Genetische Variabilität des Cytochrom P 450-Systems im Zusammenhang mit einem erhöhten Risiko für Rheumatoide Arthritis

Analyse von Einzelnukleotid-Polymorphismen in Kandidatengenen der Rheumatoiden Arthritis

Dissertation
zur Erlangung des akademischen Grades
Doctor medicinae (Dr. med.)

An der Medizinischen Fakultät
der Universität Leipzig

eingereicht von:
Maren Krause, geb. Möckel
Geboren am 02.09.1978 in Bernburg

angefertigt an:
Medizinische Fakultät der Universität Leipzig
Institut für klinische Immunologie und Transfusionsmedizin

Betreut von:
Prof. Dr. med. F. Emmrich / Dr. P. Ahnert
Institut für klinische Immunologie und Transfusionsmedizin
Institut für Medizinische Informatik, Statistik und Epidemiologie
Biotechnologisches-Biomedizinisches Zentrum der Universität Leipzig

Beschluss über die Verleihung des Doktorgrades vom: 29.04.2014
Bibliographische Beschreibung

Maren Krause

Thema: Genetische Variabilität des Cytochrom P 450-Systems im Zusammenhang mit einem erhöhten Risiko für Rheumatoide Arthritis / Analyse von Einzelnukleotid-Polymorphismen in Kandidatengenen der Rheumatoiden Arthritis

Medizinische Fakultät der Universität Leipzig, Dissertation
94 Seiten, 101 Literaturangaben, 12 Abbildungen, 48 Tabellen, Anhang

Referat:

Bei zwei Genen konnten in dieser Assoziationsstudie mögliche genetische Auffälligkeiten gefunden werden. Im genotypbasierten Test erkennt man, dass das seltene Allel 3011-a (CYP2C9) in den Familienbasierten Einzelmarkertests in den Fällen untertransmitiert ist. Für das Allel 3022-a (CYP2A6) zeigt sich ebenfalls eine Untertransmission. Im Fall-Kontrollbasierten allelischen Test zeigt sich ein protektiver Effekt für die Allele 3011-a und 3022-a. Im Fall-Kontrollbasierten genotypischen Test konnte dieser protektive Ansatz für 3011-a weiter nachvollzogen werden

Die gewonnen Erkenntnisse werden im Lauf dieser vorliegenden Arbeit diskutiert.
Inhaltsverzeichnis

1 Einleitung
- 1.1 Rheumatoide Arthritis .. 15
- 1.2 Biotransformation ... 15
 - Das Cytochrom P450 System .. 15
- 1.3 Molekulare Genetik ... 15
 - 1.3.1 Definition Gen ... 15
 - 1.3.2 Genetische Veränderungen ... 15
 - 1.3.3 Immunsystem ... 15
- 1.4 Zielsetzung der Arbeit .. 15

2 Material

3 Methoden
- 3.1 Studienpopulation ... 39
- 3.2 Genelektion ... 39
 - 3.2.1 Datenbanken zur Genelektion 39
- 3.3 SNP- Selektion ... 39
 - 3.3.1 Auswahlkriterien .. 39
 - 3.3.2 Datenbanken zur SNP Selektion 39
- 3.4 Assay- Design ... 39
 - 3.4.1 PCR- Primer- Design .. 39
 - 3.4.2 SBE- Primer- Design ... 39
- 3.5 Etablierung der Genotypisierungsreaktionen 39
 - 3.5.1 PCR ... 39
 - 3.5.2 Gelelektrophorese .. 39
 - 3.5.3 SAP und EXO I Verdau ... 39
 - 3.5.4 SBE/ PEX .. 39
 - 3.5.5 Streptavidinaufreinigung ... 39
 - 3.5.6 Genotypisierung mittels MALDI-TOF- Massenspektrometrie ... 39
- 3.6 Statistische Auswertung der Ergebnisse 39
 - 3.6.1 Qualitätskontrolle .. 39
 - 3.6.2 Deskriptive Statistik .. 39
 - 3.6.3 Assoziationsanalyse .. 39

4 Ergebnisse
- 4.1 Genelektion ... 70
 - 4.1.1 CYP1A1 ... 70
 - 4.1.2 CYP1B1 ... 70
 - 4.1.3 CYP2B6 ... 70
 - 4.1.4 CYP2E1 ... 70
 - 4.1.5 CYP2C9 ... 70
 - 4.1.6 CYP2D6 ... 70
 - 4.1.7 CYP3A4 ... 70
 - 4.1.8 CYP2A6 ... 70
 - 4.1.9 CYP2C19 ... 70
- 4.2 SNP- Selektion ... 70
- 4.3 Genotypisierung .. 70
 - 4.3.1 Etablierung und Validierung der Genotypisierungsreaktion ... 70
- 4.4 Qualitätskontrolle der Genotypisierungsergebnisse 70
- 4.5 Ergebnisse der statistischen Auswertung 70
 - 4.5.1 Familienbasierter Einzelmarkertest 70
4.5.2 Fall-Kontroll basierte Einzelmarkertests
4.5.3 Familienbasierte Multimarkertests

5 Diskussion
5.1 Auswahl der Kandidatengene und SNPs
5.2 Genotypisierung
5.3 Diskussion einzelner Hypothesen
5.3.1 Genetische Variabilität und ihre Folgen für den Xenobiotika-Stoffwechsel
5.3.2 Rauchen als suspekter Auslöser für die RA
5.3.3 Geschlechtspezifische Verteilung der RA
5.3.4 Vergleich der Ergebnisse mit genomweiten Assoziationsstudien
5.4 Limitationen der Studie

6 Zusammenfassung
7 Executive Summary
8 Anhang
8.1 Material
8.1.1 PCR
8.1.2 Gelektrophorese
8.1.3 Verdau
8.1.4 SBE-Reaktion
8.1.5 Aufreinigung von PEX-Produkten
8.1.6 Massenspektrometrie
8.2 Verwendete SBE-Primer
8.3 Genotypisierungssassays
8.4 Verteilung der Genotypen in der analysierten Kohorte
8.5 Powerberechnung
8.6 geschlechtspezifische Analysen
8.7 Vergleich mit genomweiten Analysen

9 Literaturverzeichnis
(1) Zeidler H. Differenzialdiagnose rheumatischer Erkrankungen. Berlin Heidelberg Springer Verlag, 2009
(2) Schmidt KL. Rheumatologie. Stuttgart: Georg Thieme Verlag, 2000
(3) Michle W. Rheumatoid Arthritis. Stuttgart: Georg Thieme Verlag, 1999
(6) Male D. Immunologie auf einen Blick. München: Elsevier GmbH, 2005

(17) Lößfler G. Basiswissen Biochemie. Berlin Heidelberg: Springer Verlag, 2000 ...128

(22) Albano SA, Santana-Sahagun E, Weisman MH. Cigarette smoking and rheumatoid arthritis. Semin Arthritis Rheum 2001; 31(3):146-159 ...128

Einleitung

Einleitung

(55) Geller F, Ziegler A. Detection rates for genotyping errors in SNPs using the trio design. Hum Hered 2002; 54(3):111-117...130

(65) Reichard JF, Dalton TP, Shertzer HG, Puga A. Induction of oxidative stress responses by dioxin and other ligands of the aryl hydrocarbon receptor. Dose Response 2005; 3(3):306-331...131

Einleitung

(73) Tindberg N, Baldwin HA, Cross AJ, Ingelman-Sundberg M. Induction of cytochrome P450 2E1 expression in rat and gerbil astrocytes by inflammatory factors and ischemic injury. Mol Pharmacol 1996; 50(5):1065-1072...

(74) Yasar U, Tybring G, Hidestrand M, Oscarson M, Ingelman-Sundberg M, Dahl ML et al. Role of CYP2C9 polymorphism in losartan oxidation. Drug Metab Dispos 2001; 29(7):1051-1056...

9 / 140

(107) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447(7145):661-678.

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Rheumatology</td>
</tr>
<tr>
<td>AhR</td>
<td>Aryl hydrocarbon receptor (Aryl-Hydrocarbonrezeptor)</td>
</tr>
<tr>
<td>APZ</td>
<td>Antigen-präsentierende Zellen</td>
</tr>
<tr>
<td>BLAT</td>
<td>Blast Like Alignment Tool</td>
</tr>
<tr>
<td>Bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BSG</td>
<td>Blutsenkungsgeschwindigkeit</td>
</tr>
<tr>
<td>bzgl</td>
<td>bezüglich</td>
</tr>
<tr>
<td>bzw</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>CCP</td>
<td>Cyclisch Citrulinierte Peptide</td>
</tr>
<tr>
<td>CD3</td>
<td>Cluster of Differentiation 3</td>
</tr>
<tr>
<td>CD8</td>
<td>Cluster of Differentiation 8</td>
</tr>
<tr>
<td>CD16</td>
<td>Cluster of Differentiation 16</td>
</tr>
<tr>
<td>CpG</td>
<td>Cytosin-Phosphat-Guanin</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>CYP1A1</td>
<td>Cytochrom P450 1A1</td>
</tr>
<tr>
<td>CYP1B1</td>
<td>Cytochrom P450 1B1</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>Cytochrom P450 2A6</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>Cytochrom P450 2B6</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>Cytochrom P450 2E1</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>Cytochrom P450 2C9</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>Cytochrom P450 2C19</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>Cytochrom P450 2D6</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>Cytochrom P450 3A4</td>
</tr>
<tr>
<td>CYP450</td>
<td>Cytochrom P450</td>
</tr>
<tr>
<td>dATP</td>
<td>Desoxy-Adenosin-Triphosphat</td>
</tr>
<tr>
<td>dbSNP</td>
<td>Single Nukleotide Polymorphism Database</td>
</tr>
<tr>
<td>dCTP</td>
<td>Desoxy-Cytidin-Triphosphat</td>
</tr>
<tr>
<td>ddNTP</td>
<td>Di-Desoxy-Nukleotid-Triphosphat</td>
</tr>
<tr>
<td>dGTP</td>
<td>Desoxy-Guanosin-Triphosphat</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>DMBA</td>
<td>Dimethylbenz(a)anthrazen</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure, Desoxyribonucleid Acid</td>
</tr>
<tr>
<td>dNMP</td>
<td>Desoxy-Nukleotid-Monophosphat</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxy-Nukleotid-Triphosphat</td>
</tr>
<tr>
<td>dTTP</td>
<td>Desoxy-Thymidin-Triphosphat</td>
</tr>
<tr>
<td>ECRAF</td>
<td>European Consortium on Rheumatoid Arthritis Families</td>
</tr>
<tr>
<td>EMBL</td>
<td>European Molecular Biology Laboratory</td>
</tr>
<tr>
<td>ESE</td>
<td>Exonic splice enhancer</td>
</tr>
<tr>
<td>EULAR</td>
<td>European League Against Rheumatism</td>
</tr>
<tr>
<td>Exo I</td>
<td>Exonuklease I</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin-Adenin-Dinukleotid</td>
</tr>
<tr>
<td>GC-Gehalt</td>
<td>Guanin- und Cytosin Gehalt</td>
</tr>
</tbody>
</table>
GDPInfo Genomics and Disease Prevention Information System
GRR Genotype relates risk
HGNC Human Genome Organisation Gene Nomenclature Committee
HLA Humanes Leukozyten-Antigen
HWE Hardy-Weinberg-Equilibrium (Hardy-Weinberg-Gleichgewicht)
HWS Halswirbelsäule
Ig Immunglobulin
IL Interleukin
II-1 Interleukin-1
II-2 Interleukin-2
II-6 Interleukin-6
II-10 Interleukin-10
II-12 Interleukin-12
kb Kilobasen
MALDI-TOF-MS Matrix assisted Laser Desorption/ Ionization-Time of Flight Mass
MHC Major histocompatibility complex
MTX Methotrexat
NCBI National Centre for Biotechnology Information
NADPH Nicotinsäureamid-Adenin-Dinukleotid-Phosphat
NO Stickstoffmonoxid
NSAR Nichtsteroidale Antirheumatika
O.g. oben genannt
OH- Gruppe Hydroxy-Gruppe
OR Odds Ratio
PAK polyzyklische aromatische Kohlenwasserstoffe
PAMPs Pathogen-associated molecular patterns
PAPS Phosphoadenosinphosphosulfat
PCR Polymerase Chain Reaction
PL Photo Linker
PM poor metabolizer
RA Rheumatoide Arthritis
RNA Ribonucleic Acid (Ribonukleinsäure)
ROS Reactive oxygen species
RR Relatives Risiko
RS reference SNP (Refenzs-SNP)
s Sekunde
SAP Shrimps Alkaline Phosphatase (Schrims alkalische Phosphatase)
SBE Single Base Extention
SLE Systemischer Lupus Erythematoses
Abbildungsverzeichnis:

Tabellenverzeichnis

Tabelle 2: ACR und EULAR RA-Kriterien 2010 [8].. 19
Tabelle 3: Eigenschaften der RA Patienten [38]...41
Tabelle 4: Originale Kriterien zur Anzahl der auszuwählenden SNPs pro Gen von GenHotel (Stand 2004)...44

1 EINLEITUNG

1.1 Rheumatoide Arthritis

Die Prävalenz der RA beträgt in Westeuropa und in den Vereinigten Staaten von Amerika ca. 1%, mit steigender Prävalenz bei Männern und Frauen nach dem 55. Lebensjahr (2%). Man geht davon aus, dass in Deutschland ca. 800.000 Menschen betroffen sind [3]. Die RA kann in jedem Lebensalter auftreten, meist entwickelt sie sich zwischen dem 25. und 50. Lebensjahr [4].

Abbildung 1: Pathomechanismus der Entstehung Rheumatoider Arthritis [7]

Synovitis in mindestens einem großen Gelenk

Fehlen einer alternativen Diagnose, die die Synovitis erklären könnte

und mindestens sechs (von möglichen zehn) der individuellen Scores in den vier Gebieten:

- **Gelenkbeteiligung**: Anzahl und Lokalisation (0-5)
- **Serologie**: Rheumafaktor, CCP-Antikörper (0-3)
- **Akutephaseproteine**: CRP, BSG (0-1)
- **Symptomdauer**: < sechs Wochen, > sechs Wochen (0-1)

<table>
<thead>
<tr>
<th>Tabelle 2: ACR und EULAR RA-Kriterien 2010 [8]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP-Antikörper: Antikörper gegen zyklische zitrulinierte Peptide</td>
</tr>
<tr>
<td>CRP: c-reaktives Protein</td>
</tr>
<tr>
<td>BSG: Blutsenkungsgeschwindigkeit</td>
</tr>
</tbody>
</table>

Die Bestimmung von Laborparametern, wie Entzündungswerte, Rheumafaktoren und seit jüngerer Zeit Anti-CCP Antikörper dienen der Diagnosefindung und als prognostische Indikatoren für einen entzündlich destruktiven Verlauf. Rheumafaktoren sind im Frühstadium meist nicht nachweisbar, werden aber im Laufe der Erkrankung in bis zu 80% der Fälle positiv und bezeichnen einen aggressiveren Verlauf als die seronegative RA. CCP-Antikörper sind für die Diagnose der RA vergleichbar sensitiv (64-76%) wie der Rheumafaktor (64-86%), sie sind aber mit über 95% deutlich spezifischer als der (IgM-) Rheumafaktor (84-90%) [10]. Weitere Laborbefunde, die möglicherweise in Zukunft in die Routinediagnostik mit aufgenommen werden, sind erhöhtes Serumosteocalcin, IL-6, IL-10, IL-12, Serumhyaluronsäure und Phospholipase A2, welche eng mit der Krankheitsaktivität korreliert. Unspezifische
Marker sind Mikroalbuminämie, erniedrigtes Prolaktin und erhöhter Prozentsatz an CD3 und CD57 (Cluster of Differentiation) Lymphozyten. Zu den für die Diagnostik bedeutenden Antikörpern zählen u.a. die Untergruppe der Immunglobulin M-Rheumafaktoren, die mit einem schweren, aggressiven Krankheitsverlauf assoziiert, Antikeratin-Antikörper, sowie antineutrophile cytoplasmatische Antikörper [4].

Bei der Therapie richtet man sich heute nach dem Prinzip Treat-to-Target (T2T). Also, einer zielgerichteten Therapie. Das Ziel ist hierbei die Remission (d.h. die Kontrolle der Krankheitsaktivität), welche möglichst früh erreicht und lange erhalten bleiben soll. Das American College of Rheumatology hat zur Messung der Aktivität der RA 63 Aktivitätsinstrumente identifiziert und empfiehlt davon 6 zur Anwendung [11]. ACR und EULAR haben gemeinsame Remissionskriterien entwickelt, um eine optimale Funktionalität und ein möglichst gutes radiologisches Ergebnis vorherzusagen [12]. In der TICORA-Studie (tight control for rheumatoid arthritis), einer der ersten Strategie-Studien, konnte gezeigt werden, dass die Anwendung von klassischen DMARDs (disease-modifying anti-rheumatic drugs) und die intraartikuläre Kortisoninjektion im Rahmen einer Strategie mit klarer Ziel-Definition mehr Erfolg haben [13]. Durch die festgelegte Strategie, nämlich die Remission, ergibt sich eine höhere Aufmerksamkeit auf die Krankheitsaktivität, welche regelmäßig gemessen wird. Daraus ergibt sich eine regelmäßige Kontrolle des Therapieerfolges bzw. eine Therapie-Modifikation, wenn das Therapieziel, innerhalb einer definierten Zeit, nicht erreicht wird. Das zielorientierte Vorgehen hat zur Folge, dass die Patienten nur eine kurze Zeit unter

Da jedoch fast alle Substanzen einen verzögerten Wirkungseintritt von 4-16 Wochen haben, werden zur Überbrückung meist Glukokortikoide eingesetzt. Ihre symptomlindernde und entzündungshemmende Wirkung setzt in der Regel rasch ein.

In den folgenden Kapiteln sollen zunächst einige grundlegende Begriffe und Hintergründe dieser Arbeit eingeführt und erläutert werden.

1.2 Biotransformation

Mit der Nahrung oder über Hautkontakt oder die Lunge nimmt der menschliche Organismus täglich viele in höheren Dosen auch toxische Fremdstoffe auf, welche natürlichen Ursprungs (Xenobiotika) oder künstlich erzeugt sein können. Über Biotransformation, die vor allem in der Leber stattfindet, kann der Körper diese Stoffe inaktivieren und ausscheiden. Die Biotransformation gliedert sich grundsätzlich in zwei Phasen: [17]

Phase-I-Reaktion: In der Phase I werden funktionelle Gruppen in reaktionsträge, unpolare Moleküle eingefügt, so dass dann in Phase II polare Gruppen konjugieren können. Meist dient die Phase der Entgiftung, aber in manchen Fällen sind die Produkte toxischer als die Ausgangssubstanz (Giftung). Wichtige Reaktionen sind hydrolytische Spaltung, Reduktion, Sulfatierung, Methylierung und Oxidation, die meist vom Cytochrom P 450 System katalysiert werden.

Die verschiedenen benötigten Enzymsysteme sind leicht induzierbar, wodurch ihre Aktivität bei besonders langer oder hoher Zufuhr der betreffenden Verbindungen durch vermehrte Synthese des betreffenden Enzymproteins zunimmt.

Das Cytochrom P450 System

Das Cytochrom P450 (CYP450) ist eine in mehreren Formen vorkommende Hydroxylase, die zur Gruppe der Monooxygenasen gehört. Sie enthalten als Coenzym die chemische Verbindung Häm, welches in reduzierter Form Kohlenmonoxid binden kann und dann eine charakteristische Lichtabsorption bei 450 Nanometer zeigt. Die Funktion dieser Enzyme ist der oxidative Abbau zahlreicher exogener sowie endogener Substanzen. Darüber hinaus sind sie an der Biosynthese von Steroiden, Gallensäuren, Eicosanoiden und ungesättigten Fettsäuren, sowie der Aktivierung und Inaktivierung von Kanzerogenen beteiligt. Die Cytochrom P450-Enzyme finden sich in zahlreichen Isoformen hauptsächlich in der Leber, aber auch in steroidhormonproduzierenden Drüsen und anderen Organen [18].

Detoxifikationsmechanismus dar. Evolutionsgenetisch gibt es dafür unterschiedliche Erklärungen. So könnte sich Cytochrom P450 als ein komplexer Verteidigungsmechanismus bei der chemischen Kriegsführung zwischen den Arten herausgebildet haben. Anderseits können so aber auch körpereigene Substanzen, wie Steroide und Fettsäuren in biologisch aktive Derivate umgewandelt werden [19].

Funktion im Detail: Die CYP450-abhängigen Monooxygenasen katalysieren die reduktive Spaltung von molekularem Sauerstoff (O2), wobei eines der beiden O-Atome auf das Substrat übertragen und das andere als Wasserstoffmolekül freigesetzt wird. Die dafür notwendigen Reduktionsadäquate werden durch ein FAD-haltiges Hilfsenzym vom Coenzym NADPH⁺ auf die Monooxygenase übertragen. Der Reaktionsmechanismus läuft prinzipiell in sechs Schritten ab. Zum Vergleich dient Abbildung 2: Schematischer Ablauf der CYP-Katalyse.

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Die Häm-Eisen-Verbindung liegt im Ruhezustand dreiwertig vor und das Substrat wird zunächst in der Nähe des Häm gebunden.</td>
</tr>
<tr>
<td>5.</td>
<td>Das reaktive Sauerstoff-Atom inseriert in eine C-H-Bindung des Substrats und erzeugt eine OH-Gruppe.</td>
</tr>
</tbody>
</table>

1.2.1.1 Cytochrom P 450 und Rheumatoide Arthritis

1.2.1.2 Rauchen als suspekter Auslöser für die RA

1.2.1.3 Einfluss der Sexualhormone auf Immunmodulation in der Synovia
Abbildung 3: Einfluss der Sexualhormone auf Immunzellen der Synovia [27]

„Androgene (A) und Estrogene (E) stimulieren auf immunzellulärer Ebene die Ausschüttung von Tumornekrosefaktor alpha (TNF α), Interleukine (IL) und Immunglobulinen (Ig), was zur Aktivation der Aromatase-Aktivität führt (linke Seite). Dadurch kommt es zum Anstieg der Östrogenspiegel in der Synovialflüssigkeit (rechte Seite)“ [27].

