Bac.subtilis) und lgN 4,5 (Bac.stearothermophilus) erreicht. Die höchsten Inaktivierungen wurden mit einem Druckprogramm erreicht, bei dem die Probe zweifach einer Vorbehandlung (800 bar für 0,5 h) und einer Druckbehandlung (6000 bar für 1 h) unterworfen wurde. Die Einfluss der Prozesstemperatur ist vor allem für Bacillus stearothermophilus erkennbar.

6 Literatur

Anet, E.F.L.J. (1964) 3-Deoxyglycosulose (3-deoxglycosones) and the degradation of carbohydrates. Adv Carbohydr Chem 19, 181-218

Bachmann, A. Proteingebundenes Pyrralin, Diplomarbeit, Technische Universität München-Weihenstephan, 1994

Henle, T. (2003) AGEs in food: do they play a role in uremia? Kidney Int 63 (Suppl. 84) 145-147

6. Literatur

Hodge, J.E. (1953) Dehydrated foods: Chemistry of browning reaction in model systems. Agric Food Chem 1, 928-943

Lagnese-Honig, Homepage vom 15.11.2002; http://www.langnese-honig.de
6. Literatur

Seyderhelm, I., Knorr, D. (1992) Reduction of Bacillus stearothermophilus spores by combined high pressure and temperature treatments. Z Lebensm Unters Forsch 43, 17-20

glycation end product levels in renal failure patients. Am J Kidney Dis 42, 532-538

In: Camilo, A., Colaco, B. (Hrsg): The glycation Hypothesis of Atherosclerosis.1997 Landes Bioscience, Austin, Texas, pp 57-87

Versicherung und Erklärungen gemäß Promotionsordnung § 5, 1.5.:

Hiermit erkläre ich, das ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als angegebener Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die vorliegende Arbeit wurde unter der wissenschaftlichen Betreuung von Prof. Thomas Henle am Institut für Lebensmittelchemie an der Technischen Universität Dresden angefertigt.

Kai U. Weigel