This article is published as part of the *Dalton Transactions* themed issue entitled:

Contributions of Inorganic Chemistry to Energy Research

Guest Editors Duncan Wass and Neil Robertson
University of Bristol and University of Edinburgh, UK

Published in issue 15, 2011 of *Dalton Transactions*

Articles in the issue include:

ARTICLES:

Influence of disorder-to-order transition on lattice thermal expansion and oxide ion conductivity in \((\text{Ca}_{x}\text{Gd}_{1-x})_{2}(\text{Zr}_{1-x}\text{M}_{x})_{2}\text{O}_{7}\) pyrochlore solid solutions
A. N. Radhakrishnan, P. Prabhakar Rao, K. S. Mary Linsa, M. Deepa and Peter Koshy

Rapid catalytic water oxidation by a single site, Ru carbene catalyst
Zuofeng Chen, Javier J. Concepcion and Thomas J. Meyer
Dalton Trans., 2011, DOI: 10.1039/C0DT01178A, Communication

Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts
Graham J. Hutchings et al.

Visit the *Dalton Transactions* website for more cutting-edge inorganic and organometallic research
www.rsc.org/dalton
Polymorphs of lithium-boron imidazolates: energy landscape and hydrogen storage properties†

Igor A. Baburin, a,b Bassem Assfour, b Gotthard Seifert *b and Stefano Leoni* a,b

Received 1st June 2010, Accepted 12th November 2010
DOI: 10.1039/c0dt01441a

The topological diversity of lithium-boron imidazolates LiB(imid), was studied by combining topological enumeration and \textit{ab initio} DFT calculations. The structures based on zeolitic rho, gme and fau nets are shown to be stable and have high total hydrogen uptake (6.9–7.8 wt.%) comparable with that of MOF-177.

In the last years porous framework materials have attracted much interest due to their applications in gas storage, gas purification and segregation, or catalysis. Zeolites, metal–organic frameworks (MOFs) and more recently covalent organic frameworks (COFs) represent the main classes of porous materials being at the focus of research nowadays. In such technology-relevant areas there is a large need for synthetic strategies able to rapidly indicate useful prototypes. Topology has served as a blueprint for directing the assembly of novel solid-state materials from molecular fragments, a principal example thereof being the reticular synthesis of MOFs. A topological \textit{reticulum} represents a structural prototype transferable across chemical compositions, a powerful paradigm for structural variety and property optimization. Features of MOFs and COFs can be combined by using the lightest elements (Li, B) as framework nodes and imidazolate-anions as linkers which lead to the formation of lithium-boron imidazolates (BIFs).

The synthesis of isomorphous structures M\textsubscript{1}B(4-mim), (M\textsubscript{1} = Li, Cu; 4-mim = 4-methylimidazolate; sp. gr. P432) with the topology of zeolite RHOb can be considered as a successful combination of MOF and COF chemistry. In a recent Account, Yaghi \textit{et al.} gave a comprehensive review of framework topologies and properties of zeolitic imidazolate frames (ZIFs).c ZIFs owe their structural variety to their geometric similarity with zeolites, locally very close to Si\textsubscript{4}O\textsubscript{4} tetrahedra. This prompted us to have a closer look at the seemingly much restricted polymorphism of lithium-boron imidazolate LiB(imid), (imid = imidazolate), for which only a dense, non-porous polymorph with the topology of the \textit{zni} net (for the nomenclature see http://rcsr.anu.edu.au) is known.d Like Al3+ and P5+ formally replace Si4+ in going from SiO\textsubscript{2} to microporous AlPO\textsubscript{4}, Li+ and B3+ are punctual replacements for Me2+ (Me = Zn, Cd, Co, \textit{etc.}) in deriving BIFs from ZIFs. Just as for aluminium phosphates, this should in principle allow for a much richer boron reticular chemistry than found up to now. In this communication we present a systematic topological scan of structure candidates for LiB(imid). We extend the catalogue of lithium-boron imidazolates and we identify some BIF topologies as solid material candidates with promising nominal hydrogen uptake properties.

The task of extending the catalogue of BIFs consisted of two major steps: topological enumeration followed by DFT-GGA (PBE) calculations, to assess the relative stability and experimental accessibility of BIF candidates. For generating LiB(imid), polymorphs we considered all 4-coordinated nets found in imidazolate-based frameworks so far.3 In addition, not-yet discovered topologies considered in an earlier study on Zn(imid), polymorphs4 were included. It should be noted that some of the therein proposed structures have by now been synthesized.1

In BIF structures each M\textsubscript{1} (M\textsubscript{1} = Li, Cu) is connected \textit{via} imidazolate ligands to the four B atoms and \textit{vice versa} (Fig. 1). This means that the underlying net (graph) of the structure is \textit{bipartite}. As is known from graph theory, all cycles in bipartite graphs are even-membered.5 In other words, this requires the formal replacement of tetrahedral nodes by Li and B to be compatible with the net topology, that is adjacent B or Li atoms are not allowed. This criterion immediately ruled out the topologies of \textit{nog}, \textit{moz} and \textit{poz} nets recently found in ZIFs.3

\textbf{Fig. 1} Charge substitution: going from ZIFs to BIFs. Zinc atoms are black, lithium, boron, carbon and nitrogen atoms are shown in green, red, pink and blue, respectively. Hydrogen atoms are omitted for clarity.