Bekannte genetische Varianten können z.B. im Rahmen eines diagnostischen Score Vorhersagen über einen möglichen Ausbruch, Schweregrad oder den Verlauf der RA geben. Diese Arbeit beschäftigt sich daher mit genetischen Variationen des Cytochrom P450-Systems und einem möglicherweise damit verbundenem Risiko für die Entstehung der RA.
1.3 Molekulare Genetik

1.3.1 Definition Gen

1.3.2 Genetische Veränderungen

1.3.2.1 Mutationen

kommen. Ein Austausch von Nukleotiden kann neutral bleiben, wenn ein Codon in ein synonymes Codon umgewandelt wird und somit die Folge der Aminosäuren im Genprodukt unverändert bleibt oder aber wenn die Veränderung intronisch liegt und in der prä-mRNA herausgespleißt wird. Findet eine Substitution im nichtkodierenden Bereich statt, kann sie dort die Funktion von regulatorischen Elementen verändern.

Bei der Deletion kommt es zum Verlust eines oder mehrerer Basenpaare, was mit einer Verschiebung des Leserasters (*frameshift*) einhergeht. *Frameshift* kommt ebenfalls durch die Insertion zustande, bei der ein Einbau von Nukleotiden in die DNA stattfindet. Zur Duplikation kann es durch ungleiches *crossing over* (überkreuzen) zwischen homologen Chromosomen oder Schwesterchromatiden kommen, wobei zwischen partieller und vollständiger Genduplikation unterschieden wird [32].

1.3.2.2 SNP

Ein Polymorphismus bezeichnet das Vorkommen mehrerer genetischer Varianten (Allele) innerhalb einer Population. Bei einem SNP (*single nucleotid polymorphismus*) handelt es sich um einen Einzelbasenaustausch. Der Unterschied zu konventionellen Mutationen ist, dass das seltene Allel im Polymorphismus in Häufigkeiten über 1% in der Population vorkommen muss. SNPs sind die häufigsten genetischen Varianten im Humangenom, so unterscheiden sich zwei nicht verwandte Menschen an etwa jeder 1000. Stelle voneinander. Das bedeutet z.B. für ein Genom von 3x10⁹ Basenpaaren etwa drei Millionen SNPs zwischen zwei bestimmten Individuen. Dabei liegt die Gesamtzahl an SNPs aller Menschen bei mindestens 10-15 Millionen [32]. SNPs gehen auf Keimbahnmutationen zurück, die sich im Laufe der Evolution ereignet haben, wobei häufige SNPs (Allelfrequenz größer als 5%) relativ früh entstanden sind.

einem SNP als DNA-Marker geht, sondern es reicht wenn einer oder einige SNPs jedes Haplotyps berücksichtigt werden (so genannte tagging-SNP oder tSNP, repräsentativer SNP), somit kann mit einem Minimum an Untersuchungen ein Maximum an genetischer Varianz gemessen werden.

Abbildung 4: monogenische und polygenische Krankheiten [32]

Charakteristisch für polygen vererbte Erkrankungen, zu denen neben Asthma und Diabetes auch die rheumatoide Arthritis gehört, ist, dass Einflüsse aus der Umwelt den Ausbruch und Verlauf der Erkrankung maßgeblich prägen“ [32].

1.3.3 Immunsystem

1.3.3.1 Unspezifisches Immunsystem

Haupthistokompatibilitätskomplex

Der Haupthistokompatibilitätskomplex (*MHC - Major Histocompatibility Complex*), sind körpereigene Antigene auf der Oberfläche jeder Zelle, die immunologische Vorgänge regulieren. Dabei existieren mehrere Genloci und für jeden Gen-locus existieren mehrere
Allele, so dass sich eine besonders hohe Variabilität ergibt. Alle genetischen Varianten werden kodominant vererbt und die Nachkommen sind für die meisten Loci heterozygot. [6].

shared epitope Hypothesis

Die HLA-Assoziation der RA beinhaltet die *shared epitope hypothesis*, nach der die Erkrankung nicht nur mit einer HLA-DR-Spezifität, sondern mit mehreren, einander ähnlichen Epitopen auf verschiedenen DR-Molekülen, insbesondere DR1 und DR4 einhergeht [35]. Es handelt sich dabei um einen Abschnitt auf der b- Kette des HLA- Klasse II Gens, dessen homozygote Präsenz bei seropositiven Rheumatikern mit Erosionen einhergeht. Im Versuch mit transgenen Mäusen konnte gezeigt werden, dass dieses Epitop ein Kollagen-Typ-II-Peptid bindet und den T-Zellen darbietet und so eine Autoimmunreaktion gegen Knorpelzellen anregt. [3]

Shared epitope wird als diagnostischer Marker aus EDTA-Blut bestimmt. Neben dem erhöhten Risiko an RA zu erkranken ist das Vorhandensein eines *shared epitope* ein prognostischer Marker für den Verlauf und die Schwere der Erkrankung, wobei insbesondere das homozygote Auftreten bestimmter HLA-DRB1-Allele, prognostisch ungünstiger ist und häufiger mit extraartikulären Organmanifestationen einhergeht.

1.3.3.2 Spezifisches Immunsystem

Das adaptive Immunsystem entwickelt sich im Laufe des Lebens und beruht auf der Fähigkeit der Lymphozyten, gewissermaßen „auf Verdacht“ hochspezifische Antigenrezeptoren zu bilden, ohne jemals mit dem Antigen in Kontakt gekommen zu sein. Das spezifische Immunsystem wird in einen humoralen (B-Zellen) und zellulären (T-Zellen) Schenkel unterteilt, wobei B-Lymphozyten nach Differenzierung zu Plasmazellen, Antikörper

1.3.3.3 Immunantwort

Abbildung 5: vereinfachtes Schema der Immunantwort [37]

1. Aufnahme und Proteolyse der Erreger durch APZ
2. Präsentation der Erregerfragmente mit Hilfe von MHC-Proteinen
3. Erkennung der MHC durch T-Zellen
4. klonale Selektion der T-Zellen
5. Abgabe von II-1 durch aktivierte Makrophagen
6. Ausschüttung von II-2 durch T-Zellen zur Vermehrung
7. Erkennen und Binden von Virusfragmenen durch zytotoxische T-Zellen
8. Apoptose
9. Erkennen B-Zellen und APZ-Fragmente durch T-Helferzellen
10. klonale Vermehrung B-Zellen
11. Heranreifen der B-Zellen zu Plasmazellen
12. Sezernierung Antikörper

1.4 Zielsetzung der Arbeit

In dieser Arbeit sollten Kandidatengene des Cytochrom P450-Systems auf mögliche genetische Assoziationen mit RA untersucht werden. Dazu waren folgende Schritte notwendig:

1. Als zu untersuchende Population standen im Rahmen dieser Arbeit DNA-Proben von französisch-kaukasischen Familien-Trios (Vater, Mutter, an RA erkrankter Patient) zur Verfügung.

3. Auswahl von Einzelbasenpolymorphismen. Es wurden die SNPs ausgewählt, welche bereits aus der Literatur als funktioneller Polymorphismus bekannt waren oder aber die genetische Variabilität der Kandidatengene ausreichend wiedergaben.

2 MATERIAL

Tabellen mit den verwendeten Materialien befinden sich im Anhang ab Seite 93.

3 METHODEN

Das Ziel dieser Arbeit war es, einen Beitrag zur Aufklärung der Rolle der genetischen Induktion der RA zu leisten. Sie ist als Assoziationsstudie ausgelegt und soll die Korrelation zwischen einer genetischen Variation und einem bereits vorkommenden Phänotyp identifizieren.

Abbildung 6: Ablauf einer Assoziationsstudie
3.1 Studienpopulation

Die DNA-Proben der Studienteilnehmer stellte ECRAF (European Consortium of Rheumatoid Arthritis Families) zur Verfügung. Mit diesen Proben führte ECRAF unter anderem eine Studie zum Nachweis der Kopplung eines PTPN22-Allels mit Rheumatoider Arthritis durch [38]. Zur Auswahl wurden RA-Patienten und ihre leiblichen Eltern in einer nationalen Kampagne selektiert. In Rücksprache mit dem behandelnden Arzt erfolgte die Beurteilung des Erkrankungsstatus nach den Kriterien der American College of Rheumatology von 1987 [9]. Alle Patienten erfüllen die in Abschnitt 1.1. genannte ACR Kriterien für RA. Die untersuchte Kohorte bestand aus 100 Trios einer kaukasischen Population in Frankreich (Laboratoire de Recherche Européen pour la Polyarthrite Rhumatoïde, Université Evry-Val d’Essonne, Faculté de médecine Paris 7). Davon waren 87 Frauen, ihr mittleres Alter bei Krankheitsmanifestation lag bei 32 Jahren (mit einer Standardabweichung von +/-10). Insgesamt waren 81 Patienten Rheumafaktor-positiv. 78 Patienten trugen mindestens ein HLA-DRB1 shared epitope-Allel (DRB1*0101, DRB1*0102, DRB1*0401, DRB1*0404, DRB1*0405, DRB1*0408, DRB1*1001) und 90 Patienten zeigten Erosionen der Knochen.

Die RA Patienten hatten folgende Charakteristik [38]

- Die Kriterien des American College of Rheumatology (ehemals American Rheumatism Association) mussten erfüllt sein.
- Zulassung durch die Ethikkommission.
- Französisch-kaukasische Abstammung, d.h. auch alle vier Großeltern des von RA betroffenen Patienten müssen eine französisch-kaukasische Abstammung haben.
- Alter des betroffenen Patienten älter als 18 Jahre.

Alle Patienten stimmten nach Aufklärung der Studie zu. Die Ethikkommission an der medizinischen Fakultät der Universität Leipzig und des Hospital Bicêtre, Frankreich genehmigten die Studie.

Die aus Familientrios bestehende Kohorte kann als Fall- Kontroll- Kohorte analysiert werden, wobei nicht die Eltern die Kontrollen bilden, sondern eine virtueller Genotyp, der aus den
beiden nicht transmittierten, also nicht auf das Kind übertragenen Allelen besteht. Im Folgenden ist mit Kontrollen immer dieser virtuelle Genotyp gemeint.

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Fälle (n= 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>weiblich</td>
<td>87</td>
</tr>
<tr>
<td>mittlerer Erkrankungsbeginn in Jahren (±Standardabweichung)</td>
<td>32 (±10)</td>
</tr>
<tr>
<td>mittlere Erkrankungsdauer in Jahren (±Standardabweichung)</td>
<td>18 (±7)</td>
</tr>
<tr>
<td>RA Patienten mit Knochenerosion (%)</td>
<td>90</td>
</tr>
<tr>
<td>RA Patienten seropositiv für Rheumafaktor (%)</td>
<td>81</td>
</tr>
<tr>
<td>RA Patienten mit mind. einem HLA-DRB1 shared epitope Allel (%)</td>
<td>78</td>
</tr>
</tbody>
</table>

Tabelle 3: Eigenschaften der RA Patienten [38]

3.2 Genelektion

Um die Menge der zu genotypisierenden SNPs einzuschränken, musste die Anzahl der Gene begrenzt werden. Nach ausgiebiger Literaturrecherche wurde anhand verschiedener Auswahlkriterien eine Liste von neun Genen erstellt, die in dieser Arbeit auf einen Zusammenhang mit der Entstehung der RA hin untersucht werden sollten. Entscheidend waren dabei die Gene, die in der Literatur bereits im Zusammenhang mit RA oder Autoimmunerkrankungen beschrieben sind und / oder die eine wichtige Rolle im Xenobiotikastoffwechsel spielen. Bevorzugt wurden davon die Gene, bei denen genetische Variationen beschrieben sind, die möglicherweise mit RA oder Autoimmunerkrankungen in Zusammenhang stehen könnten. Ein weiteres Auswahlkriterium war die Lage im Genom. Hier wurden Gene bevorzugt, die sich in Regionen befinden, die sich in verschiedenen linkage-Studien als Region mit möglichen RA-Suszeptibilitäts genesen herausgestellt hatten [39] (siehe auch Kapitel 3.2.1.5).

Im Folgenden werden die bei der Genelektion verwendeten Datenbanken und Analysesoftware näher erklärt.
3.2.1 Datenbanken zur Genselektion

3.2.1.1 Pubmed

3.2.1.2 GDPInfo- Genomics and Disease Prevention Information System

GDPInfo vereinfacht die Suche nach Polymorphismen, bei denen Krankheitsassoziationen in der Literatur bekannt sind und verweist auf die zugehörigen PubMed- Artikel.

3.2.1.3 Gene Cards
http://www.gene_cards.org/index.shtml

GeneCards bietet eine gute Zusammenfassung der Informationen verschiedener Datenbanken und stellt sie grafisch dar. Die Erklärung beinhaltet unter anderem die Lokalisation der Gene, vorkommende Protein- Domainen, deren Funktion, Interaktion sowie vorkommende SNP’s und Polymorphismen und verweist zusätzlich auf andere Datenbanken.

3.2.1.4 HGNC

Human Genome Organisation Gene Nomenclature Committee
http://www.genenames.org/

HGNC zeigt für jedes Gen ein spezielles Symbol und einen Namen. Mit diesem ist das Gen in Datenbanken eindeutig zugeordnet. Damit alle in dieser Arbeit verwendeten Gene
wiedergefunden werden können, werden nur offizielle Namen entsprechend der HGNC-Nomenklatur verwendet.

3.2.1.5 Linkage- Studie
In einer *linkage*-Analyse an 88 französischen Familien wurden Regionen im Genom gefunden, in denen sich Gene befinden, die mit der RA in Zusammenhang stehen könnten [39]. Ebenso wurden Informationen aus anderen *linkage*-Studien verwendet [40;41]

3.3 SNP- Selektion

3.3.1 Auswahlkriterien
3.3.1.1 Lage

<table>
<thead>
<tr>
<th>Kriterien zur Anzahl der gewählten SNPs im Gen</th>
<th>Lage des SNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP in der 5´Region (erster SNP)</td>
<td>zwischen -5kb und +5kb von der ersten Base des ersten Exons entfernt</td>
</tr>
<tr>
<td>in der Mitte des Gens</td>
<td>Ein SNP zwischen -15kb und +15kb von der Mitte des Gens mit einem Abstand von 5kb vom ersten und letzten SNP entfernt</td>
</tr>
<tr>
<td>SNP in der 3´Region (letzter SNP)</td>
<td>Zwischen -5kb und +5kb vor dem Ende des letzten Exons</td>
</tr>
<tr>
<td>zusätzliche SNPs</td>
<td>beträgt der Abstand zwischen dem ersten und dem letzten SNP mehr als 70kb, wird ein zusätzlicher SNP pro 35kb Segment ausgewählt</td>
</tr>
</tbody>
</table>
3.3.1.2 Ausreichend hohe Validierung
Für die Polymorphismen sollten Frequenzen von kaukasischen Proben bekannt sein, die idealerweise um 20 Prozent oder darüber liegen.

3.3.1.3 Bekannte Assoziation
Bevorzugt wurden die SNPs untersucht, bei denen bereits aus den Datenbanken *PubMed* und *GDPinfo* ein Zusammenhang mit RA oder Autoimmunerkrankungen bekannt war.

3.3.1.4 Funktionelle Relevanz
Zur übersichtlicheren Darstellung relevanter Polymorphismen wurden zudem verschiedene Kriterien erstellt, nach denen die *in silico* vorhergesagte funktionelle Relevanz der SNPs bewertet wurde.

1. SNPs die in Proteindomainen liegen und einen Aminosäureaustausch bewirken, wurden aufgrund der Möglichkeit einer Veränderung des Gens oder der Genfunktion am höchsten bewertet.

3. SNPs in transskribierten Bereichen (nicht aminosäureverändernde SNPs in Exons und in 5´ und 3´ UTR Regionen) hatten wiederum nachfolgend Selektionspriorität.

4. Die geringste funktionelle Relevanz wurde intronischen SNPs in nicht potentiell funktionell relevanten Sequenzbereichen zugeordnet.
5. Mittels der Datenbanken dbSNP und Human BLAT Search erfolgte nach der SNP-Selektion eine Qualitätskontrolle der ausgewählten SNPs.

6. Im Folgenden werden die bei der SNP-Selektion und Qualitätskontrolle verwendeten Datenbanken näher erklärt.

3.3.2 Datenbanken zur SNP Selektion

3.3.2.1 PupaSNP

http://pupasnp.bioinfo.ocha.ub.es/

3.3.2.2 Ensembl

http://www.ensembl.org/index.html

Mittels Ensembl erhält man Informationen über die Lage der katalogisierten SNP’s im Gen, wie z.B. in einer UTR-Region 24, in einem Intron, in einer codierenden oder transkribierenden Region. Ensembl ist ein bioinformatisches Forschungsprojekt, dessen Ziel die genaue Analyse und Darstellung des eukaryotischen Genoms mit seinen funktionellen Einheiten ist [43].

3.3.2.3 SNPer

Diese in-House-Software ermöglicht, die Informationen aus Ensmart und PupaSNP mittels
der rs-Nummer zusammenzuführen und eine Übersicht zu erstellen, mit der die weitere
Bearbeitung der Informationen und die Auswahl der SNPs überschaubarer gestaltet werden
kann.

3.3.2.4 HapMap

http://www.hapmap.org/

Das Ziel des International HapMap Projects ist die Beschreibung genetischer Variation des
Menschen in ausgewählten Kohorten. Mit dieser Auswahl sollte es möglich sein, Haplotypen
to identifizieren, die die häufigsten genetischen Kombinationen von bestimmten SNP-Allelen
darstellen. Der Haplotyp definiert hierbei eine Gruppe von allen SNPs, die aufgrund ihrer
Lage auf demselben Chromosom gemeinsam vererbt werden. Meist genügt eine Auswahl
sogenannter tag- SNPs um die häufigsten genetische Varianten einer Region, die weit mehr
SNPs darstellen, abzubilden.

Auch wenn man wie in dieser Arbeit keine ausschließlich auf HapMap basierte Selektion der
SNPs durchführt, kann man mit HapMap SNPs identifizieren, die stark miteinander
korrelieren. Diese sollten möglichst nicht gemeinsam ausgewählt werden, da korrelierte SNPs
redundante Information bestimmen. Um die genetische Variabilität des Gens bestmöglich mit
der geringsten Zahl von SNPs zu erfassen, wurden Polymorphismen gewählt, die in
derschieden, nichtkorrelierenden LD- Blöcken (LD- linkage disequilibrium,
Kopplungsungleichgewicht) liegen [44].

3.3.2.5 Haploview

http://www.broad.mit.edu/ mpg/ haploview/

Dieses Programm stellt die linkage disequilibrium- Bereiche aus Hapmap grafisch dar und
fährt u.a. einen Haplotypen-Assoziationstest durch [45].
3.3.2.6 Human BLAT Search

http://genome.ucsc.edu/cgi-bin/hgBlat

Human BLAT Search ermöglicht die Suche nach Sequenzen im menschlichen Genom, ausgehend von Suchanfragen mit 40 oder mehr Basen. Damit konnte die Bestimmung der Genposition eines Polymorphismus eindeutig überprüft werden, was eine notwendige Validierungsinformation darstellt [46].

3.3.2.7 Genewindows

http://genewindows.nci.nih.gov/home.jsp

Die *software* wurde genutzt, um eine eindeutige Zuordnung in der Literatur beschriebener Polymorphismen mittels rs-Nummer zu gewährleisten [47]. *Genewindows* ist eine *software* der *Core Genotyping Facility (CGF)* und *National Cancer Institute* zur grafischen Darstellung verschiedener Genabschnitte. Dabei werden die SNPs farblich und in der Form unterschiedlich dargestellt, sowie durch das Programm genauer beschrieben.

3.3.2.8 dbSNP

3.4 Assay-Design

Für die Durchführung der PCR- und SBE-Reaktion wurden für jeden zu genotypisierenden SNP jeweils ein PCR-Primer-Paar und ein SBE-Primer entworfen. Dazu wurde im Zuge des Assay-Designs eine Liste von spezifischen PCR- und SBE-Primern für jeden SNP entwickelt, aus denen nach bestimmten Kriterien die bestmöglichen Primer ausgewählt wurden.

3.4.1 PCR-Primer-Design

Um sicherzustellen, dass die PCR-Primer nicht in einer repetetiven Region liegen oder sich Polymorphismen im Primerbindungsbereich befinden, wird zunächst eine entsprechende DNA-Sequenz des zu bearbeitenden Gens benötigt. Diese wird als genspezifische EMBL-Flat-Datei aus der Datenbank Ensembl importiert und enthält alle Informationen über die DNA-Folge, angrenzende Polymorphismen, repetetive Sequenzen und Exon/Intron-Grenzen des Gens. Sie bildet die Grundlage des PCR-Programms. Ensembl selbst greift dabei auf die Datenbank dbSNP zurück.

In einer SNP-spezifischen Datei („default file“) werden die Parameter für die Auswahl und Bewertung des jeweiligen Polymorphismus festgelegt.

Zusammenfassend wurden für diese Arbeit folgende Kriterien definiert.

- Länge der Primer: 18-23 bp [9]
- GC- Gehalt: 30-70% [9]
- Schmelztemperatur: 57.0- 63.0 °C
- Produktgröße: 60- 250 bp
- Aktivierung des BLAT- Filters: bis zu 1000 bp Produktgröße
- Angabe der Größe des jeweiligen Multi-Plexes

Zur Kombination der einzelnen Primer in entsprechenden Multiplexen sucht nun das Programm „PCRMatcher“ aus den zuvor kreierten, endgültigen PCR-Primerlisten die Primer- Paare heraus, welche nach den standardisierten Bedingungen am besten miteinander kompatibel sind. Diese sind die GC- Differenz, Schmelztemperaturdifferenz und mögliche Bildung von sekundären Strukturen zwischen den PCR-Primern verschiedener SNPs. Somit finden sich also die PCR-Primer mehrerer SNPs in einem Assay wieder. Falls keine kompatiblen Primerpaare gefunden werden, nutzt das Programm auch hier wieder liberalere Kriterien.
Um die Chance eines erfolgreichen *Multiplexing* zu optimieren, wird an jedes 5' Ende der Primer zusätzlich die Sequenz ACGTTGGATG angefügt [51].

<table>
<thead>
<tr>
<th>Gen</th>
<th>SNP rs-Nummer</th>
<th>forward-Primer</th>
<th>reverse-Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP1A1</td>
<td>4646421</td>
<td>ACGTTGGATGACCCACCACACTTAGGAAA</td>
<td>ACGTTGGATGACATCCTGTCCCCCATTTG</td>
</tr>
<tr>
<td>CYP1A1</td>
<td>4986884</td>
<td>ACGTTGGATGAAGGGAGCAATAGAGCGTA</td>
<td>ACGTTGGATGACCTATGGCTTGCAAGG</td>
</tr>
<tr>
<td>CYP1A1</td>
<td>2470893</td>
<td>ACGTTGGATGGAATAATCCCCCTACCTTC</td>
<td>ACGTTGGATGTITGGGGCAGCATATTG</td>
</tr>
<tr>
<td>CYP1B1</td>
<td>1056836</td>
<td>ACGTTGGATGAAATCATCACTCGTGTAGT</td>
<td>ACGTTGGATGACACCTGCTGTTCAGG</td>
</tr>
<tr>
<td>CYP1B1</td>
<td>162555</td>
<td>ACGTTGGATGAGTTAATGGGTAGCAGTGT</td>
<td>ACGTTGGATGCTCTCCATTTCCTGTG</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>2054675</td>
<td>ACGTTGGATGACATCACCTCCAGCAGTTT</td>
<td>ACGTTGGATGCCTGCTGCTCTGGAAG</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>3745274</td>
<td>ACGTTGGATGTGCTGTTACATAATAGGTTAC</td>
<td>ACGTTGGATGCGGAGGCAAGTAGGAG</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>16974730</td>
<td>ACGTTGGATGAAATCATCACTCGTGTAGT</td>
<td>ACGTTGGATGACACCTGCTGTTCAGG</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>2070673</td>
<td>ACGTTGGATGACATCACCTCCAGCAGTTT</td>
<td>ACGTTGGATGCCTGCTGCTCTGGAAG</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>2515642</td>
<td>ACGTTGGATGAGTTAATGGGTAGCAGTGT</td>
<td>ACGTTGGATGCTCTCCATTTCCTGTG</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>4918758</td>
<td>ACGTTGGATGTGCTGCTCAGACTCTAGT</td>
<td>ACGTTGGATGCCTGCTGCTCTGGAAG</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>1799853</td>
<td>ACGTTGGATGAAATCATCACTCGTGTAGT</td>
<td>ACGTTGGATGACACCTGCTGTTCAGG</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>1856908</td>
<td>ACGTTGGATGAAATCATCACTCGTGTAGT</td>
<td>ACGTTGGATGACACCTGCTGTTCAGG</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>1505</td>
<td>ACGTTGGATGAAATCATCACTCGTGTAGT</td>
<td>ACGTTGGATGACACCTGCTGTTCAGG</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>1057910</td>
<td>ACGTTGGATGAAATCATCACTCGTGTAGT</td>
<td>ACGTTGGATGACACCTGCTGTTCAGG</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>11568728</td>
<td>ACGTTGGATGACATCACCTCCAGCAGTTT</td>
<td>ACGTTGGATGCCTGCTGCTCTGGAAG</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>742086</td>
<td>ACGTTGGATGACATCACCTCCAGCAGTTT</td>
<td>ACGTTGGATGCCTGCTGCTCTGGAAG</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>1058167</td>
<td>ACGTTGGATGACATCACCTCCAGCAGTTT</td>
<td>ACGTTGGATGCCTGCTGCTCTGGAAG</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>4993393</td>
<td>ACGTTGGATGACATCACCTCCAGCAGTTT</td>
<td>ACGTTGGATGCCTGCTGCTCTGGAAG</td>
</tr>
<tr>
<td>Gen</td>
<td>SNP rs-Nummer</td>
<td>forward-Primer</td>
<td>reverse-Primer</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>12333983</td>
<td>ACGTTGGATGCGATTGTTACCTAGCCCTATCAG</td>
<td>ACGTTGGATGAGGTTTGGCTACCCCTAAG</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>4646450</td>
<td>ACGTTGGATGCACTCCACAATAATGGACT</td>
<td>ACGTTGGATGAGTGGCTACACCCCGGCT</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>4987161</td>
<td>ACGTTGGATGAGTGGTGTGATAGAGGTTGAT</td>
<td>ACGTTGGATGGGATGATTACATGGACCT</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>1801272</td>
<td>ACGTTGGATGCCCTGGCCTATT</td>
<td>ACGTTGGATGGTCCCCTGCCACCTACG</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>1137115</td>
<td>ACGTTGGATGCTAGGAGGGGAGGTAAATGAGTA</td>
<td>ACGTTGGATGACTCTGGTGCCACACTG</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>4244285</td>
<td>ACGTTGGATGACAGGCTGGGCTATTGTATC</td>
<td>ACGTTGGATGCTAGTCAATGACCTACG</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>1853205</td>
<td>ACGTTGGATGCTAGTCTATTTCAGTTGGCTTAAC</td>
<td>ACGTTGGATGAAATGGAGGTAATTGAAT</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>4917623</td>
<td>ACGTTGGATGCAAAGTTATTGTGACACT</td>
<td>ACGTTGGATGAACAGTGTTGAAATCATG</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3758581</td>
<td>ACGTTGGATGATTTCATTACCTTACCAT</td>
<td>ACGTTGGATGAGGTTTGGCTACTACG</td>
</tr>
</tbody>
</table>

Tabelle 4: Liste der ausgewählten PCR-Primerpaare

Im Anschluss an die Selektion der Primer erfolgte eine manuelle Qualitätskontrolle der ausgewählten Primer-Paare für die einzelnen SNPs. Dies erfolgte unter Verwendung folgender Programme und Datenbanken.
3.4.1.1 Netprimer

http://www.premierbiosoft.com/netprimer/netprlaunch/netprlaunch.html

Mit Netprimer können die ausgewählten PCR-Primer noch einmal hinsichtlich möglicher Sekundärstrukturen untersucht und grafisch dargestellt werden. Da Netprimer einen anderen Algorithmus als PCR.jar nutzt, kann somit die Relevanz bedenklicher homodimer, crossdimer oder hairpins differenzierter beurteilt werden.

3.4.1.2 ePCR

http://genome.ucsc.edu/cgi-bin/hgPcr?command=start

Mit dem Service der Datenbank UCSC-GenomeBrowser lässt sich nach Eingabe der PCR-Primer das entstehende PCR-Produkt vorhersagen. Es kann also die Spezifität und die korrekte Basensequenz der PCR-Primer überprüft werden. Mit dem UCSC Genome Browser kann weiter nach repetetiven Sequenzen gesucht werden oder ob sich der zu amplifizierenden SNP auch tatsächlich innerhalb des PCR-Produktes befindet und ob weitere SNP’s innerhalb der Bindungsstelle des PCR-Primerpaares liegen. Eine BLAT- Analyse mit dem PCR-Produkt kann ebenfalls unspezifische Bindungsstellen der PCR-Primer im Genom auffinden. BLAT ist ebenfalls ein Service von UCSC und vergleicht eine angegebene Sequenz mit der Sequenz eines kompletten Genoms.

3.4.2 SBE-Primer-Design

Tabelle 5: Liste der SBE Primer. an dem 5' Ende ist ein Biotin- Molekül gebunden (bio).

Die Lage des Photolinkers (β-CE phosphoramidite) ist durch [L] gekennzeichnet.

<table>
<thead>
<tr>
<th>Gen und rs-Nummer in dbsNP</th>
<th>Assay-Nummer</th>
<th>Sequenz inklusive. PL (in 5’ - 3’ Richtung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP1A1 rs4646421</td>
<td>3000</td>
<td>bioCTGACCACCTCT[L]CAAAAGGAGGTA</td>
</tr>
<tr>
<td>CYP1A1 rs 4986884</td>
<td>3001</td>
<td>bioCAAGTCCCCCA[L]CCCCTCC</td>
</tr>
<tr>
<td>CYP1A1 rs 2470893</td>
<td>3002</td>
<td>bioCCAGGAGC[G]TTTGAGG</td>
</tr>
<tr>
<td>CYP1B1 rs 1056836</td>
<td>3003</td>
<td>bioTGTTCTG[L]AAATGACACCA</td>
</tr>
<tr>
<td>CYP1B1 rs 162555</td>
<td>3004</td>
<td>bioCCACCCAATGTC[L]AGAGGCT</td>
</tr>
<tr>
<td>CYP2B6 rs 2054675</td>
<td>3005</td>
<td>bioGAGGATAGAGACATG[L]AGTCCAG</td>
</tr>
<tr>
<td>CYP2B6 rs 3745274</td>
<td>3006</td>
<td>bioCAGATGATGGTG[L]GGGTATGGA</td>
</tr>
<tr>
<td>CYP2B6 rs 16974730</td>
<td>3007</td>
<td>bioGGGTCATCAG[L]TCATGTCCTTC</td>
</tr>
<tr>
<td>CYP2E1 rs 2070673</td>
<td>3008</td>
<td>bioACG[L]GGGTGAGGTACC</td>
</tr>
<tr>
<td>CYP2E1 rs 2515642</td>
<td>3009</td>
<td>bioGCCCTTC[L]TTACTGGGCAGACA</td>
</tr>
<tr>
<td>CYP2C9 rs 4918758</td>
<td>3010</td>
<td>bioTAGTTGATTTC[L]ACCTCCCATCCTT</td>
</tr>
<tr>
<td>CYP2C9 rs 1799853</td>
<td>3011</td>
<td>bioGCAGGAGGCTT[L]CTCTTGAGACAC</td>
</tr>
<tr>
<td>CYP2C9 rs 1856908</td>
<td>3012</td>
<td>bioCCATTATCCTCTC[L]ATAAGGAGATTTTC</td>
</tr>
<tr>
<td>CYP2C15</td>
<td>3013</td>
<td>bioCATTCTCCACTCTC[L]CTATATCTCTCT</td>
</tr>
<tr>
<td>CYP2C9 rs 1057910</td>
<td>3014</td>
<td>bioTGTGTCGC[L]AGGTCCAGAGATAC</td>
</tr>
<tr>
<td>CYP2D6 rs 11568728</td>
<td>3015</td>
<td>bioTGGGGG[L]GGGTGAGG</td>
</tr>
<tr>
<td>CYP2D6 rs 742086</td>
<td>3016</td>
<td>bioACTGCTTGGG[L]AGGCCCTG</td>
</tr>
<tr>
<td>CYP2D6 rs 1058167</td>
<td>3017</td>
<td>bioGAAGTCTGTG[L]CCGCGTCTCC</td>
</tr>
<tr>
<td>CYP2D6 rs 4993393</td>
<td>3018</td>
<td>bioCCCTCA[L]GGATGTGCTGTC</td>
</tr>
<tr>
<td>CYP3A4 rs 12333983</td>
<td>3019</td>
<td>bioTCTACAGGGGTGATGAAT[L]TACAGGG</td>
</tr>
<tr>
<td>CYP3A4 rs 4846450</td>
<td>3020</td>
<td>bioGAGCGAGA[L]AGTGCCAGAGATAC</td>
</tr>
<tr>
<td>CYP3A4 rs 4987161</td>
<td>3021</td>
<td>bioTGTGTGAGAGTGCTATG[L]CACTCCA</td>
</tr>
<tr>
<td>CYP2A6 rs 1801272</td>
<td>3022</td>
<td>bioGGTCCTTCATCGAGCC</td>
</tr>
<tr>
<td>CYP2A6 rs 1137115</td>
<td>3023</td>
<td>bioTGCCAAAAGA[L]ATAAGGACCAT</td>
</tr>
<tr>
<td>CYP2C9 rs 4244285</td>
<td>3024</td>
<td>bioGTGTTTTAAGTA[L]TTGTATGAGTCC</td>
</tr>
<tr>
<td>CYP2C9 rs 1853205</td>
<td>3025</td>
<td>bioCAAGTGACTGCTTCT[L]TTTGAATGG</td>
</tr>
<tr>
<td>CYP2C9 rs 4917623</td>
<td>3026</td>
<td>bioGGTACCTGCTTCT[L]TTTGAATGG</td>
</tr>
<tr>
<td>CYP2C9 rs 3758581</td>
<td>3027</td>
<td>bioGGGGCTC[L]GGGTGAGG</td>
</tr>
</tbody>
</table>

Tabelle 5: Liste der SBE Primer. an dem 5' Ende ist ein Biotin- Molekül gebunden (bio).

Die Lage des Photolinkers (β-CE phosphoramidite) ist durch [L] gekennzeichnet.
3.5 Etablierung der Genotypisierungsreaktionen

Nachdem sich ausreichend hohe Umsätze (mind. 50%) und keine Probleme mit sekundären Strukturen oder Verunreinigungen zeigten, wurden die Primer entsprechend der Ergebnisse der SBE-Programme *PrimerExtend* und *Calcdalton* verschiedenen Multiplexen zugeordnet. Dafür mussten PCR- und SBE-Bedingungen, wie z.B. Primerkonzentration oder die Temperaturen in den Amplifikationsreaktionen, soweit angepasst werden, bis jeder Primer auch im Multiplex ausreichend hohe Umsätze (mind. 50%) zeigte. Zur Validierung der gefundenen Reaktionsbedingungen wurden für jeden Multiplex eine Kontrollreaktion mit sieben Proben und einer Negativkontrolle durchgeführt.

Die einzelnen Schritte der Genotypisierung sollen nachfolgend detailliert erläutert werden.

3.5.1 PCR

Mittels PCR wird zunächst der den SNP umgebende Abschnitt der DNA amplifiziert.
Die Polymerasekettenreaktion (polymerase chain reaction, PCR) ist ein zyklischer Prozess und dient der direkten Vervielfältigung kurzer Genomabschnitte entlang eines Templates. Dafür werden zwei PCR-Primer benötigt, welche in der DNA an den jeweils komplementären Strang binden und die Länge der zu amplifizierenden Sequenz festlegen. PCR-Primer sind kurze (18-35 Basen) einzelsträngige Oligonukleotide, welche an die DNA an den jeweils komplementären Strang binden. Jede PCR-Reaktion benötigt zwei dieser Primer, die die zu amplifizierende Sequenz festlegen. Während der Reaktion wechselt die Temperatur periodisch, so dass sich immer wieder Primer an das Template anlagern können und verlängert werden.

Die eigentliche Reaktion erfolgt in einem Thermocycler und umfasst 30-50 Zyklen, wobei jeder Zyklus grundsätzlich aus drei Schritten besteht:

Denaturierung: Durch Erhitzen auf 94-96°C Celsius werden die Wasserstoffbrückenbindungen, die die beiden DNA-Stränge zusammenhalten, aufgebrochen. Dadurch entstehen aus der doppelsträngigen DNA zwei Einzelstränge.

Primerhybridisierung: Nach der Trennung der beiden Stränge wird die Temperatur abgesenkt, so dass sich die Primer an die einzelnen DNA-Stränge anlagern können. Die hierfür benötigte Annealing-Temperatur liegt 2-3°Celsius über der spezifischen Schmelztemperatur der verwendeten Primer, also in der Regel zwischen 50-65°Celsius.

<table>
<thead>
<tr>
<th>Materialien</th>
<th>Hersteller</th>
<th>Ausgangskonzentration</th>
<th>Endkonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer B solis 10x</td>
<td>Solis</td>
<td>10x</td>
<td>1x</td>
</tr>
<tr>
<td></td>
<td>BioDyne</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 7: Materialien und Konzentrationen für die PCR

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua Bidest</td>
<td>AppliChem</td>
<td></td>
</tr>
<tr>
<td>MgCl 25mM</td>
<td>Solis</td>
<td>25mM 2.5mM</td>
</tr>
<tr>
<td>dNTP 25mM</td>
<td>Carl Roth</td>
<td>25mM 0.2mM</td>
</tr>
<tr>
<td>Primer forward</td>
<td>MWG</td>
<td>10µM 0.2mM</td>
</tr>
<tr>
<td>Primer reverse</td>
<td>MWG</td>
<td>10µM 0.2mM</td>
</tr>
<tr>
<td>HotFirePolTaq</td>
<td>Solis</td>
<td>5U/µl 0.04U/µl</td>
</tr>
<tr>
<td>Template (DNA)</td>
<td></td>
<td>15ng/µl 15ng</td>
</tr>
</tbody>
</table>

Tabelle 8: Reaktionsbedingungen während der PCR

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Dauer</th>
<th>Temperatur</th>
<th>Wiederholungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturierung</td>
<td>00:15:00</td>
<td>95°C</td>
<td>1x</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>00:00:45</td>
<td>92°C</td>
<td></td>
</tr>
<tr>
<td>Primerhybridisierung</td>
<td>00:00:45</td>
<td>58°C</td>
<td>40x</td>
</tr>
<tr>
<td>Elongation</td>
<td>00:00:45</td>
<td>72°C</td>
<td></td>
</tr>
</tbody>
</table>

3.5.2 Gelelektrophorese

Die Gelelektrophorese wurde in dieser Arbeit eingesetzt, um Längen von PCR-Produkten zu bestimmen. Sie dient der Auftrennung von unterschiedlich geladenen Molekülen, so auch von DNA-Fragmenten. Unter Einfluss eines elektrischen Feldes wandern die einzelnen Komponenten durch eine Trägersubstanz. Dabei haben die Moleküle aufgrund ihrer elektrischen Ladung Wanderungsgeschwindigkeiten, die umgekehrt proportional zum Logarithmus ihres Molekulargewichts sind.

Da DNA negativ geladen ist, wandert sie immer zu Anode. Es können sich bei DNA-Probengemischen bei dieser Wanderung mehrere Banden bilden, wobei jede einem Fragment von bestimmter Größe entspricht. Um die Länge der Fragmente zu bestimmen, wird ein interner Kalibrator, in Form eines DNA-Gemisches aus Stücken definiert Länge, mitgeführt.

In dieser Arbeit wurde die submarine-Technik, bei der sich das Gel in einer horizontalen Lage befindet und von einem Elektrophoresepuffer vollständig bedeckt ist, verwendet. Als

3.5.3 SAP und EXO I Verdau

Vor der SBE-Reaktion wird ein enzymatischer Verdauungsschritt der PCR-Proben durchgeführt. Dabei hydrolysiert Exonuclease I (EXO I) einzelsträngige DNA und entfernt so nicht umgesetzte PCR-Primer. Damit wird eine Reaktion der PCR-Primer in der SBE verhindert, was eine unerwünschte Konkurrenz zur Reaktion des SBE-Primers darstellen würde. Die ebenfalls verwendete *Shrimp Alkaline Phosphatase* (SAP) verdaut zusätzlich die verbliebenen dNTPs (Didesoxynukleotide) zu dNMPs (Didesoxy Monophosphate), so dass sie nicht mehr für die Polymerase in der SBE-Reaktion zur Verfügung stehen. Somit werden dann nur die zugegebenen ddNTPs verwendet und es ist gewährleistet, dass die SBE-Produkte nur um eine Base verlängert werden.

Zu 10µl PCR-Ansatz werden dabei folgende Mengen gegeben:

- 0,32µl SAP (1U/µl) + 0,1µl EXO I (20U/µl) + 1,68µl Aqua bidest

Es erfolgt eine Inkubation für 1 Stunde bei 37°Celsius. Durch anschließendes Erhitzen auf 80°Celsius für 20 Minuten werden beide Enzyme wieder inaktiviert.

3.5.4 SBE/PEX

Zur Genotypisierung von SNPs mittels MALDI-TOF MS dient die Primerextensions-Reaktion. Die mittels PCR vervielfältigte und enzymatisch aufgereinigte DNA-Sequenz steht dabei als Template zur Verfügung, an welches der SBE-Primer angelagert wird. Dieser bindet mit seinem 3’ Ende direkt vor dem zu genotypisierenden Nukleotid an die Matrize und eine spezielle Polymerase kann das komplementäre Nukleotid an den Primer binden. Bei den als Nukleotide eingesetzten ddNTPs fehlt im Vergleich zu den dNTPs der PCR Reaktion am 3’ C-Atom des Zuckers eine OH-Gruppe. Dadurch kann sich keine weitere Base anlagern und so wird der SBE-Primer nur um ein Nukleotid verlängert. Dies bedingt eine
lineare Amplifikation des *Templates*. Die Tabelle 9 zeigt ein Beispiel für einen typischen Probenansatz.