With this guiding principle, 30 topologically different LiB(imid), frameworks were constructed and optimized at the DFT–GGA (PBE) level with the facilities of the SIESTA program package.6 On the most porous structures we performed molecular simulations in order to estimate their hydrogen storage capacity (for computational details see supporting information†).

To judge the accessibility of a given LiB(imid), polymorph candidate its relative stability on a total energy scale represents a sensitive parameter. BIFs closely resemble Zn(imid), ZIF in terms of their energetic landscape, lending further support to the chemical formal replacement step. This is apparent on comparing...
the relative stability of experimentally characterized Zn(imid)$_2$ polymorphs to the stability sequence of BIFs with the same topology. For Zn(imid)$_2$, ZIFs the following energetic score results: zni = coi < nog = zec = cag < gis = mer = dft < crb (see ESI†). In BIFs: zni < cag < zec < gis = mer = dft < coi < crb (Fig. 2). The ground state stays the same, while the intermediate region roughly maintains the same sequence. Rather unexpectedly, the tetragonal coi net in LiB(imid)$_4$ is much less stable than the ‘ground state’ structure with the zni topology. We notice that recently a single-crystal-to-single-crystal, pressure induced phase transition was observed between Zn(imid)$_2$, polymorphs having zni and coi underlying nets, respectively. Given the larger energy difference between analogous LiB(imid)$_4$ structures, a similar phase transition seems to be less probable. This indicates subtle differences between ZIFs and BIFs, which may complicate the access to novel topologies, requiring e.g. further ligand functionalization, a still elusive factor of MOF topology control.

Fig. 2 Relative stabilities and densities of all LiB(imid)$_4$ polymorphs included in our study.

Structures based on highly porous rho, gme, lta and fau nets (the first one being more favorable) are energetically very close to much more dense frameworks (e.g. cag, dia, mog, neb). This is manifested in the recent successful synthesis of lithium-boron 4-methylimidazolate with the rho topology. As in the case of Zn(imid)$_2$, the framework with the quartz topology (qtz) is the least stable. Shortened Li–B separations (around 5.5 Å) compared to Zn–Zn in Zn(imid)$_2$ (around 6.0 Å) do not imply any additional shortening of non-bonded distances like H...H contacts (see ESI†), which govern structure stability at the supramolecular level.

The estimation of hydrogen uptake in MOFs, COFs and ZIFs materials can be reliably calculated using Grand canonical Monte Carlo molecular simulations, which indicate LiB(imid)$_4$ structures based on fau, rho, and gme nets as promising candidates for hydrogen storage applications. Their total hydrogen uptake at 77 K amounts to 7.8, 6.9 and 6.9 wt.%, respectively (Fig. 3). Note that hydrogen uptake of the fau-based LiB(imid)$_4$ is comparable to that of MOF-177 (~10.0 wt. %), which is a reference material among experimentally characterized compounds. We expect that using more elongated linkers could improve storage capacities of BIFs.

LiB(imid)$_4$ materials are insulators with band gaps around 4.5 eV. Carbon and nitrogen 2p-states mainly contribute to the states near the Fermi level. Lithium 2p-states are highly antibonding and contribute mainly to the conduction band. Bader charges amount to +0.95 for lithium and +2.2 for boron, with a net charge on the imidazolate ligand of ~0.8. While in agreement with the formal replacement step, the reduced charge on boron indicates a substantial covalent component which is absent on the Li side. Accordingly, the formula can be rewritten as Li[B(imid)$_4$]. The presence of the complex boron imidazolate anion suggests further cation replacement steps, and the anion itself should be considered as a whole secondary building unit in reticular synthesis of BIFs.

In conclusion, we investigated the energy landscape of LiB(imid)$_4$ polymorphs in detail and analyzed their hydrogen storage capacities as well as electronic properties. A comparison with the Zn(imid)$_2$ system revealed an important difference in the stability of polymorphs with zni and coi underlying networks. The structure with the fau topology was shown to be one of the promising materials for hydrogen storage. Electronic structure calculations showed the different nature of the B–N and Li–N bonds, covalent and coordinative, respectively.

This work is supported by the Deutsche Forschungsgemeinschaft within the priority program SPP-1362.

Notes and references