<table>
<thead>
<tr>
<th>Materialien</th>
<th>Hersteller</th>
<th>Ausgangskonzentration</th>
<th>Endkonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer C solis 10x</td>
<td>Solis</td>
<td>10x</td>
<td>0.63x</td>
</tr>
<tr>
<td></td>
<td>BioDyne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqua Bidest</td>
<td>AppliChem</td>
<td>100mM</td>
<td>6.25mM</td>
</tr>
<tr>
<td>MgCl 100mM</td>
<td>Solis</td>
<td>100mM</td>
<td>6.25mM</td>
</tr>
<tr>
<td></td>
<td>BioDyne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ddNTP 2mM</td>
<td>Carl Roth</td>
<td>4x10mM</td>
<td>4x0.13mM</td>
</tr>
<tr>
<td>SBE- Primer</td>
<td>BioTez</td>
<td>10µM</td>
<td>3.3pmol/ Ansatz</td>
</tr>
<tr>
<td>TERMIPOl</td>
<td>Solis</td>
<td>5U/ µl</td>
<td>1U/ Ansatz</td>
</tr>
<tr>
<td></td>
<td>BioDyne</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

verdautes PCR- Produkt

Tabelle 9: Materialien und Konzentrationen für die SBE

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Dauer</th>
<th>Temperatur</th>
<th>Wiederholungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denatuiierung</td>
<td>00:04:00</td>
<td>94°C</td>
<td>1x</td>
</tr>
<tr>
<td>Denatuiierung</td>
<td>00:00:10</td>
<td>94°C</td>
<td>44x</td>
</tr>
<tr>
<td>Primerhybridisierung</td>
<td>00:00:30</td>
<td>60°C</td>
<td></td>
</tr>
<tr>
<td>Elongation</td>
<td>00:00:10</td>
<td>72°C</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 10: Reaktionsbedingungen während der SBE

Thermocycler: Perkin Elmer, GeneAmp9600

Am Ende der SBE liegt ein Reaktionsgemisch aus SBE- Primern mit jeweils um eins verlängerter Base einerseits, sowie unverändertem PCR- Produkt, unveränderten SBE-Primern und verbliebenen ddNTPs andererseits vor. Vor der massenspektrometrischen Analyse ist eine Aufreinigung des Reaktionsgemisches notwendig, um störende Substanzen aus PCR, Verdau und SBE zu entfernen.

3.5.5 Streptavidinaufreinigung

Die Streptavidinaufreinigung ist nötig, um störende, unter Umständen auch das Ergebnis verfälschende noch im Ansatz vorhandene Reaktionskomponenten der PCR, des Verdau und der SBE vor der MALDI-TOF MS zu entfernen. Dies geschieht über den Biotinrest des SBE-Primers, der eine sehr starke Bindung mit Streptavidin eingeht. Auf einer mit Streptavidin beschichteten Platte verbleiben nach mehreren Wasch-Schritten nur die SBE-Primer und

3.5.6 Genotypisierung mittels MALDI-TOF-Massenspektrometrie

Der genutzte Massenanalisator gehört zu den Flugzeitmassenspektrometern (TOF-*time-of-flight-* Analysator), bei dem die Bestimmung des m/z-Verhältnisses über die Messung der
Flugzeit stattfindet. Ionen mit hohem m/z-Wert erreichen den Detektor später, als solche mit niedrigem Masse-/Ladungsverhältnis, wobei sich die Flugzeiten in quadratischer Abhängigkeit zum Verhältnis Masse/Ladung verhalten. Bei bekannter Beschleunigungsspannung und Flugstrecke der Ionen in der feldfreien Driftstrecke (122 cm) lässt sich durch die Messung der Flugzeit das m/z-Verhältnis bestimmen, so dass man auf diese Weise auf die Masse des Analyten zurück schließen kann. Die an der "sample target"-Elektrode und "conversion"-Elektrode angelegten Spannungen betrugen 20kV und 18,7kV. Zur Kalibrierung des Massenspektrometers wurde ein Mix aus Standart-Oligonukleotiden mit bekannten Molekularmassen verwendet.

Abbildung 7: Grafische Darstellung über den Ablauf der SBE, Streptavidinaufreinigung und Massenspektrometrie (modifiziert nach AG Ahnert)

1. Bindung des SBE-Primers an das Template und Anlagerung der komplementären Base
2. Bindung des SBE-Primers über sein Biotin-Molekül an die Strepaavidinplatte
3. Durch die Einwirkung von UV-Licht wird der SBE-Primer an der Stelle des Photolinkers gespalten
4. Bestimmung der Massen der Fragmente im MALDI-TOF und erste Analyse im Programm Genotools 2.0

3.5.7 Bestimmung des Genotyps

Die Qualitätskontrolle dieser Daten erfolgte in einem Streudiagramm, einem *Scatter Plot* (Umsatz Allel A aufgetragen gegen Umsatz Allel B bzw. SNR Allel A gegen SNR Allel B). In diesem wurde kontrolliert ob ein gleichmäßiges *clustern* der Daten erfolgte. Extremwerte wurden dabei manuell auf ihre Richtigkeit überprüft.

In dieser Arbeit wurden die Ergebnisse jedes *Assays* durch einen *Scatter Plot* überprüft. Abbildung 8 zeigt exemplarisch die Allelverteilung des *Assays* von rs 2054675.

3.6 Statistische Auswertung der Ergebnisse

Generell gilt, dass in dieser Arbeit keine Korrektur für multiples Testen auf statistischer Ebene durchgeführt wurde, denn die Strategie ist, alle gefunden Assoziationen mit \(p \leq 0,05 \) in einer zweiten unabhängigen Kohorte in dieser Dissertation nachfolgenden Arbeiten zu replizieren. Dies ermöglicht eine bessere Identifikation auch schwächerer Risikovarianten, welche bei einer Korrektur für multiples Testen nicht mehr nachweisbar wären.

Die statistische Auswertung der Familien- und Fall-Kontrollanalysen und der Qualitätskriterien erfolgte mit der arbeitsgruppeninternen Software „sinpanal“.

Im Folgenden werden die in der Software „sinpanal“ benutzten statistischen Methoden und verwendeten Begriffe genauer erklärt.

P-Wert (Überschreitungswahrscheinlichkeit) ist das Ergebnis eines statistischen Signifikanztests und ist die Wahrscheinlichkeit dafür, dass sich Daten wie beobachtet oder extremer darstellen. Ist der p-Wert sehr klein (<0,05), so spricht das gegen die Nullhypothese und ist eine Bestätigung für die Richtigkeit der Alternativhypothese. Es lässt sich also eine Assoziation (Assoziationsmaß) erkennen, jedoch nicht deren Ausmaß (Effektkmaß).

Odds Ratio (OR, Quotenverhältnis, Chancenverhältnis) wird genutzt um etwas über die Stärke eines Zusammenhanges von zwei Merkmalen auszusagen. Das Odds bezeichnet die Wahrscheinlichkeit für das Eintreten eines bestimmten Ereignisses. Es wird benutzt um zu erfahren, wie stark ein vermuteter Risikofaktor mit einer bestimmten Erkrankung (in diesem Fall der RA) zusammenhängt.

<table>
<thead>
<tr>
<th></th>
<th>mit Risikofaktor</th>
<th>ohne Risikofaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>erkrankt</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Nichterkrankt</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

\[
\text{OR} = \frac{a \times d}{b \times c}
\]

Tabelle 11: Punett-Quadrat

- ein Odds Ratio nahe 1 bedeutet, dass der Faktor keinen Einfluss auf das Erkrankungsrisiko hat (d.h. in dieser Arbeit, dass kein Effekt in Bezug zur RA besteht)
- ist das Odds Ratio > 1, so begünstigt der Faktor die Erkrankung (d.h. es könnte ein Risikoeffekt in Bezug zur RA bestehen)
ist das Odds Ratio < 1, so hat der Faktor eher eine protektive Wirkung (d.h., es könnte sich um einen Schutzeffekt in Bezug zur RA handeln)

Konfidenzintervall: ist der Unsicherheitsbereich für die Schätzung eines bestimmten, nicht bekannten Parameters. Ein 95%-iges Konfidenzintervall enthält zu schätzenden Parameter mit einer Wahrscheinlichkeit von 95%. Aus dem Konfidenzintervall lassen sich Schlüsse bezüglich der statistischen Signifikanz ziehen.

3.6.1 Qualitätskontrolle

Um die Qualität der bestimmten Daten beurteilen zu können, wurden neben der Genotypisierungsrate die Anzahl der Mendelfehler und der Test auf Verletzung des HWE (Hardy-Weinberg-Equilibrium) berechnet.

Genotypisierungsrate

Prozent genotypisiert: bezeichnet die Genotypisierungsquote innerhalb des Datensatzes, Bezug nehmend auf die Trio-Analyse (tatsächlich gemessene Proben).

Mendel Fehler: Wenn bei dem erkrankten Patient Allele auftreten, die bei den jeweiligen Eltern nicht vorkommen, ist dies ein Mendelfehler. Das kann ein Hinweis für eine fehlerhafte Genotypisierung sein. Die Chance, dass eine fehlerhafte Genotypisierung zu Mendelfehlern führt, liegt laut Gordon et al. bei 25-30 % und laut Geller et al. zwischen 39% und 61% [55]. Ab fünf Mendelfehler, bezogen auf 100 Familientrios, liegt höchstwahrscheinlich ein systematischer Genotypisierungsfehler vor und die statistische Auswertung ist in diesem Fall irrelevant.
Hardy-Weinberg-Equilibrium (HWE)

Sie zeichnet sich durch folgende Aspekte aus:

- sehr große Individuenzahl, die sicherstellt, dass der zufällige Verlust eines Individuums oder Gendrift nicht die Häufigkeit der Allele verändert
- Panmixie (alle Paarungen, auch von Trägern verschiedener Genotypen, sind gleich wahrscheinlich und gleich erfolgreich)
- Selektionsfreiheit
- Mutationsfreiheit
- Migrationsfreiheit, d.h. keine Zu- oder Abwanderungen von Individuen, wodurch die Allelfrequenz verändert würde

Das Hardy-Weinberg-Gleichgewicht kann mit zwei Formeln aus den Allelfrequenzen p und q berechnet werden:

\[
p^2 + 2pq + q^2 = 1 \quad \text{und} \quad p + q = 1
\]

Mit Hilfe des Rekombinationsquadrates nach Punnett lässt sich die Häufigkeit eines bestimmten Genotypes bei den Nachkommen bestimmen [55].

<table>
<thead>
<tr>
<th>männlich</th>
<th>weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R (p)</td>
</tr>
<tr>
<td>RR (p^2)</td>
<td>RR (p^2)</td>
</tr>
<tr>
<td>Rr (pq)</td>
<td>r (q^2)</td>
</tr>
</tbody>
</table>

Tabelle 12: Rekombinationsquadrat nach Punnett
Der **HWE P-Wert** gibt an, welcher p-Wert in den Signifikanztests in den Kontrollen (nicht transmittierte Allele) erreicht wurde. Je kleiner der Wert des P-Werts (ab<0.05) ist, desto wahrscheinlicher ist eine Verletzung des HWEs. Der HWE p-Wert sollte in den Kontrollen nicht kleiner als 0,01 liegen. Der Schwellenwert wurde hier niedriger als bei anderen in dieser Arbeit verwendeten Statistiken gewählt, da aufgrund der vielfältigen Voraussetzungen des HWE ein gewisser Schwankungsbereich zu erwarten ist. Treten zusätzlich viele Mendelfehler auf, liegt mit hoher Wahrscheinlichkeit ein systematischer Genotypisierungsfehler vor [56].

3.6.2 Deskriptive Statistik

Minor-Allel: bezeichnet das seltenere Allel im Datensatz. Im Allgemeinen ist das minor Allel in den RA-Patienten und den Kontrollen das gleiche Allel.

Major-Allel: bezeichnet das häufigere Allel im Datensatz.

Minor Allel-Transmittiert/ Untransmittiert: das Verhältnis des transmittierten bzw. des nichttransmittierten seltenen Allels auf die Erkrankten.

Fälle-Minor-Allel-Frequenz: gibt die relative Häufigkeit des selteneren Allels in den RA-Patienten an.

Kontrollen-Minor-Allel-Frequenz: gibt die relative Häufigkeit des selteneren Allels in den Kontrollen an.

<table>
<thead>
<tr>
<th></th>
<th>Anzahl der Personen mit Risikofaktor</th>
<th>Anzahl der Personen ohne Risikofaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der erkrankten</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Personen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl der nicht erkrankt</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>Personen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 13: Relatives Risiko

Somit gilt für das Relative Risiko:

\[
RR = \frac{a/(a+c)}{b/(b+c)}
\]

3.6.3 Assoziationsanalyse

Es wurden einzelne SNPs untersucht (Einzelmarkeranalysen). Die Einzelmarkeranalysen wurden mit der arbeitsgruppeninternen software „sinpanal121907.pl“ implementiert und durchgeführt.

3.6.3.1 Familienanalyse

Für diese Assoziationsanalysen werden neben der Fall-Kontroll-Analyse Familientrios untersucht. Ein Familientrio besteht aus einem erkrankten Patienten sowie dessen leiblichen Vater und Mutter, die beide als Kontrollen dienen.
3.6.3.2 Allelischer Test

Dieser allelische Test berücksichtigt neben der Assoziation auch die Kopplung (*linkage*) von Markern. Ein Unterschied wird auch hier als signifikant angesehen, wenn der aus der Chi-Teststatistik zugehörige P-Wert unter 0,05 liegt.

GRR-Hetero versus-Major: gibt analog zum *GRR_Homo_Minor_vs_Major* das Erkrankungsriskos eines Trägers eines heterozygoten Genotyps im Vergleich zu einem Träger des homozygoten Genotyps des häufigeren Allels an.

3.6.3.3 Fall-Kontroll-Analysen

Bei diesen Tests wird untersucht, ob ein Allel oder ein Genotyp signifikant unterschiedlich zwischen den Erkrankten und Kontrollen verteilt ist. Im Gegensatz zum TDT-Test, sind nicht nur Familien mit heterozygoten elterlichen Genotypen, sondern alle Genotypen informativ.

Allelischer Test

Minor-Allele-OR-pval: gibt das Signifikanzniveau des Odds Ratio für allelische Assoziation an, d.h. ob das seltenere Allel signifikant häufiger oder seltener in den Fällen vorkommt.

Genotypentests

Minor-Dominant-OR-pval: gibt an, ob die homozygoten Genotypen des selteneren Allels plus die der heterozygoten Genotypen in den Fällen signifikant häufiger oder seltener als in den Kontrollen vorkommen. Es ist ein Test auf ein dominantes Vererbungsmodell.

Minor-Recessive-OR-pval: gibt an, ob die homozygoten Genotypen des selteneren Allels signifikant unterschiedlich zwischen Erkrankten und Kontrollen verteilt sind. Es ist ein Test auf ein reessives Vererbungsmodell.
Minor-Armitage-pval: ist ein Test auf ein additives Vererbungsmodell des selteneren Allels. Der Test untersucht, ob ein linearer Zusammenhang zwischen dem Risiko erkrankt zu sein und dem Vorkommen von keinem, einem oder zwei Risikoallelen besteht [57].

3.6.3.4 Haplotypentest

4 ERGEBNISSE

4.1 Genselektion

Unter Verwendung der in den Methoden erwähnten Vorgehensweise wurden neun Gene für die Assoziationsanalyse ausgewählt. Diese Gene und die Hypothese warum die Gene potentielle Kandidaten für eine Assoziation mit der Rheumatoiden Arthritis sind sollen im Folgenden kurz dargestellt werden.

<table>
<thead>
<tr>
<th>HUGO-Gename</th>
<th>Chromosom</th>
<th>Funktionelle genetische Varianten bekannt</th>
<th>Assoziation mit Autoimmunkrankheiten bekannt</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP1B1</td>
<td>2p22.2</td>
<td>Hanna et al. 2000, Mitrunen et al. 2003, Saintot et al. 2004</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 14: Ausgewählte Gene und deren Charakteristika

<table>
<thead>
<tr>
<th>Gene</th>
<th>Chromosomale Lage</th>
<th>Referenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2B6</td>
<td>19q13.2</td>
<td>Hung et al. 2006
Lang et al. 2001
Miksys et al. 2003
Lang et al. 2004</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>10q26.3</td>
<td>Hu et al. 1997
Murdock et al. 2004</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>10q23.33</td>
<td>Tracy et al. 2002
Shintani et al. 2001
Chan et al. 2004
Yasar et al. 2001</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>22q13.2</td>
<td>Brown et al. 2000</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>7q22.1</td>
<td>Zeigler- Johnson et al. 2004
Spurdle et al. 2002</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>19q13.2</td>
<td>Xu et al. 2002
Oscarson et al. 1998
Pitarque et a. 2001</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>10q23.33</td>
<td>Goldstein et al. 2001
Kupfer et al. 1984
Tursen et al. 2007
Moodley et al 2008</td>
</tr>
</tbody>
</table>

4.1.1 CYP1A1

Genau wie die RA gilt auch systemischer Lupus erythematodes (SLE) als Prototyp der Autoimmunerkrankungen und auch hier konnte durch Yen et al. eine Assoziation zum Rauchen gezeigt werden [60]. Dabei war der Polymorphismus CYP1A1 C4887A (rs1048943), welcher einen Austausch der Aminosäure Threonin zu Asparagin bewirkt, bei Patienten mit SLE deutlich erhöht. Der Phänotyp CYP1A1 4887A wurde bei SLE Patienten deutlich vermehrt registriert. Außerdem leiden diese Patienten vermehrt unter renalen Komplikationen. Es sind somit zwei Polymorphismen (T3801C und A2455G) bekannt, welche mit erhöhter Induzierbarkeit einhergehen [64].

4.1.2 CYP1B1

Hypothese:

4.1.3 CYP2B6

Ethanol zur einer vermehrten Induktion von CYP2B6 führen, was zu einem vermehrten Anstieg toxischer Metabolite führt [70]. Hung et al. präsentierten einen Zusammenhang zwischen CYP2B6 und der Ausbildung des Stevens-Johnson-Syndroms, einer infekt- oder arzneimittelallergischen bullösen Dermatitis.

4.1.4 CYP2E1

Beschreibung: CYP2E1 gehört zur Superfamilie der Monoxygenasen Cytochrom P450. CYP2E1 befindet sich auf Chromosom 10. Zu seinen hauptsächlichen Substraten gehören neben den volatile Anästhetika auch Ethanol, Theophyllin und Nitrosamine. Es ist durch Ethanol und Isoniacid induzierbar und kann durch Diethyldithiocarbamat und Cimetidin inhibiert werden. Hauptsächlich ist CYP2E1 in der Leber lokalisiert, jedoch konnte es ethanol- bzw. ischämieinduziert auch in Nervenzellen nachgewiesen werden [73].
4.1.5 CYP2C9

4.1.6 CYP2D6

Hypothese: Beyeler et al. untersuchten einen Polymorphismus des CYP2D6 (CYP2D6*4), welcher hauptsächlich für poor metabolizer (pm) kodiert und fanden bei homozygoter Ausprägung eine moderate Assoziation zur Ausbildung der RA [78]. Weiterführend beobachteten Brown et al., dass dieser Polymorphismus bei homozygoten Trägern mit der Ausbildung von Spondylitis ankylosans, einer chronisch-entzündlich rheumatischen Erkrankung, korreliert [79]. Kortunay et al. prüften zwei Polymorphismen (CYP2D6A, CYP2D6B) und deren Einfluss auf die Ausbildung von systemischen Lupus erythematoses, konnten jedoch keine signifikanten Unterschied zur gesunden Kontrollgruppe finden [80].

Beschreibung: CYP2D6 gehört zur Superfamilie der Monoxygenasen Cytochrom P450. CYP2D6 ist auf Chromosom 2 lokalisiert. Zu den Substraten des Enzyms gehören u.a. Betablocker (Metoprolol, Carvedilol), Klasse I- Antiarrhythmika, Opiate und Vincaalkaloide. Es zeigt mehr als jedes andere Isoenzym des Cytochrom P 450- Enzymsystems Unterschiede in der Aktivität aufgrund genetischer Polymorphismen. Es unterscheiden sich extensive Metabolisierer mit normaler Enzymaktivität, intermediäre mit reduzierter Leistung, schlechte ohne Enzymaktivität (pm) und ultraschnelle Metabolisierer, bei denen gleichzeitig mehrere Kopien des Enzyms arbeiten.

4.1.7 CYP3A4

Hypothese: Die Tatsache, dass zum Metabolitenspektrum des CYP3A4 Östrogene und Androgene gehören, zeigt gerade hinsichtlich der geschlechtstypischen Verteilung der rheumatoiden Arthritis seine mögliche Bedeutung für die Ausbildung der RA. Ein funktioneller Polymorphismus des CYP3A4 kann bei dessen Trägern ein divergentes Metabolitenspektrum begründen.

Beschreibung: CYP3A4 gehört zur Superfamilie der Monoxygenasen Cytochrom P450.

4.1.8 CYP2A6

Beschreibung: CYP2A6 gehört zur Superfamilie der Monoxygenasen Cytochrom P450. CYP2A6 befindet sich auf dem langen Arm von Chromosom 19, zwischen 19q12 und 19q13.2. Es befindet sich in einem Gencluster mit *CYP2A7* und *CYP 2A13*, zwei

4.1.9 CYP2C19

Kupfer et al. [93] konnten einen autosomal, rezessiv verernten Polymorphismus für die Hydroxylierung des Antikonvulsivums Mephenytoin finden. Goldstein et al. konnten dafür die Polymorphismen CYP2C19*2 und CYP2C19*3 verantwortlich machen [94]. Brockmoller et al. [95] definierten den Phänotyp eines Individuums entsprechend als Langsam-Intermediär- oder Schnellmetabolisierer, wobei dieser eine hohe interethnische Varianz aufweist. Ca. 3- 5% der kaukasischen Bevölkerung gehören zu den Langsam-Metabolisierern, wobei laut Ferguson et al. [96] die beiden Polymorphismen CYP2C19*2 und CYP2C19*3 zu 87% für die verringerte Enzymaktivität verantwortlich sind.

4.2 SNP-Selektion

Abbildung 9: Haploview-Grafik der ausgewählten SNPs im Gen CYP2D6
<table>
<thead>
<tr>
<th>Gen</th>
<th>SNP</th>
<th>Rs-Nr</th>
<th>Allel</th>
<th>Frequenz Minor-Allel</th>
<th>Lage im Gen</th>
<th>Aminosäureveränderung</th>
<th>SNPs innerhalb InterPro Region</th>
<th>SNPs innerhalb ESE</th>
<th>SNPs innerhalb Transkriptionsfaktorbindestelle</th>
<th>In der Literatur bekannte SNPs</th>
<th>Ausgewählt</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP1A1</td>
<td>3000</td>
<td>4646421</td>
<td>C/ T</td>
<td>0.275</td>
<td>intronic</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MAF 0.275</td>
<td></td>
</tr>
<tr>
<td>CYP1A1</td>
<td>3001</td>
<td>4986884</td>
<td>T/ C</td>
<td>0.02</td>
<td>3'utr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>funkionelle Variante bekannt</td>
<td></td>
</tr>
<tr>
<td>CYP1A1</td>
<td>3002</td>
<td>2470893</td>
<td>G/ A</td>
<td>0.275</td>
<td>5'upstream</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>[97]</td>
<td></td>
</tr>
<tr>
<td>Cyp1B1</td>
<td>3003</td>
<td>1056836</td>
<td>C/ G</td>
<td>0.442</td>
<td>coding</td>
<td>A-S</td>
<td>IPR002401</td>
<td>0</td>
<td>0</td>
<td>funktionelle Variante bekannt</td>
<td></td>
</tr>
<tr>
<td>CYP1B1</td>
<td>3004</td>
<td>162555</td>
<td>A/ G</td>
<td>0.195</td>
<td>5'upstream</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>[98]</td>
<td>t- SNP</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>3005</td>
<td>2054675</td>
<td>C/ T</td>
<td>0.267</td>
<td>5'upstream</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>t- SNP MAF 0.267</td>
<td></td>
</tr>
<tr>
<td>CYP2B6</td>
<td>3006</td>
<td>3745274</td>
<td>A/ C</td>
<td>0.25</td>
<td>coding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>funktionelle Variante bekannt</td>
<td>[68]</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>3007</td>
<td>16974730</td>
<td>A/ T</td>
<td>0.29</td>
<td>coding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MAF 0.29</td>
<td></td>
</tr>
<tr>
<td>CYP2E1</td>
<td>3008</td>
<td>2070673</td>
<td>A/ T</td>
<td>0.145</td>
<td>5'upstream</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MAF 0.145</td>
<td></td>
</tr>
<tr>
<td>CYP2E1</td>
<td>3009</td>
<td>2515642</td>
<td>C/ T</td>
<td>0.217</td>
<td>intronic</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MAF 0.217</td>
<td></td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3010</td>
<td>4918758</td>
<td>C/ T</td>
<td>0.617</td>
<td>5'upstream</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Cdx-2</td>
<td>funktionelle Variante bekannt</td>
<td>[99]</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3011</td>
<td>1799853</td>
<td>A/ G</td>
<td>0.104</td>
<td>coding</td>
<td>R-C</td>
<td>IPR001128</td>
<td>sc35</td>
<td>0</td>
<td>funktionelle Variante bekannt</td>
<td>[100]</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3012</td>
<td>1856908</td>
<td>A/ C</td>
<td>0.333</td>
<td>intronic</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>funktionelle Variante bekannt</td>
<td>MAF 0.333</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3013</td>
<td>1505</td>
<td>C/ G</td>
<td>0.408</td>
<td>3'downstream</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>t- SNP</td>
<td></td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3014</td>
<td>1057910</td>
<td>A/ o</td>
<td>0.058</td>
<td>coding</td>
<td>I-L</td>
<td>IPR002401</td>
<td>0</td>
<td>0</td>
<td>funktionelle Variante bekannt</td>
<td>[101]</td>
</tr>
<tr>
<td>Gen</td>
<td>SNP</td>
<td>Rs-Nr</td>
<td>Allel</td>
<td>Frequenz Minor-Allel</td>
<td>Lage im Gen</td>
<td>Aminosäureveränderung</td>
<td>SNPs innerhalb InterPro Region</td>
<td>SNPs innerhalb ESE</td>
<td>SNPs innerhalb Transkriptionsfaktorbindestelle</td>
<td>In der Literatur bekannte SNPs</td>
<td>Ausgewählt</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>3015</td>
<td>11568728</td>
<td>C/ 0</td>
<td>NA</td>
<td>coding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>[79]</td>
<td>funktionelle Variante bekannt</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>3016</td>
<td>742086</td>
<td>A/ C</td>
<td>0.267</td>
<td>5'upstream</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>t-SNP</td>
<td>MAF 0.325</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>3017</td>
<td>1058167</td>
<td>C/ T</td>
<td>0.324</td>
<td>5'upstream</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>MAF 0.117</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>3018</td>
<td>4993393</td>
<td>C/ T</td>
<td>0.325</td>
<td>5'upstream</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>MAF 0.263</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>3019</td>
<td>12333983</td>
<td>A/ T</td>
<td>0.117</td>
<td>3'downstream</td>
<td>m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>MAF 0.175</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>3020</td>
<td>4646450</td>
<td>A/ C</td>
<td>0.175</td>
<td>3'downstream</td>
<td>m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>MAF 0.175</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>3021</td>
<td>4987161</td>
<td>A/ G</td>
<td>0.016</td>
<td>coding</td>
<td>I-M</td>
<td>IPR002401</td>
<td>0</td>
<td>0</td>
<td>[83]</td>
<td>funktionelle Variante bekannt</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>3022</td>
<td>1801272</td>
<td>A/ T</td>
<td>0.042</td>
<td>coding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>[90]</td>
<td>funktionelle Variante bekannt</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>3023</td>
<td>1137115</td>
<td>C/ T</td>
<td>0.263</td>
<td>coding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>[102]</td>
<td>funktionelle Variante bekannt</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3024</td>
<td>4244285</td>
<td>C/ T</td>
<td>0.15</td>
<td>coding</td>
<td>P</td>
<td>IPR001128</td>
<td>sc35</td>
<td>0</td>
<td>[102]</td>
<td>funktionelle Variante bekannt</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3025</td>
<td>1853205</td>
<td>C/ G</td>
<td>0.155</td>
<td>intronic</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>[102]</td>
<td>MAF 0.155</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3026</td>
<td>4917623</td>
<td>C/ T</td>
<td>0.492</td>
<td>intronic</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>[102]</td>
<td>MAF 0.492</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3027</td>
<td>3758581</td>
<td>C/ T</td>
<td>0.058</td>
<td>coding</td>
<td>V/ I</td>
<td>IPR002401</td>
<td>0</td>
<td>0</td>
<td>[102]</td>
<td>MAF 0.058</td>
</tr>
</tbody>
</table>

Tabelle 15: Ausgewählte SNPs, die in dieser Arbeit auf eine Assoziation mit der RA untersucht wurden

- Minor-Allel ist unterstrichen
- ESE (Exonic splicing enhancer) liegen im Exon, sie kontrollieren den Spleiß-Prozeß aber codieren nicht primär für Proteine
- t-SNP (taging-SNP) representativer SNP einer Genregion mit hohem Kopplungsungleichgewicht
• MAF (minor allel frequency) Frequenz des selteneren Allels in einer Population (Kaukasier)
4.3 Genotypisierung

4.3.1 Etablierung und Validierung der Genotypisierungsreaktion

Einleitung

Abbildung 10: Charakteristisches Ergebnis einer Massenspektrometrie im Multiplex, hier gezeigt am Assay des SNP 3005 im Multiplex QF8.

Auf der Ordinate ist die relative Intensität angegeben und auf der Abszisse die Massenzahl pro Ladung. Im oberen Teil der Grafik ist die Negativkontrolle dargestellt, d.h. nur das Signal des Primerfragmentes ist sichtbar. Die Identifizierung der *peaks* erfolgt mittels der erwarteten Massen der SBE-Primerfragmente (3'-Fragmente des...
Einleitung

Primers jenseits des *photolinkers*) und der erwarteten Massen der der Produktfragmente der SBE-Primer (entspricht dem Massenfragment des Primers plus der Masse der angehängten Einzelbase). Man erkennt im Leerwertspektrum die Massensignale der SBE-Primerfragmente von rs 2054675 (rot) und rs 4646421 (blau). Im Spektrum der DNA-Probe entsteht bei rs 2054675 ein Produktpeak C. Rs 4646421 zeigt in der DNA-Probe einen Produktpeak C.

Die übrigen Signale gehören zu anderen Genotypisierungsassays, die ebenfalls in diesem Multiplex analysiert wurden.

4.4 Qualitätskontrolle der Genotypisierungsergebnisse

Für insgesamt 28 SNPs konnten für 27 erfolgreich Assays etabliert werden. Einzig SNP 3007 zeigte keine eindeutige PCR-Reaktion und konnte deswegen nicht weiter genotypisiert werden. Die Genotypisierungsrate aller Assays lag bei 98% ± 2,3%, die Genotypisierungsrate aller Individuen lag bei 98.1% ± 6.3%. Abbildung 11 zeigt die Umsätze im Singelplex, Multiplex und am Ende der Etablierung.

Abbildung 11: Umsätze Singleplex, Multiplex, Genotypisierung
Die nachfolgende Tabelle 16 zeigt im Einzelnen die Ergebnisse der Qualitätskontrolle der Genotypisierung an der untersuchten französischen Familienkohorte. Sieben SNPs konnten in der weiteren Auswertung nicht berücksichtigt werden. Die ermittelten Genotypen dreier SNPs (3017, 3018, 3019) hatten eine zu geringe Korrektheit, sie wiesen innerhalb der 100 untersuchten Familien mehr als fünf Mendelfehler auf. Die ermittelten Genotypen der Kontrollen des SNPs 3003 waren nicht mit dem HWE vereinbar. Die SNPs 3001, 3015 und 3021 waren in der untersuchten Population nicht polymorph, es kam also nur eine einzige Variante vor. Die übrigen 19 Assays erfüllten sämtliche Qualitätskriterien (vgl. 3.7.1. Qualitätskriterien).

<table>
<thead>
<tr>
<th>SNP</th>
<th>Gen</th>
<th>Genotypisierungsrate</th>
<th>Mendelfehler</th>
<th>HWE p-Wert</th>
<th>Qualitätskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>CYP1A1</td>
<td>99%</td>
<td>0</td>
<td>0.412</td>
<td>Erfüllt</td>
</tr>
<tr>
<td>3001</td>
<td>CYP1A1</td>
<td>95%</td>
<td>1</td>
<td>1.000</td>
<td>nein, nicht polymorph</td>
</tr>
<tr>
<td>3002</td>
<td>CYP1A1</td>
<td>100%</td>
<td>0</td>
<td>0.461</td>
<td>Erfüllt</td>
</tr>
<tr>
<td>3003</td>
<td>Cyp1B1</td>
<td>99%</td>
<td>0</td>
<td>0.012</td>
<td>nicht im HWE</td>
</tr>
<tr>
<td>3004</td>
<td>CYP1B1</td>
<td>99%</td>
<td>0</td>
<td>0.114</td>
<td>Erfüllt</td>
</tr>
<tr>
<td>3005</td>
<td>CYP2B8</td>
<td>99%</td>
<td>0</td>
<td>0.976</td>
<td>Erfüllt</td>
</tr>
<tr>
<td>3006</td>
<td>CYP2B6</td>
<td>98%</td>
<td>1</td>
<td>0.692</td>
<td>Erfüllt</td>
</tr>
<tr>
<td>3007</td>
<td>CYP2B6</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3008</td>
<td>CYP2E1</td>
<td>98%</td>
<td>1</td>
<td>0.381</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3009</td>
<td>CY2E1</td>
<td>99%</td>
<td>0</td>
<td>0.396</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3010</td>
<td>CYP2C9</td>
<td>100%</td>
<td>2</td>
<td>0.475</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3011</td>
<td>CYP2C9</td>
<td>99%</td>
<td>1</td>
<td>0.902</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3012</td>
<td>CYP2C9</td>
<td>89%</td>
<td>1</td>
<td>0.984</td>
<td>nein, zu geringe Genotypisierungsrate</td>
</tr>
<tr>
<td>3013</td>
<td>CYP2C9</td>
<td>100%</td>
<td>2</td>
<td>0.879</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3014</td>
<td>CYP2C9</td>
<td>97%</td>
<td>0</td>
<td>0.583</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3015</td>
<td>CYP2D6</td>
<td>100%</td>
<td>0</td>
<td>1.000</td>
<td>nein, nicht polymorph</td>
</tr>
<tr>
<td>3016</td>
<td>CYP2D6</td>
<td>100%</td>
<td>0</td>
<td>0.289</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3017</td>
<td>CYP2D6</td>
<td>97%</td>
<td>5</td>
<td>0.642</td>
<td>nicht mendelkonform</td>
</tr>
<tr>
<td>3018</td>
<td>CYP2D6</td>
<td>96%</td>
<td>7</td>
<td>0.481</td>
<td>nicht mendelkonform</td>
</tr>
<tr>
<td>3019</td>
<td>CYP3A4</td>
<td>99%</td>
<td>19</td>
<td>0.608</td>
<td>nicht mendelkonform</td>
</tr>
<tr>
<td>3020</td>
<td>CYP3A4</td>
<td>96%</td>
<td>0</td>
<td>0.579</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3021</td>
<td>CYP3A4</td>
<td>97%</td>
<td>0</td>
<td>1.000</td>
<td>nein, nicht polymorph</td>
</tr>
<tr>
<td>3022</td>
<td>CYP2A6</td>
<td>100%</td>
<td>2</td>
<td>0.639</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3023</td>
<td>CYP2A6</td>
<td>100%</td>
<td>4</td>
<td>0.570</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3024</td>
<td>CYP2C19</td>
<td>97%</td>
<td>1</td>
<td>0.606</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3025</td>
<td>CYP2C19</td>
<td>99%</td>
<td>1</td>
<td>0.174</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3026</td>
<td>CYP2C19</td>
<td>100%</td>
<td>0</td>
<td>0.537</td>
<td>erfüllt</td>
</tr>
<tr>
<td>3027</td>
<td>CYP2C19</td>
<td>100%</td>
<td>0</td>
<td>0.565</td>
<td>erfüllt</td>
</tr>
</tbody>
</table>
Einleitung

Tabelle 16: Erfüllung der Qualitätskriterien
NA: Assay führt zu keinem eindeutigen PCR Produkt

4.5 Ergebnisse der statistischen Auswertung

4.5.1 Familienbasierter Einzelmarkertest

<table>
<thead>
<tr>
<th>SNP ID</th>
<th>Gen</th>
<th>Seltenes Allel</th>
<th>Seltenes Allel transmittiert/ nicht transmittiert</th>
<th>TDT p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>CYP1A1</td>
<td>t</td>
<td>21 / 14</td>
<td>0.238</td>
</tr>
<tr>
<td>3002</td>
<td>CYP1A1</td>
<td>t</td>
<td>42 / 50</td>
<td>0.405</td>
</tr>
<tr>
<td>3004</td>
<td>CYP1B1</td>
<td>g</td>
<td>31 / 33</td>
<td>0.805</td>
</tr>
<tr>
<td>3005</td>
<td>CYP2B8</td>
<td>c</td>
<td>29 / 31</td>
<td>0.798</td>
</tr>
<tr>
<td>3006</td>
<td>CYP2B6</td>
<td>a</td>
<td>27 / 34</td>
<td>0.375</td>
</tr>
<tr>
<td>3008</td>
<td>CYP2E1</td>
<td>t</td>
<td>25 / 24</td>
<td>0.893</td>
</tr>
<tr>
<td>3009</td>
<td>CYP2E1</td>
<td>c</td>
<td>32 / 32</td>
<td>1.000</td>
</tr>
<tr>
<td>3010</td>
<td>CYP2C9</td>
<td>c</td>
<td>38 / 36</td>
<td>0.827</td>
</tr>
<tr>
<td>3011</td>
<td>CYP2C9</td>
<td>a</td>
<td>18 / 35</td>
<td>0.021</td>
</tr>
<tr>
<td>3013</td>
<td>CYP2C9</td>
<td>g</td>
<td>44 / 47</td>
<td>0.764</td>
</tr>
<tr>
<td>3014</td>
<td>CYP2C9</td>
<td>c</td>
<td>7 / 9</td>
<td>0.622</td>
</tr>
<tr>
<td>3016</td>
<td>CYP2D6</td>
<td>c</td>
<td>32 / 44</td>
<td>0.171</td>
</tr>
<tr>
<td>3020</td>
<td>CYP3A4</td>
<td>c</td>
<td>7 / 9</td>
<td>0.622</td>
</tr>
<tr>
<td>3022</td>
<td>CYP2A6</td>
<td>a</td>
<td>2 / 9</td>
<td>0.037</td>
</tr>
<tr>
<td>3023</td>
<td>CYP2A6</td>
<td>t</td>
<td>36 / 37</td>
<td>0.926</td>
</tr>
<tr>
<td>3024</td>
<td>CYP2C19</td>
<td>t</td>
<td>20 / 22</td>
<td>0.768</td>
</tr>
<tr>
<td>3025</td>
<td>CYP2C19</td>
<td>c</td>
<td>23 / 22</td>
<td>0.890</td>
</tr>
<tr>
<td>3026</td>
<td>CYP2C19</td>
<td>t</td>
<td>46 / 49</td>
<td>0.768</td>
</tr>
<tr>
<td>3027</td>
<td>CYP2C19</td>
<td>t</td>
<td>7 / 10</td>
<td>0.472</td>
</tr>
</tbody>
</table>

Tabelle 17: Ergebnisse des familienbasierten TDT
4.5.2 Fall-Kontroll basierte Einzelmarkertests

4.5.2.1 Allelische Tests

Die nachfolgende Tabelle 18 zeigt eine Übersicht über die Allelfrequenzen des selteneren Allels der einzelnen SNPs in den Fällen und den Kontrollen. Ebenfalls sind daraus die Odds Ratios an RA zu erkranken und der dazugehörige p-Wert für Träger des seltenen Allels ersichtlich. Beim allelischen Test ergibt sich für das Allel CYP2C9-a eine deutliche Signifikanz, die auf einen protektiven Effekt hinweist (p-Wert 0,04). Des Weiteren zeigt sich im allelischen Test ein deutlicher Trend einer Assoziation des SNP 3022-a des CYP2A6 (p-Wert 0,078), die einen protektiven Charakter trägt.

<table>
<thead>
<tr>
<th>SNP ID</th>
<th>Gen</th>
<th>Seltenes Allel</th>
<th>Allelfrequenz in den Fällen</th>
<th>Allelfrequenz in den Kontrollen</th>
<th>Odds Ratio (95% Konfidenzintervall)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>CYP1A1</td>
<td>t</td>
<td>11%</td>
<td>8%</td>
<td>1.53 (0.8-3)</td>
<td>0.228</td>
</tr>
<tr>
<td>3002</td>
<td>CYP1A1</td>
<td>t</td>
<td>30%</td>
<td>34%</td>
<td>0.83 (0.5-1.3)</td>
<td>0.392</td>
</tr>
<tr>
<td>3004</td>
<td>CYP1B1</td>
<td>g</td>
<td>21%</td>
<td>21%</td>
<td>0.96 (0.6-1.6)</td>
<td>0.886</td>
</tr>
<tr>
<td>3005</td>
<td>CYP2B8</td>
<td>c</td>
<td>20%</td>
<td>21%</td>
<td>0.94 (0.6-1.5)</td>
<td>0.800</td>
</tr>
<tr>
<td>3006</td>
<td>CYP2B6</td>
<td>a</td>
<td>18%</td>
<td>22%</td>
<td>0.8 (0.5-1.3)</td>
<td>0.387</td>
</tr>
<tr>
<td>3008</td>
<td>CYP2E1</td>
<td>t</td>
<td>16%</td>
<td>15%</td>
<td>1.06 (0.6-1.9)</td>
<td>0.860</td>
</tr>
<tr>
<td>3009</td>
<td>CY2E1</td>
<td>c</td>
<td>20%</td>
<td>19%</td>
<td>1.02 (0.6-1.7)</td>
<td>0.976</td>
</tr>
<tr>
<td>3010</td>
<td>CYP2C9</td>
<td>c</td>
<td>43%</td>
<td>41%</td>
<td>1.05 (0.7-1.6)</td>
<td>0.822</td>
</tr>
</tbody>
</table>
| 3011 | CYP2C9 | a | 15% | 23% | **0.58 (0.4-1.0)** | **0.040**
| 3013 | CYP2C9 | g | 44% | 46% | 0.93 (0.6-1.4) | 0.712 |
| 3014 | CYP2C9 | c | 4% | 5% | 0.74 (0.3-1.9) | 0.540 |
| 3016 | CYP2D6 | c | 24% | 30% | 0.74 (0.5-1.2) | 0.193 |
| 3020 | CYP3A4 | c | 4% | 6% | 0.73 (0.3-1.9) | 0.521 |
| 3022 | CYP2A6 | a | 2% | 5% | **0.32 (0.1-1.2)** | **0.078**
| 3023 | CYP2A6 | t | 27% | 25% | 1.09 (0.7-1.7) | 0.697 |
| 3024 | CYP2C19| t | 16% | 16% | 1.02 (0.6-1.8) | 0.984 |
| 3025 | CYP2C19| c | 19% | 18% | 1.09 (0.7-1.8) | 0.753 |
| 3026 | CYP2C19| t | 46% | 48% | 0.94 (0.6-1.4) | 0.773 |
| 3027 | CYP2C19| t | 4% | 6% | 0.72 (0.3-1.8) | 0.484 |

Tabelle 18: Ergebnisse des Fall-Kontroll basierten allelischen Tests.

Statistisch nominell signifikante Unterschiede sind fett gekennzeichnet.

statistische Trends sind *kursiv* dargestellt.
4.5.2.2 Genotypische Tests

<table>
<thead>
<tr>
<th>SNP ID</th>
<th>Gen</th>
<th>Seltenes Allel</th>
<th>Additives Modell p-Wert</th>
<th>Additives Modell Odds Ratio (95% Konfidenzintervall)</th>
<th>Dominantes Modell p-Wert</th>
<th>Dominantes Modell Odds Ratio (95% Konfidenzintervall)</th>
<th>Rezessives Modell p-Wert</th>
<th>Rezessives Modell Odds Ratio (95% Konfidenzintervall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>CYP1A1</td>
<td>t</td>
<td>0.232</td>
<td>0.357</td>
<td>1.42 (0.7-3)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3002</td>
<td>CYP1A1</td>
<td>t</td>
<td>0.385</td>
<td>0.321</td>
<td>0.75 (0.4-1.3)</td>
<td>0.89 (0.3-2.3)</td>
<td>0.816</td>
<td></td>
</tr>
<tr>
<td>3004</td>
<td>CYP1B1</td>
<td>g</td>
<td>0.890</td>
<td>0.895</td>
<td>1.04 (0.6-1.9)</td>
<td>0.68 (0.2-2.2)</td>
<td>0.519</td>
<td></td>
</tr>
<tr>
<td>3005</td>
<td>CYP2B8</td>
<td>c</td>
<td>0.807</td>
<td>0.661</td>
<td>0.87 (0.5-1.6)</td>
<td>1.26 (0.3-4.9)</td>
<td>0.749</td>
<td></td>
</tr>
<tr>
<td>3006</td>
<td>CYP2B6</td>
<td>a</td>
<td>0.397</td>
<td>0.410</td>
<td>0.78 (0.4-1.4)</td>
<td>0.73 (0.2-2.8)</td>
<td>0.749</td>
<td></td>
</tr>
<tr>
<td>3008</td>
<td>CYP2E1</td>
<td>t</td>
<td>0.847</td>
<td>0.706</td>
<td>1.13 (0.6-2.1)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3009</td>
<td>CY2E1</td>
<td>c</td>
<td>0.975</td>
<td>0.493</td>
<td>1.23 (0.7-2.2)</td>
<td>0.19 (0.1-1.7)</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td>3010</td>
<td>CYP2C9</td>
<td>c</td>
<td>0.810</td>
<td>0.805</td>
<td>1.08 (0.6-2)</td>
<td>1.05 (0.5-2.3)</td>
<td>0.897</td>
<td></td>
</tr>
<tr>
<td>3011</td>
<td>CYP2C9</td>
<td>a</td>
<td>0.046</td>
<td>0.024</td>
<td>0.5 (0.3-0.9)</td>
<td>0.77 (0.2-2.9)</td>
<td>0.745</td>
<td></td>
</tr>
<tr>
<td>3013</td>
<td>CYP2C9</td>
<td>g</td>
<td>0.693</td>
<td>0.660</td>
<td>1.15 (0.6-2.2)</td>
<td>0.63 (0.3-1.3)</td>
<td>0.221</td>
<td></td>
</tr>
<tr>
<td>3014</td>
<td>CYP2C9</td>
<td>c</td>
<td>0.530</td>
<td>0.528</td>
<td>0.73 (0.3-1.9)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3016</td>
<td>CYP2D6</td>
<td>c</td>
<td>0.202</td>
<td>0.444</td>
<td>0.8 (0.5-1.4)</td>
<td>0.42 (0.1-1.3)</td>
<td>0.116</td>
<td></td>
</tr>
<tr>
<td>3020</td>
<td>CYP3A4</td>
<td>c</td>
<td>0.509</td>
<td>0.507</td>
<td>0.72 (0.3-1.9)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3022</td>
<td>CYP2A6</td>
<td>a</td>
<td>0.074</td>
<td>0.073</td>
<td>0.31 (0.1-1.2)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3023</td>
<td>CYP2A6</td>
<td>t</td>
<td>0.694</td>
<td>0.814</td>
<td>1.07 (0.6-1.9)</td>
<td>1.35 (0.4-4.4)</td>
<td>0.618</td>
<td></td>
</tr>
<tr>
<td>3024</td>
<td>CYP2C19</td>
<td>t</td>
<td>0.984</td>
<td>0.798</td>
<td>1.09 (0.6-2)</td>
<td>0.6 (0.1-3.7)</td>
<td>0.672</td>
<td></td>
</tr>
<tr>
<td>3025</td>
<td>CYP2C19</td>
<td>c</td>
<td>0.755</td>
<td>0.391</td>
<td>1.3 (0.7-2.4)</td>
<td>0.37 (0.1-2)</td>
<td>0.272</td>
<td></td>
</tr>
<tr>
<td>3026</td>
<td>CYP2C19</td>
<td>t</td>
<td>0.768</td>
<td>0.761</td>
<td>0.9 (0.5-1.7)</td>
<td>0.94 (0.5-1.9)</td>
<td>0.876</td>
<td></td>
</tr>
<tr>
<td>3027</td>
<td>CYP2C19</td>
<td>t</td>
<td>0.476</td>
<td>0.475</td>
<td>0.7 (0.3-1.8)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Tabelle 19: Ergebnisse des Fall-Kontroll basierten genotypischen Tests

NA: weniger als insgesamt 2 Homozygote in Fällen und Kontrollen, deshalb Test für diesen Assay nicht anwendbar
4.5.3 Familienbasierte Multimarkertests

Bei den familienbasierten Multimarkertests handelt es sich um familienbasierte, allelische Tests, also um TDT der genweiten Haplotypen. Nach Korrektur des gefundenen p-Wertes für die Anzahl der gefundenen Haplotypen pro Gen, wurden statistisch nominell signifikante Assoziationen zwischen einem Haplotyp der SNPs 3010, 3011, 3013 und 3014 und der RA gefunden.

<table>
<thead>
<tr>
<th>Gen</th>
<th>SNPs im Haplotyp</th>
<th>Haplotyp</th>
<th>Häufigkeit d. Haplotyp</th>
<th>transmittiert / nicht transmittiert</th>
<th>P Value unkorrigiert</th>
<th>p-Wert korrigiert (auf Anzahl der Haplotypen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2C19</td>
<td>3024+3025+3027+3026</td>
<td>GCCC</td>
<td>52%</td>
<td>50.0 / 40.9</td>
<td>0.343</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3024+3025+3027+3026</td>
<td>CGCT</td>
<td>25%</td>
<td>28.1 / 34.1</td>
<td>0.441</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3024+3025+3027+3026</td>
<td>TCCT</td>
<td>16%</td>
<td>21.6 / 19.4</td>
<td>0.730</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3024+3025+3027+3026</td>
<td>CGTT</td>
<td>5%</td>
<td>7.0 / 10.0</td>
<td>0.467</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3024+3025+3027+3026</td>
<td>CCCT</td>
<td>2%</td>
<td>4.1 / 0.2</td>
<td>0.063</td>
<td>0.314</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3010+3011+3014+3013</td>
<td>TGAC</td>
<td>51%</td>
<td>52.8 / 40.5</td>
<td>0.206</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3010+3011+3014+3013</td>
<td>CGAG</td>
<td>19%</td>
<td>30.6 / 17.9</td>
<td>0.069</td>
<td>0.484</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3010+3011+3014+3013</td>
<td>CAAG</td>
<td>16%</td>
<td>19.5 / 25.7</td>
<td>0.351</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3010+3011+3014+3013</td>
<td>CGCG</td>
<td>5%</td>
<td>7.5 / 9.0</td>
<td>0.708</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3010+3011+3014+3013</td>
<td>TGAC</td>
<td>5%</td>
<td>5.4 / 13.3</td>
<td>0.070</td>
<td>0.487</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3010+3011+3014+3013</td>
<td>TAAC</td>
<td>3%</td>
<td>0.5 / 9.7</td>
<td>0.004</td>
<td>0.029</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3010+3011+3014+3013</td>
<td>CGAC</td>
<td>1%</td>
<td>1.1 / 1.1</td>
<td>0.972</td>
<td>0.000</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>3008+3009</td>
<td>AT</td>
<td>80%</td>
<td>34.0 / 32.9</td>
<td>0.897</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>3008+3009</td>
<td>TC</td>
<td>15%</td>
<td>27.0 / 24.9</td>
<td>0.767</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>3008+3009</td>
<td>AC</td>
<td>5%</td>
<td>8.0 / 10.2</td>
<td>0.608</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP1A1</td>
<td>3000+3002</td>
<td>CC</td>
<td>58%</td>
<td>50.0 / 49.0</td>
<td>0.920</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP1A1</td>
<td>3000+3002</td>
<td>CT</td>
<td>32%</td>
<td>42.5 / 50.5</td>
<td>0.407</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP1A1</td>
<td>3000+3002</td>
<td>TC</td>
<td>10%</td>
<td>22.5 / 15.5</td>
<td>0.256</td>
<td>0.768</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>3002+3023</td>
<td>TC</td>
<td>75%</td>
<td>38.4 / 37.1</td>
<td>0.882</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>3002+3023</td>
<td>TT</td>
<td>22%</td>
<td>39.3 / 33.6</td>
<td>0.504</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>3002+3023</td>
<td>AT</td>
<td>3%</td>
<td>2.1 / 8.0</td>
<td>0.062</td>
<td>0.186</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>3005+3006</td>
<td>TC</td>
<td>80%</td>
<td>33.0 / 28.0</td>
<td>0.521</td>
<td>1.000</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>3005+3006</td>
<td>CA</td>
<td>20%</td>
<td>29.0 / 32.0</td>
<td>0.701</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Tabelle 20: Ergebnisse Fall-Kontroll basierte Einzelmerkertests - Genotypbasierte Tests

(Die zugrunde liegende Genotypverteilung ist in Tabelle 41, Anhang Seite 112 aufgeführt.)
5 DISKUSSION

Ziel der vorliegenden Arbeit war es einen Beitrag zur Aufklärung der genetischen Ursachen für die Entstehung der rheumatoiden Arthritis zu geben. Dabei wurden besonders die Gene des Cytochrom P450 auf möglicherweise mit der RA in Zusammenhang stehenden Genvarianten untersucht. Es gibt Hinweise, dass z.B. ein verändertes Metabolitspektrum des Xenobiotikastoffwechsels einen Einfluss auf die Entstehung autoimmuner Erkrankungen, wie der RA haben könnte [77].

Nachfolgend findet zunächst die Diskussion der Kriterien der Gen- und SNP-Auswahl statt. Anschließend folgt die Diskussion der einzelnen, in der Einleitung aufgestellten, Hypothesen.

5.1 Auswahl der Kandidatengene und SNPs

Aufgrund eines in früheren Studien gefundenen Zusammenhanges mit der RA wurden die SNPs 3003, 3006, 3010, 3011, 3014, 3015, 3021, 3022 und 3024 selektiert. Davon waren in unserer Untersuchung 3011 und 3022 auffällig. Möglich ist, dass bei den nicht auffälligen SNPs in der untersuchten Population kein oder nur ein sehr geringer, anhand der Stichprobe nicht nachweisbarer Effekt existiert. Als repräsentativ für eine Genregion mit hohem linkage disequilibrium wurden als tagging-snps 3004, 3013 und 3016 ausgewählt. Davon war in der französischen Kohorte keiner auffällig, denn ein tag-SNP repräsentiert das Gen und nur selten den funktionellen Polymorphismus.

In Abbildung 12 werden die einzelnen SNPs bezüglich ihrer Frequenzen des selteneren Allels (vorhergesagt laut NCBI und gemessen) dargestellt. Die recht gute Übereinstimmung bestätigt die Relevanz einer in den Datenbanken vorhergesagten Allelfrequenz für die untersuchte Population.
Einleitung

Abbildung 12: gemessene und erwartete Frequenzen des seltenen Allels

Die gemessenen Frequenzen des seltenen Allels stimmen mit den in der Datenbank (NCBI) angegebenen weitgehend überein. Die Korrelation zwischen den gemessenen und erwarteten Frequenzen hatte ein R^2-Wert von 0,82. Eine Frequenz des selteneren Allels kleiner 10% kam in 4 der 22 der nach der Qualitätskontrolle noch verbliebenen zu genotypisierenden Assays vor. Der SNP 3001 erwies sich als nicht polymorph.

5.2 Genotypisierung

5.3 Diskussion einzelner Hypothesen

5.3.1 Genetische Variabilität und ihre Folgen für den Xenobiotika-Stoffwechsel

Sachverhalt genauer eingegangen. Weiterhin könnten auch nur bestimmte Kombinationen der untersuchten SNPs zur RA führen. Epistase, bei der ein Gen die phänotypische Ausprägung eines nichtallelischen Gens verhindern kann, wäre hier möglich. Solche Überlegungen können in einer größeren Kohorte, allerdings mit erheblichem Aufwand, überprüft werden. Etwa ein Viertel aller Arzneimittel werden vom CYP2D6 metabolisiert, wobei es genetisch bedingte Defizite gibt, die in verlangsamer Metabolisierung enden. Der SNP \textit{CYP2D6} rs11568728 (3015) wurde zu Beginn der Arbeit in der Literatur recherchiert und in die Analyse aufgenommen. Er stellte sich im Verlauf als nicht polymorph dar. Die SNPs \textit{CYP2D6} rs742086 (3017) und \textit{CYP2D6} rs4993393 (3018) erfüllten aufgrund ihrer fehlenden Mendelkonformität nicht die Qualitätskriterien und wurden deshalb aus der weiteren Betrachtung ausgeschlossen. In dieser Studie erfüllte nur der Polymorphismus \textit{CYP2D6} rs742086 (3016), als \textit{tag}-SNP ausgewählt, die Qualitätskriterien und konnte zur Auswertung herangezogen werden. Dabei stellte sich keine statistisch signifikante Auffälligkeit dar.

5.3.2 Rauchen als suspekter Auslöser für die RA

\textit{CYP2A6} ist das primäre Enzym beim Abbau von Nikotin zu Conikotin. Bereits 1998 untersuchte Oscarson \textit{et al.} seine Rolle als Nikotin- C- Oxidase und fanden dass, einige seltener \textit{CYP2A6}-Allele, die zu einem inaktiven Enzym führten, bei Rauchern weniger

5.3.3 Geschlechtsspezifische Verteilung der RA

Um mögliche Hinweise auf unterschiedliche Östradioleffekte bei den Männern und Frauen unserer Kohorte zu erhalten, wurde für die Sexualhormonstoffwechsel beeinflussenden Gene eine weitere Assoziationsanalyse durchgeführt. Das betrifft die Gene CYP1B1 und CYP3A4.
Mit \textit{CYP1B1} rs 1056836 (3003) existiert ein funktioneller Polymorphismus, der in der Literatur bereits Erwähnung fand. Saintot \textit{et al.} untersuchten die Brustkrebsrate bei Frauen, die in der Nähe von Müllverbrennungsanlagen lebten. Dabei fanden sie, dass Frauen, die den Polymorphismus 432 Val\textarrow{L}e (rs 1056836) trugen signifikant häufiger an Mamma-Karzinomen erkrankten. Organische Chlorverbindungen binden am Ah-Rezeptor und lösen eine Enzyminduktion des \textit{CYP1B1} aus. Bei Trägerinnen des \textit{CYP1B1} 432 Val\textarrow{L}e Polymorphismus fallen durch das veränderte Metabolitspektrum vermehrt toxische Zwischenmetabolite an, die das Risiko am Brustkrebs zu erkranken erhöhen [28]. Dieser Polymorphismus wurde in die Untersuchung aufgenommen, zeigte sich jedoch nicht HWE-konform und fiel somit wegen nicht Erfüllen der Qualitätskriterien aus der Analyse. Der zusätzlich ausgewählte \textit{tagging-} SNP 3004(\textit{CYP1B1} rs 162555) zeigte keine Korrelation in unserer untersuchten Kohorte. Da in unserer Arbeit nicht der kausative SNP gemessen wurde, könnte es sein, dass nicht der hier gemessene SNP mit der RA assoziiert, sondern nur ein korrelierender, der sich mit dem gemessenen im \textit{linkage disequilibrium} befindet. Gibt es aber Unterschiede in der Korrelationsstruktur der SNPs unserer Studienpopulation, im Gegensatz zur Korrelationsstruktur der Vergleichsstudien von Saintot \textit{et al.} [28], kann das ein Grund für die Abweichung sein. Außerdem könnten auch nur bestimmte Kombinationen der untersuchten SNPs zur RA führen, so dass solche Überlegungen ebenfalls in einer größeren Kohorte überprüft werden sollten.

5.3.4 Vergleich der Ergebnisse mit genomweiten Assoziationsstudien

diesen Phänotyp relevant sein und wäre aus diesem Grund nicht direkt in den genomweiten Studien zu finden.

Auf Gen-Ebene finden sich bei sechs der neun ausgesuchten Gene in den genomweiten Studien Auffälligkeiten in mindestens einem Assoziationstest eines zu diesem Gen gehörenden SNP’s (Tabelle 46 und 47, ab Seite 116 im Anhang). Diese Beobachtungen sollten in größeren genetisch- epidemiologischen Folgestudien weiter untersucht werden, da die in den genomweiten Studien zwischen Fällen und Kontrollen gefundenen Unterschiede auf kleine Effektgrößen hinweisen. Falls sich dann die Bedeutung der Genpolymorphismen in der RA- Pathogenese bestätigen, sollten im nächsten Schritt zur Aufklärung des dahinterstehenden Mechanismus funktionelle Untersuchungen zur Rolle dieser SNPs erfolgen.

5.4 Limitationen der Studie

Die nachweisbaren Effektgrößen bei 80% Power lagen zwischen einem allelischen Odds Ratio von 1,76 und 2,91. Das entspricht, abhängig vom untersuchten Polymorphismus, nachweisbaren Frequenzunterschieden von 9-14% zwischen Fällen und Kontrollen (siehe Tabelle 42, im Anhang Seite 113).

Power:

Auch wenn bei einigen Polymorphismen keine Assoziationen gefunden wurden, kann es trotzdem Korrelation bezüglich Protektion oder Risiko geben. Die Power dient hierbei als Maß für die Chance einen tatsächlich vorhandenen Effekt als statistisch signifikant

Bedingt durch das Triodesign ist diese Studie sehr robust gegen Falsch-Positive Ergebnisse, denn die Kontrollen werden von den nichttransmittierten (nicht auf den Probanden übertragenen) Allelen gebildet. Das hat den Vorteil, dass für jeden Fall eine perfekt entsprechende Kontrolle vorhanden ist. Das macht die Studienkohorte aber auch sehr jung (Durchschnittsalter bei Diagnosestellung zwischen 30 und 40 Jahren), so dass die hier gefundenen Effekte spezifisch für die zeitig einsetzende RA und nur für diesen Phänotyp relevant sind.

Außerdem wurde diese Studie an Kaukasiern vorgenommen, so dass sich die gefundenen Ergebnisse nur bedingt oder gar nicht auf andere Bevölkerungsgruppen, wie z.B. Afrikaner übertragen lassen.
6 ZUSAMMENFASSUNG

Dissertation zur Erlangung des akademischen Grades Doctor medicinae (Dr. med)

Titel: Genetische Variabilität des Cytochrom P 450-Systems im Zusammenhang mit einem erhöhten Risiko für Rheumatoide Arthritis

eingereicht von: Maren Krause
angefertigt am: Institut für Klinische Immunologie und Transfusionsmedizin der medizinischen Fakultät der Universität Leipzig
Betreuer: Prof. Dr. med. F. Emmrich/ Dr. P. Ahnert
Institut für Klinische Immunologie und Transfusionsmedizin der medizinischen Fakultät der Universität Leipzig
Institut für Medizinische Informatik, Statistik und Epidemiologie der Medizinischen Fakultät und Biotechnologisch-Biomedizinisches Zentrum der Universität Leipzig
eingereicht: Juni 2013

Die statistischen Analysen des CYP2C9 rs1799853 (3011) zeigten in dem familienbasierten Einzelmarkertest eine Untertransmission (TDT p-Wert 0,021) des seltenen Allels (3011-a) in den Fällen. Im Fall-Kontroll-basierten allelischen Test zeigt sich dabei ein protektiver Effekt.
Einleitung

(Odds Ratio 0,58). Im Fall-Kontroll-basierten genotypischen Test konnte dieser Sachverhalt weiter nachvollzogen werden (p-Wert 0,046).

Für das seltene Allel des CYP2A6 rs1801272 (3022-a) zeigt sich im familienbasierten Einzelmarkertest in den Fällen eine Untertransmission (TDT p-Wert 0,037). Im Fall-Kontroll-basierten allelischen Test zeigt sich ein protektiver Effekt dieses Allels (Odds Ratio 0,32). Im Fall-Kontroll-basierten genotypischen Test zeigt sich ein statistischer Trend zum protektiven Verhalten dieses Allels.

Bei den SNPs mit vorhergesagter funktioneller Relevanz zeigten sich keine statistischen Auffälligkeiten in der untersuchten Kohorte. In genomweiten Studien konnten die Ergebnisse nicht nachvollzogen werden, wobei zumindest auf Gen-Ebene schwache Assoziationen zu erkennen sind.

In Folgestudien könnte man auch weitere SNPs der Kandidatengene genotypisieren, um die genetische Variabilität anhand der Haplotypen genauer zu verifizieren. Sollten sich oben genannte Assoziationen bestätigen, sind im Verlauf funktionelle Studien bezüglich unterschiedlicher Genexpression oder verändertem Metabolitenspektrum höchst interessant.
7 EXECUTIVE SUMMARY

Dissertation for the academic degree of Doctor medicinae (MD)

Title: Genetic variability of the cytochrome P450-system in conjunction with an increased risk for Rheumatoid Arthritis

submitted by: Maren Krause
prepared at: Institute for Clinical Immunology and Transfusion Medicine, Faculty of Medicine, University of Leipzig
Supervising Tutor: Prof. Dr. med. F. Emmrich/ Dr. P. Ahnert
Institute for Clinical Immunology and Transfusion Medicine, Faculty of Medicine, University of Leipzig
Institute for Medical Informatics, Statistics and Epidemiology Faculty of Medicine and Biotechnology and Biomedicine, University of Leipzig
submitted: June 2013

Rheumatoid Arthritis is a chronic inflammatory systemic disease and is one of the autoimmune diseases. In this study, nine candidate genes of the cytochrome P450 system have been analyzed to determine their possible association with the formation of RA. These genes are: CYP1A1, CYP1B1, CYP2B6, CYP2E1, CYP2C9, CYP2D6, CYP2A6, CYP2C19 and CYP3A4. Within these genes, 21 single nucleotide polymorphism, SNPs, in 300 French Caucasian individuals (100 RA trio families) were genotyped using single-base-extensions, SBE, in a mass spectrometric analysis by MALDI-TOF-MS (matrix-assisted Laser Desorption/ Ionization-time-of-flight mass spectometry).

The selection of the examined genes was carried out taking into account known associations with RA or other autoimmune disease, as well as known functional variants. Decisive were also the location of the gene and genetic variability. The results of genotyping were used to study polymorphisms on their association with Rheumatoid Arthritis.

The statistical analyzes of CYP2C9 rs1799853 (3011) showed, in the family-based single-marker test, a lower transmission (TDT p-value 0.021) for the rare allele (3011-a). The case-control allelic based test shows, there is a protective effect (Odds Ratio 0.58). In the case-control-based genotypic test this issue could be reproduced (p-value 0.046).
Für den seltenen Allel des Genes CYP2A6 rs1801272 (3022-a) zeigt der familienspezifische singelmarker-Test eine geringere Transmissionsrate (TDT p-Wert 0.037). Der fall-kontrollen allel-basierte Test zeigt einen schützenden Effekt dieses Allels (Odds Ratio 0.32). In den fall-kontrollen genotyp-basierten Tests findet sich eine statistische Tendenz zu schützenden Wirkungen dieses Allels.

For the rare allele of the CYP2A6 rs1801272 (3022-a) the family-based single-marker test shows a lower transmittance (TDT p-value 0.037). The case-control allelic based test shows a protective effect of this allele (Odds Ratio 0.32). In the case-control-based genotypic test a statistical trend to protective behavior of this allele occurs.

SNPs with predicted functional relevance showed no statistical abnormalities in the studied cohort. In genome-wide studies, the results could not be tracked, at least at the gene level weak associations could be detected.

The results of this study should be to replicate in one second independent cohort. Care should be taken specifically to xenobiotic stress, such as job stress, smoking, and medication.

In subsequent studies more SNPs of the candidate genes could also genotyped in order to verify the genetic variability with reference to of the haplotypes in more detail. Should the above-mentioned associations be confirmed, functional studies on different gene expression or altered metabolite spectrum are highly interesting.
8 ANHANG

8.1 Material

Bei der nachfolgenden Auflistung aller Materialien wird zwischen Chemikalien, Verbrauchsmaterialien und Geräten für jeden einzelnen Arbeitsschritt unterschieden.

8.1.1 PCR

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung/ Zusammensetzung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser für die Molekularbiologie</td>
<td>DEPC- behandelt; steril; DNA-, RNA- und proteasefrei</td>
<td>Applichem/ Darmstadt Deutschland</td>
</tr>
<tr>
<td>dNTP- Set</td>
<td>dNTP- Mix, jeweils aus 10 mM dATP, dTTP, dGTP,dCTP</td>
<td>Roth/ Karlsruhe Deutschland</td>
</tr>
<tr>
<td>HOT FIRE Pol</td>
<td>DNA- Polymerase</td>
<td>Solis BioDyne/ Tartu Estland</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>25mM</td>
<td>Solis BioDyne/ Tartu Estland</td>
</tr>
<tr>
<td>PCR- Primer</td>
<td>s. Tabelle 4: Liste der ausgewählten PCR- Primerpaare</td>
<td>MWG/ Ebersberg Deutschland</td>
</tr>
<tr>
<td>Puffer B</td>
<td>Proprietär</td>
<td>Solis BioDyne/ Tartu Estland</td>
</tr>
<tr>
<td>TE-Puffer für die Molekularbiologie</td>
<td>10mM Tris; 1mM EDTA; DNA-, RNA- und proteasefrei</td>
<td>Applichem/ Darmstadt Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 21: Chemikalien für PCR

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profi; Aflatex</td>
<td>Handschuhe</td>
<td>Sänger/ Schrozberg Deutschland</td>
</tr>
<tr>
<td>MultiGard- Tips</td>
<td>Filterspitzen</td>
<td>Roth/ Karlsruhe Deutschland</td>
</tr>
<tr>
<td>Save- Locks Tubes</td>
<td>0,2 ml Reaktionsgefäß</td>
<td>Eppendorf/ Hamburg Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 22: Verbrauchsmaterialien für PCR

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy Mini</td>
<td>Mikrozentrifuge</td>
<td>Merck/ Darmstadt</td>
</tr>
<tr>
<td>Eppendorf Research;</td>
<td>Pipetten</td>
<td>Eppendorf/ Hamburg</td>
</tr>
</tbody>
</table>
8.1.2 Gelektrophorese

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung/ Zusammensetzung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA- Agar</td>
<td>Hochreine Agarose</td>
<td>Serva/ Heidelberg Deutschland</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>in TAE gelöst, c= 0,5µg/ml</td>
<td>VWR/ Darmstadt Deutschland</td>
</tr>
<tr>
<td>6x DNA Gel Loading Buffer</td>
<td>Laufpuffer, Bromphenolblau, Xylencyanol FF, Ficol</td>
<td>Novagen/ New York USA</td>
</tr>
<tr>
<td>TAE- Puffer</td>
<td>Tris- Acetat EDTA- Puffer, 40mM Tris- Acetat + 1mM EDTA</td>
<td>VWR/ Darmstadt Deutschland</td>
</tr>
<tr>
<td>TE- Puffer für Molekular-biologie</td>
<td>10mM Tris; 1mM EDTA; DNA-, RNA- und proteasefrei; pH 8,0</td>
<td>Applichem/ Darmstadt Deutschland</td>
</tr>
<tr>
<td>Perfect DNA 50bp Ladder</td>
<td></td>
<td>Novagen/ New York USA</td>
</tr>
</tbody>
</table>

Tabelle 24: Chemikalien für Gelektrophorese

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfatex</td>
<td>Nitrilhandschuhe</td>
<td>Sänger/ Schrozberg Deutschland</td>
</tr>
<tr>
<td>MultiGuard- Tips; easy load</td>
<td>Filterspitzen</td>
<td>Roth/ Karlsruhe Deutschland Greiner/ Frickenhausen Deutschland</td>
</tr>
<tr>
<td>96 well Microplatten</td>
<td>Mikrotitierplatten</td>
<td>Greiner/ Frickenhausen Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 25: Verbrauchsmaterialien für Gelektrophorese
Einleitung

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kamm</td>
<td>BioRad/ München Deutschland</td>
<td></td>
</tr>
<tr>
<td>Kammer</td>
<td>BioRad/ München Deutschland</td>
<td></td>
</tr>
<tr>
<td>MultiImage Light Cabinet</td>
<td>Geldokumentationssystem</td>
<td></td>
</tr>
<tr>
<td>Deutsch</td>
<td>Alpha Innotec Corporation/ München</td>
<td></td>
</tr>
<tr>
<td>Deutsch</td>
<td>Sharp/ Hamburg Deutschland</td>
<td></td>
</tr>
<tr>
<td>Galaxy Mini</td>
<td>Microzentrifuge</td>
<td></td>
</tr>
<tr>
<td>Deutsch</td>
<td>Merck/ Darmstadt</td>
<td></td>
</tr>
<tr>
<td>Deutsch</td>
<td>Eppendorf/ Hamburg Deutschland</td>
<td></td>
</tr>
<tr>
<td>Eppendorf Research;</td>
<td>Pipetten</td>
<td></td>
</tr>
<tr>
<td>Mikrolitepipetten, Proline; Pipetman</td>
<td>Eppendorf/ Hamburg Deutschland, Roth/ Karlsruhe Deutschland, Gilson/ München Deutschland</td>
<td></td>
</tr>
<tr>
<td>Power Pac 200/ 1000</td>
<td>Spannungsgerät</td>
<td></td>
</tr>
<tr>
<td>Deutsch</td>
<td>BioRad/ München Deutschland</td>
<td></td>
</tr>
<tr>
<td>GeneAmo PCR System 9600/ 2400</td>
<td>Thermocycler</td>
<td></td>
</tr>
<tr>
<td>Deutsch</td>
<td>Perkin Elmer/ Wellesley USA</td>
<td></td>
</tr>
<tr>
<td>Mastercycler Gradient</td>
<td>Thermocycler</td>
<td></td>
</tr>
<tr>
<td>Deutsch</td>
<td>Eppendorf/ Hamburg Deutschland</td>
<td></td>
</tr>
<tr>
<td>Träger</td>
<td>BioRad/ München Deutschland</td>
<td></td>
</tr>
<tr>
<td>Vorrichtung zum Gelgießen</td>
<td>BioRad/ München Deutschland</td>
<td></td>
</tr>
<tr>
<td>Vortex Genie II</td>
<td>Schüttler</td>
<td></td>
</tr>
<tr>
<td>Deutsch</td>
<td>Scientific Industries/ New York USA</td>
<td></td>
</tr>
<tr>
<td>BL3100/ BP221S</td>
<td>Waage/ Feinwaage</td>
<td></td>
</tr>
<tr>
<td>Deutsch</td>
<td>Sartorius/ Göttingen Deutschland</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 26: Geräte für Gelelektrophorese

Herstellung eines Agarosegels und Durchführung der Elektrophorese

1). Erstellung eines 2%-igen DNA-Agar-Gels

- Abwiegen von 3,5g Agar
- Abfüllen von 175ml TAE- Laufpuffer
- Erhitzen (800 Watt; 5 min.)
- Auffüllen der verdampften Menge mit VE- Wasser auf der Waage, bis die ursprüngliche Masse erreicht ist

2). Auftragen der DNA
• Mischen von 1µl 6x Probepuffer und 5µl DNA (auf beschichtetem Parafilm)
• Gemisch in die Gel- Taschen einfüllen
• In die Gelkammer eingeben und mit restlichem TAE- Laufpuffer aus b) auffüllen

3). Gelelektrophorese
• Anlegen einer 200 Volt Spannung an der Gelkammer
• DNA ca. 70 Minuten wandern lassen

4). Visualisierung
• Gel 10-15 min. in Ethidiumbromid färben
• Gel in Wasser waschen
• Gel unter UV- Licht fotografieren

8.1.3 Verdau

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser für Molekularbiologie</td>
<td>DEPC- behandelt; steril; DNA-, RNA- und proteasefrei</td>
<td>Applichem/ Darmstadt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>Exonuclease I (Exo I)</td>
<td></td>
<td>NEB/ Frankfurt am Main</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>Shrimp Alkaline Phosphatase (SAP)</td>
<td></td>
<td>Applied Biosystems/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Darmstadt Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 27: Chemikalien für enzymatischen Verdau

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profi; Aflatex</td>
<td>Handschuhe</td>
<td>Sänger/ Schrozberg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>MultiGard- Tips; easy load</td>
<td>Filterspitzen</td>
<td>Roth/ Karlsruhe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland, Greiner/</td>
</tr>
</tbody>
</table>

108 / 140
Einleitung

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save- Locks Tubes</td>
<td>0,2ml Reaktionsgefäße</td>
<td>Eppendorf/ Hamburg</td>
</tr>
</tbody>
</table>

Tabelle 28: Verbrauchsmaterialien für enzymatischen Verdau

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy Mini</td>
<td>Mikrozentrifuge</td>
<td>Merck/ Darmstadt</td>
</tr>
<tr>
<td>Eppendorf Research;</td>
<td>Pipetten</td>
<td>Eppendorf/ Hamburg</td>
</tr>
<tr>
<td>Mikroliterpipetten Proline;</td>
<td></td>
<td>Roth/ Karlsruhe</td>
</tr>
<tr>
<td>Pipetman</td>
<td></td>
<td>Gilson/ München</td>
</tr>
<tr>
<td>GeneAmo PCR System 9600/</td>
<td>Thermocycler</td>
<td>Perkin Elmer/ Wellesley</td>
</tr>
<tr>
<td>2400</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Mastercycler Gradient</td>
<td>Thermocycler</td>
<td>Eppendorf/ Hamburg</td>
</tr>
<tr>
<td>Vortex Genie II</td>
<td>Schüttler</td>
<td>Scientific Industries/ New</td>
</tr>
<tr>
<td></td>
<td></td>
<td>York USA</td>
</tr>
</tbody>
</table>

Tabelle 29: Geräte für enzymatischen Verdau

8.1.4 SBE- Reaktion

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung/ Zusammensetzung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser für Molekularbiologie</td>
<td>DEPC- behandelt; steril; DNA-, RNA- und proteasefrei</td>
<td>Applichem/ Darmstadt</td>
</tr>
<tr>
<td>ddNTP- Mix</td>
<td>Jeweils 10mM ddATP, ddTTP, ddGTP, ddCTP</td>
<td>Roth/ Karlsruhe</td>
</tr>
<tr>
<td>HOT THERMIPol</td>
<td>DNA- Polymerase</td>
<td>SolisBiodyne/ Tartu</td>
</tr>
<tr>
<td>MgCl2</td>
<td>100mM</td>
<td>SolisBiodyne/ Tartu</td>
</tr>
<tr>
<td>SBE/ PEX- Primer</td>
<td>s. Tabelle 5, Liste der SBE- Primer</td>
<td>BioTez/ Berlin</td>
</tr>
<tr>
<td>Puffer C</td>
<td>Proprietär</td>
<td>SolisBiodyne/ Tartu</td>
</tr>
<tr>
<td>TE- Puffer für</td>
<td>10mM Tris; 1mM EDTA, DNA-</td>
<td>Applichem/ Darmstadt</td>
</tr>
</tbody>
</table>
Einleitung

| Molekularbiologie | DNA- und proteasefrei, pH 8,0 | Deutschland
| TERMIPol | DNA- Polymerase | SolisBiodyne/ Tartu Estland

Tabelle 30: Chemikalien für SBE/ PEX (Primerextentions- Reaktion)

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacou-dalloz</td>
<td>Armstulpen</td>
<td>VWR/ Darmstadt Deutschland</td>
</tr>
<tr>
<td>ThermoCooler Racks</td>
<td>Aufbewahrungskästen</td>
<td>Biozym/ Oldendorf Deutschland</td>
</tr>
<tr>
<td>Sekuroka</td>
<td>Einmalschutzkittel</td>
<td>Roth/ Karlsruhe Deutschland</td>
</tr>
<tr>
<td>Profi, Alfatex</td>
<td>Handschuhe</td>
<td>Sänger/ Schrozberg Deutschland</td>
</tr>
<tr>
<td>MultiGuard- Tips; easy load</td>
<td>Filterspitzen</td>
<td>Roth/ Karlsruhe Deutschland, Greiner Frickenhausen Deutschland</td>
</tr>
<tr>
<td>Save- Locks Tubes</td>
<td>Reaktionsgefäße 0,5ml</td>
<td>Eppendorf/ Hamburg Deutschland</td>
</tr>
<tr>
<td>Save- Locks Tubes</td>
<td>Reaktionsgefäße 1,5ml</td>
<td>Eppendorf/ Hamburg Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 31: Verbrauchsmaterialien für PEX

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy Mini</td>
<td>Mikrozentrifuge</td>
<td>Merck/ Darmstadt Deutschland</td>
</tr>
<tr>
<td>Eppendorf Research; Mikroliterpipetten Proline; Pipetman</td>
<td>Pipetten</td>
<td>Eppendorf/ Hamburg Deutschland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roth/ Karlsruhe Deutschland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gilson/ München Deutschland</td>
</tr>
<tr>
<td>GeneAmo PCR System 9600/ 2400</td>
<td>Thermocycler</td>
<td>Perkin Elmer/ Wellesley USA</td>
</tr>
<tr>
<td>Mastercycler Gradient</td>
<td>Thermocycler</td>
<td>Eppendorf/ Hamburg Deutschland</td>
</tr>
<tr>
<td>Vortex Genie II</td>
<td>Schüttler</td>
<td>Scientific Industries/ New York USA</td>
</tr>
</tbody>
</table>
Einleitung

York USA

Tabelle 32: Geräte für PEX

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung/ Zusammensetzung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>MilliPore-Wasser</td>
<td>Destiliertes, gefiltertes Wasser</td>
<td>MilliPore/ Schwalbach Deutschland</td>
</tr>
<tr>
<td>Genostrep 96 Kit 10x96</td>
<td>Waschpuffer 1; Waschpuffer 2; Bindepuffer</td>
<td>Bruker Daltronics/ Leipzig Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 33: Chemikalien für Aufreinigung von PEX-Produkten

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container für Multistep Pipette</td>
<td></td>
<td>Eppendorf/ Hamburg Deutschland</td>
</tr>
<tr>
<td>Klebefolie PCR Film</td>
<td></td>
<td>ABgene/ Villebon Sur Yvette Frankreich</td>
</tr>
<tr>
<td>MultiGuard-Tips; easy load</td>
<td>Filterspitzen</td>
<td>Roth/ Karlsruhe Deutschland, Greiner Frickenhausen Deutschland</td>
</tr>
<tr>
<td>Pipettierwannen</td>
<td></td>
<td>Biozym/ Oldendorf Deutschland</td>
</tr>
<tr>
<td>Streptavidin Coated MTP 96v-well-Plate</td>
<td>mit Streptavidin beschichtete 96 Platte</td>
<td>Bruker Daltronics/ Leipzig Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 34: Verbrauchsmaterialien für Aufreinigung von PEX-Produkten

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy Mini</td>
<td>Mikrozentrifuge</td>
<td>Merck/ Darmstadt Deutschland</td>
</tr>
<tr>
<td>MilliPore Anlage</td>
<td></td>
<td>MilliPore/ Schwalbach Deutschland</td>
</tr>
<tr>
<td>Eppendorf Research; Mikroliterpipetten Proline</td>
<td>Pipetten</td>
<td>Eppendorf/ Hamburg Deutschland</td>
</tr>
</tbody>
</table>
Tabelle 35: Geräte für Aufreinigung von PEX-Produkten

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma/ Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipetman</td>
<td></td>
<td>Roth/ Karlsruhe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>Concentrator 5301</td>
<td>Plattenzentrifuge</td>
<td>Gilson/ München</td>
</tr>
<tr>
<td>CL366</td>
<td>UV- Lampe</td>
<td>Deutschland</td>
</tr>
<tr>
<td>Vortex Genie II</td>
<td>Schüttler</td>
<td>Bruker/ Bremen</td>
</tr>
<tr>
<td>Multipette plus</td>
<td>Multistep Pipette</td>
<td>Scientific Industries/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New York USA</td>
</tr>
</tbody>
</table>

Ablauf: Streptavidinaufreinigung

- 4µl Bindepuffer in neue Streptavidinplatte
- Transferieren der Proben (16µl) auf Streptavidinplatte (also Endvolumen 20µl)
- 20min inkubieren
- 2x Waschen mit 40µl Waschpuffer 1
- 2x Waschen mit 40µl Waschpuffer 2
- 2x Waschen mit 60µl MilliPoreWasser
- Zugabe von 20 µl Elutionspuffer
- 15 min bestrahlen mit einer 366 nm UV Lampe
- Gründlich mischen
- 1µl auf mit 10 µg 3-Hydroxy-Picolinsäure und 1 µg di-Ammoniumhydrogencitrat beladenen Anchor Targets transferieren,
- staubfrei trocknen lassen (ca. 30 min)

8.1.6 Massenspektrometrie
Einleitung

Tabelle 36: Chemikalien für Massenspektrometrie

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container für Multistep-Pipetten</td>
<td></td>
<td>Eppendorf/ Hamburg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>Profi; Alfatex</td>
<td>Handschuhe</td>
<td>Sänger/ Schrozberg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>Klebefolie, PCR-Film</td>
<td></td>
<td>Sänger/ Schrozberg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>Kimwipes</td>
<td>Präzisionswischtücher</td>
<td>VWR/ Darmstadt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>MultiGuard-Tips; easy load</td>
<td>Filterspitzen</td>
<td>Roth/ Karlsruhe Deutschland,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greiner/ Frickenhausen Deutschland</td>
</tr>
<tr>
<td>Save- Locks Tubes</td>
<td>Reaktionsgefäße 1,5ml</td>
<td>Eppendorf/ Hamburg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>96 well Microplatten</td>
<td>Mikroliterplatten</td>
<td>Greiner Frickenhausen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
</tbody>
</table>

Tabelle 37: Verbrauchsmaterialien für Massenspektrometrie

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezeichnung</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALDI- TOF Autoflex</td>
<td>Massenspektrometer</td>
<td>Bruker Daltonics/ Leipzig</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>Galaxy Mini</td>
<td>Mikrozentrifuge</td>
<td>Merck/ Darmstadt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
<tr>
<td>Gerät</td>
<td>Hersteller/Ort</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>MilliPore Anlage</td>
<td>MilliPore/ Schwalbach Deutschland</td>
<td></td>
</tr>
<tr>
<td>Multipette plus</td>
<td>Multistep Pipette Eppendorf/ Hamburg Deutschland</td>
<td></td>
</tr>
<tr>
<td>Eppendorf Research;</td>
<td>Pipetten Eppendorf/ Hamburg Deutschland</td>
<td></td>
</tr>
<tr>
<td>Mikroliterpipetten Proline;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipetman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrator 5301</td>
<td>Plattenzentrifuge Eppendorf/ Hamburg Deutschland</td>
<td></td>
</tr>
<tr>
<td>MTP AnchorChip</td>
<td>Targetplatten Typ 600/ 384; Bruker Daltonics/ Leipzig Deutschland</td>
<td></td>
</tr>
<tr>
<td>Vortex Genie II</td>
<td>Schüttler Scientific Industries/ New York USA</td>
<td></td>
</tr>
<tr>
<td>CybioPureDisk</td>
<td>Pippetierrobotor Bruker Daltonics/ Leipzig Deutschland</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 38: Geräte für Massenspektrometrie
8.2 Verwendete SBE-Primer

<table>
<thead>
<tr>
<th>SBE-Primer ID</th>
<th>Primersequenz</th>
<th>Position des Photolinkers (bp)</th>
<th>Primerlänge (bp)</th>
<th>GC Gehalt (%)</th>
<th>Schmelztemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>bio CTG ACC ACT CT(L) CAA AAG GAG GTA</td>
<td>13</td>
<td>24</td>
<td>45,83</td>
<td>58,03</td>
</tr>
<tr>
<td>3001</td>
<td>bio CAA GCC CCC A(L)C CCC TCC</td>
<td>8</td>
<td>18</td>
<td>66,67</td>
<td>57,36</td>
</tr>
<tr>
<td>3002</td>
<td>bio CCA GGA GC(L) GTT CGG AGG</td>
<td>10</td>
<td>18</td>
<td>66,67</td>
<td>59,17</td>
</tr>
<tr>
<td>3003</td>
<td>bio TGG TCT G(L)G AAT CAT GAC CCA</td>
<td>14</td>
<td>21</td>
<td>47,62</td>
<td>58,75</td>
</tr>
<tr>
<td>3004</td>
<td>bio CCA CCC AAA TGT C(L)A GAG CCT</td>
<td>8</td>
<td>21</td>
<td>52,38</td>
<td>59,63</td>
</tr>
<tr>
<td>3005</td>
<td>bioGA GGA TAG AGA CAT ATG (L)GA GTC CAG</td>
<td>9</td>
<td>26</td>
<td>46,15</td>
<td>58,35</td>
</tr>
<tr>
<td>3006</td>
<td>bioCA GAT GAT GTT G(L)C GGT AAT GGA</td>
<td>11</td>
<td>23</td>
<td>43,48</td>
<td>60,88</td>
</tr>
<tr>
<td>3007</td>
<td>bioG GGG TGT CAG (L)TC GAT GTC TTC</td>
<td>12</td>
<td>22</td>
<td>54,55</td>
<td>58,93</td>
</tr>
<tr>
<td>3008</td>
<td>bio ACG (L)GG GGT GAG GTA CCG</td>
<td>15</td>
<td>18</td>
<td>66,67</td>
<td>58,12</td>
</tr>
<tr>
<td>3009</td>
<td>bio GCC TTC (L)TT ACT GGG CAG ACA</td>
<td>15</td>
<td>21</td>
<td>52,38</td>
<td>57,72</td>
</tr>
<tr>
<td>3010</td>
<td>bioT AGT GAT TTC C(L)T ACC TCC CAT CTT</td>
<td>14</td>
<td>25</td>
<td>40,00</td>
<td>58,52</td>
</tr>
<tr>
<td>3011</td>
<td>bioG CAG GGG CTT (L)CT TTT GAA CAC</td>
<td>12</td>
<td>22</td>
<td>54,55</td>
<td>61,23</td>
</tr>
<tr>
<td>3012</td>
<td>bioC CAT TTA TCC TTC (L)AT AAG GAG AGT TTC</td>
<td>15</td>
<td>28</td>
<td>35,71</td>
<td>61,02</td>
</tr>
<tr>
<td>3013</td>
<td>bio CAT TTC CAC TTT CTC (L)TC TAT TAT CTC TCT</td>
<td>15</td>
<td>30</td>
<td>33,33</td>
<td>59,80</td>
</tr>
<tr>
<td>3014</td>
<td>bioTG GTG CAC (L)AG GTC CAG AGA TAC</td>
<td>15</td>
<td>23</td>
<td>52,17</td>
<td>59,77</td>
</tr>
<tr>
<td>3015</td>
<td>bio TTG GGG (L)GA AAG GGG CGT</td>
<td>12</td>
<td>18</td>
<td>61,11</td>
<td>62,99</td>
</tr>
<tr>
<td>3016</td>
<td>bioA CTG CTT GGG (L)AG GGC CTG</td>
<td>9</td>
<td>19</td>
<td>63,16</td>
<td>60,43</td>
</tr>
<tr>
<td>3017</td>
<td>bioGA ATG CTT C(L)C CCG TCC TCC</td>
<td>11</td>
<td>20</td>
<td>60,00</td>
<td>59,76</td>
</tr>
<tr>
<td>3018</td>
<td>bioCC TTC A(L)G GAT GCT GCT GTC</td>
<td>14</td>
<td>20</td>
<td>60,00</td>
<td>58,33</td>
</tr>
<tr>
<td>3019</td>
<td>bioT CTA CAA GGG TAT GAA T(L)TT ACA CGG</td>
<td>8</td>
<td>25</td>
<td>40,00</td>
<td>58,38</td>
</tr>
<tr>
<td>3020</td>
<td>bioGA GCG AGA (L)AG GTC CAG AGA TAC</td>
<td>15</td>
<td>23</td>
<td>52,17</td>
<td>57,44</td>
</tr>
<tr>
<td>3021</td>
<td>bioT GTT GAG AGA GTC ATG T(L)C ACT CCA</td>
<td>8</td>
<td>25</td>
<td>44,00</td>
<td>59,58</td>
</tr>
<tr>
<td>3022</td>
<td>bioG GCT T(L)C TCA TCG ACG CCC</td>
<td>14</td>
<td>19</td>
<td>63,16</td>
<td>60,92</td>
</tr>
<tr>
<td>3023</td>
<td>bioTG CCA AAC AGA (L)AT CAA GAC CAT</td>
<td>12</td>
<td>23</td>
<td>39,13</td>
<td>59,66</td>
</tr>
<tr>
<td>3024</td>
<td>bioG GTT TTT AAG TAA (L)TT GTT ATG GGT TCC</td>
<td>15</td>
<td>28</td>
<td>32,14</td>
<td>61,03</td>
</tr>
<tr>
<td>3025</td>
<td>bio CAA GTG ACC TGT GTC AT(L)TTA AAC ATT</td>
<td>10</td>
<td>27</td>
<td>33,33</td>
<td>59,82</td>
</tr>
<tr>
<td>3026</td>
<td>bioGG TAC TGC TCT T(L)T TG TGG AAA TGG</td>
<td>11</td>
<td>23</td>
<td>43,48</td>
<td>58,51</td>
</tr>
</tbody>
</table>
Tabelle 39: verwendete SBE- Primer

| 3027 | bioG GGC TC(L) GGT TTC TGC CAA | 13 | 19 | 57,89 | 61,50 |

Einleitung
8.3 Genotypisierungsassays

Die Multiplexe sind durch unterschiedliche Farbunterlegung markiert.

<table>
<thead>
<tr>
<th>Multiplex-Nummer</th>
<th>PCR-Primer Nummer</th>
<th>Konzentration</th>
<th>PCR-Bedingungen</th>
<th>PCR-Annealing-Temperatur</th>
<th>SBE-Primer-Nummer</th>
<th>Menge SBE-Primer pro Ansatz</th>
<th>SBE-Annealing-Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF24</td>
<td>3063/3064</td>
<td>0,2 µM</td>
<td>AnsatzV = 10µl</td>
<td>40 x 58°C</td>
<td>3017</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>TF24</td>
<td>3065/3066</td>
<td>0,2 µM</td>
<td>HotFirePolTaq = 0,08U/µl</td>
<td>40 x 58°C</td>
<td>3018</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>TF24</td>
<td>3073/3074</td>
<td>0,2 µM</td>
<td></td>
<td>40 x 58°C</td>
<td>3022</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>QF8</td>
<td>3029/3030</td>
<td>0,2 µM</td>
<td>AnsatzV = 10µl</td>
<td>40 x 58°C</td>
<td>3000</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>QF8</td>
<td>3035/3036</td>
<td>0,2 µM</td>
<td>HotFirePolTaq = 0,08U/µl</td>
<td>40 x 58°C</td>
<td>3003</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>QF8</td>
<td>3039/3040</td>
<td>0,2 µM</td>
<td></td>
<td>40 x 58°C</td>
<td>3005</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>QF8</td>
<td>3045/3046</td>
<td>0,2 µM</td>
<td></td>
<td>40 x 58°C</td>
<td>3008</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>QF9</td>
<td>3041/3042</td>
<td>0,2 µM</td>
<td>AnsatzV = 10µl</td>
<td>40 x 58°C</td>
<td>3006</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>QF9</td>
<td>3057/3058</td>
<td>0,2 µM</td>
<td>HotFirePolTaq = 0,08U/µl</td>
<td>40 x 58°C</td>
<td>3014</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>QF9</td>
<td>3069/3070</td>
<td>0,2 µM</td>
<td></td>
<td>40 x 58°C</td>
<td>3020</td>
<td>6,6pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>QF9</td>
<td>3079/3080</td>
<td>0,2 µM</td>
<td></td>
<td>40 x 58°C</td>
<td>3025</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>PF15</td>
<td>3053/3054</td>
<td>0,2 µM</td>
<td>AnsatzV = 10µl</td>
<td>40 x 58°C</td>
<td>3012</td>
<td>6,6pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>PF15</td>
<td>3061/3062</td>
<td>0,2 µM</td>
<td>HotFirePolTaq = 0,08 U/µl</td>
<td>40 x 58°C</td>
<td>3016</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>PF15</td>
<td>3067/3068</td>
<td>0,4µM</td>
<td></td>
<td>40 x 58°C</td>
<td>3019</td>
<td>10pmol</td>
<td>44 x 60°C</td>
</tr>
<tr>
<td>PF15</td>
<td>3071/</td>
<td>0,2 µM</td>
<td></td>
<td>40 x 58°C</td>
<td>3021</td>
<td>3,3 pmol</td>
<td>44 x 60°C</td>
</tr>
</tbody>
</table>
Einleitung

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>V</th>
<th>HotFirePolTaq</th>
<th>°C</th>
<th>pmol</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3072</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3075/3076</td>
<td>AnsatzV = 10µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF16</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3031/3032</td>
<td>HotFirePolTaq = 0,08 U/µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF16</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3033/3034</td>
<td>AnsatzV = 10µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF16</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3037/3038</td>
<td>HotFirePolTaq = 0,08 U/µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF16</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3043/3044</td>
<td>AnsatzV = 10µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF16</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3047/3048</td>
<td>HotFirePolTaq = 0,08 U/µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7F3</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3049/3050</td>
<td>AnsatzV = 10µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7F3</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3051/3052</td>
<td>HotFirePolTaq = 0,08 U/µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7F3</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3055/3056</td>
<td>AnsatzV = 10µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7F3</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3059/3060</td>
<td>HotFirePolTaq = 0,08 U/µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7F3</td>
<td></td>
<td>0,3 µM</td>
<td>40</td>
<td>6,6</td>
<td>44</td>
</tr>
<tr>
<td>3077/3078</td>
<td>AnsatzV = 10µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7F3</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3081/3082</td>
<td>HotFirePolTaq = 0,08 U/µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7F3</td>
<td></td>
<td>0,2 µM</td>
<td>40</td>
<td>3,3</td>
<td>44</td>
</tr>
<tr>
<td>3083/3084</td>
<td>AnsatzV = 10µl</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 40: Übersicht über die PCR- und SBE-Bedingungen nach der Etablierung
8.4 Verteilung der Genotypen in der analysierten Kohorte

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>CYP1A1</td>
<td>t</td>
<td>c</td>
<td>2 (2.1%)</td>
<td>18 (18.6%)</td>
<td>77 (79.4%)</td>
<td>0 (0%)</td>
<td>15 (15.5%)</td>
<td>82 (84.5%)</td>
</tr>
<tr>
<td>3002</td>
<td>CYP1A1</td>
<td>t</td>
<td>c</td>
<td>9 (9.1%)</td>
<td>42 (42.4%)</td>
<td>48 (48.5%)</td>
<td>10 (10.1%)</td>
<td>48 (48.5%)</td>
<td>41 (41.4%)</td>
</tr>
<tr>
<td>3003</td>
<td>Cyp1B1</td>
<td>g</td>
<td>c</td>
<td>20 (20.6%)</td>
<td>38 (39.2%)</td>
<td>39 (40.2%)</td>
<td>20 (20.6%)</td>
<td>34 (35.1%)</td>
<td>43 (44.3%)</td>
</tr>
<tr>
<td>3004</td>
<td>CYP1B1</td>
<td>g</td>
<td>a</td>
<td>5 (5.1%)</td>
<td>31 (31.3%)</td>
<td>63 (63.6%)</td>
<td>7 (7.3%)</td>
<td>27 (28.1%)</td>
<td>62 (64.6%)</td>
</tr>
<tr>
<td>3005</td>
<td>CYP2B8</td>
<td>c</td>
<td>t</td>
<td>5 (5.2%)</td>
<td>28 (28.9%)</td>
<td>64 (66%)</td>
<td>4 (4.1%)</td>
<td>32 (33%)</td>
<td>61 (62.9%)</td>
</tr>
<tr>
<td>3006</td>
<td>CYP2B6</td>
<td>a</td>
<td>c</td>
<td>4 (4%)</td>
<td>28 (28.3%)</td>
<td>67 (67.7%)</td>
<td>5 (5.4%)</td>
<td>30 (32.6%)</td>
<td>57 (62%)</td>
</tr>
<tr>
<td>3008</td>
<td>CYP2E1</td>
<td>t</td>
<td>a</td>
<td>0 (0%)</td>
<td>30 (31.3%)</td>
<td>66 (68.8%)</td>
<td>1 (1.1%)</td>
<td>26 (27.7%)</td>
<td>67 (71.3%)</td>
</tr>
<tr>
<td>3009</td>
<td>CYP2E1</td>
<td>c</td>
<td>t</td>
<td>1 (1%)</td>
<td>37 (37.4%)</td>
<td>61 (61.6%)</td>
<td>5 (5.1%)</td>
<td>28 (28.6%)</td>
<td>65 (66.3%)</td>
</tr>
<tr>
<td>3010</td>
<td>CYP2C9</td>
<td>c</td>
<td>t</td>
<td>16 (16%)</td>
<td>53 (53%)</td>
<td>31 (31%)</td>
<td>15 (15.3%)</td>
<td>51 (52%)</td>
<td>32 (32.7%)</td>
</tr>
<tr>
<td>3011</td>
<td>CYP2C9</td>
<td>a</td>
<td>g</td>
<td>4 (4%)</td>
<td>22 (22%)</td>
<td>74 (74%)</td>
<td>5 (5.2%)</td>
<td>35 (36.1%)</td>
<td>57 (58.8%)</td>
</tr>
<tr>
<td>3012</td>
<td>CYP2C9</td>
<td>a</td>
<td>c</td>
<td>10 (10.9%)</td>
<td>47 (51.1%)</td>
<td>35 (38%)</td>
<td>8 (10.8%)</td>
<td>33 (44.6%)</td>
<td>33 (44.6%)</td>
</tr>
<tr>
<td>3013</td>
<td>CYP2C9</td>
<td>g</td>
<td>c</td>
<td>14 (14%)</td>
<td>60 (60%)</td>
<td>26 (26%)</td>
<td>20 (20.6%)</td>
<td>49 (50.5%)</td>
<td>28 (28.9%)</td>
</tr>
<tr>
<td>3014</td>
<td>CYP2C9</td>
<td>c</td>
<td>a</td>
<td>0 (0%)</td>
<td>8 (8.2%)</td>
<td>89 (91.8%)</td>
<td>0 (0%)</td>
<td>10 (11%)</td>
<td>81 (89%)</td>
</tr>
<tr>
<td>3016</td>
<td>CYP2D6</td>
<td>c</td>
<td>a</td>
<td>5 (5%)</td>
<td>38 (38%)</td>
<td>57 (57%)</td>
<td>11 (11.1%)</td>
<td>37 (37.4%)</td>
<td>51 (51.5%)</td>
</tr>
<tr>
<td>3017</td>
<td>CYP2D6</td>
<td>t</td>
<td>c</td>
<td>18 (18%)</td>
<td>41 (41%)</td>
<td>41 (41%)</td>
<td>12 (14%)</td>
<td>43 (50%)</td>
<td>31 (36%)</td>
</tr>
<tr>
<td>3018</td>
<td>CYP2D6</td>
<td>c</td>
<td>t</td>
<td>19 (19.2%)</td>
<td>38 (38.4%)</td>
<td>42 (42.4%)</td>
<td>9 (10.8%)</td>
<td>41 (49.4%)</td>
<td>33 (39.8%)</td>
</tr>
<tr>
<td>3019</td>
<td>CYP3A4</td>
<td>a</td>
<td>t</td>
<td>11 (11.2%)</td>
<td>6 (6.1%)</td>
<td>81 (82.7%)</td>
<td>1 (1.3%)</td>
<td>12 (15.4%)</td>
<td>65 (83.3%)</td>
</tr>
<tr>
<td>3020</td>
<td>CYP3A4</td>
<td>c</td>
<td>a</td>
<td>0 (0%)</td>
<td>8 (8.3%)</td>
<td>88 (91.7%)</td>
<td>0 (0%)</td>
<td>10 (11.2%)</td>
<td>79 (88.8%)</td>
</tr>
<tr>
<td>3022</td>
<td>CYP2A6</td>
<td>a</td>
<td>t</td>
<td>0 (0%)</td>
<td>3 (3%)</td>
<td>96 (97%)</td>
<td>0 (0%)</td>
<td>9 (9.3%)</td>
<td>88 (90.7%)</td>
</tr>
<tr>
<td>3023</td>
<td>CYP2A6</td>
<td>t</td>
<td>c</td>
<td>7 (7%)</td>
<td>40 (40%)</td>
<td>53 (53%)</td>
<td>5 (5.3%)</td>
<td>38 (40%)</td>
<td>52 (54.7%)</td>
</tr>
</tbody>
</table>
Einleitung

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3024</td>
<td>CYP2C19</td>
<td>t</td>
<td>c</td>
<td>2 (2%)</td>
<td>28 (28.6%)</td>
<td>68 (69.4%)</td>
<td>3 (3.3%)</td>
<td>23 (25.6%)</td>
<td>64 (71.1%)</td>
</tr>
<tr>
<td>3025</td>
<td>CYP2C19</td>
<td>c</td>
<td>g</td>
<td>2 (2%)</td>
<td>34 (34.3%)</td>
<td>63 (63.6%)</td>
<td>5 (5.3%)</td>
<td>24 (25.3%)</td>
<td>66 (69.5%)</td>
</tr>
<tr>
<td>3026</td>
<td>CYP2C19</td>
<td>t</td>
<td>c</td>
<td>20 (20%)</td>
<td>52 (52%)</td>
<td>28 (28%)</td>
<td>21 (21%)</td>
<td>53 (53%)</td>
<td>26 (26%)</td>
</tr>
<tr>
<td>3027</td>
<td>CYP2C19</td>
<td>t</td>
<td>c</td>
<td>0 (0%)</td>
<td>8 (8.1%)</td>
<td>91 (91.9%)</td>
<td>0 (0%)</td>
<td>11 (11.1%)</td>
<td>88 (88.9%)</td>
</tr>
</tbody>
</table>

Tabelle 41: Verteilung der Genotypen
8.5 Powerberechnung

<table>
<thead>
<tr>
<th></th>
<th>Minimal . detektiertes Quotenverhältniss (Risikoeffekt) (80% Power)</th>
<th>Minimale Allelfrequenzdifferenz (Risikoeffekt) (80% Power)</th>
<th>Maximal detektiertes Quotenverhältniss (protektiver Effekt) (80% Power)</th>
<th>Minimale Allelfrequenzdifferenz. (protektiver Effekt) (80% Power)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000_CYP1A1</td>
<td>2.42</td>
<td>9.2%</td>
<td>0.22</td>
<td>-6.0%</td>
</tr>
<tr>
<td>3002_CYP1A1</td>
<td>1.78</td>
<td>13.8%</td>
<td>0.53</td>
<td>-12.5%</td>
</tr>
<tr>
<td>3003_CYP1B1</td>
<td>1.76</td>
<td>13.9%</td>
<td>0.54</td>
<td>-13.0%</td>
</tr>
<tr>
<td>3004_CYP1B1</td>
<td>1.89</td>
<td>12.5%</td>
<td>0.45</td>
<td>-10.3%</td>
</tr>
<tr>
<td>3005_CYP2B6</td>
<td>1.90</td>
<td>12.4%</td>
<td>0.45</td>
<td>-10.1%</td>
</tr>
<tr>
<td>3006_CYP2B6</td>
<td>1.90</td>
<td>12.5%</td>
<td>0.45</td>
<td>-10.2%</td>
</tr>
<tr>
<td>3008_CYP2E1</td>
<td>2.02</td>
<td>11.3%</td>
<td>0.39</td>
<td>-8.7%</td>
</tr>
<tr>
<td>3009_CYP2E1</td>
<td>1.92</td>
<td>12.3%</td>
<td>0.44</td>
<td>-9.9%</td>
</tr>
<tr>
<td>3010_CYP2C9</td>
<td>1.76</td>
<td>14.0%</td>
<td>0.55</td>
<td>-13.3%</td>
</tr>
<tr>
<td>3011_CYP2C9</td>
<td>1.86</td>
<td>12.7%</td>
<td>0.47</td>
<td>-10.7%</td>
</tr>
<tr>
<td>3012_CYP2C9</td>
<td>1.78</td>
<td>13.7%</td>
<td>0.53</td>
<td>-12.4%</td>
</tr>
<tr>
<td>3013_CYP2C9</td>
<td>1.76</td>
<td>14.0%</td>
<td>0.56</td>
<td>-13.6%</td>
</tr>
<tr>
<td>3014_CYP2C9</td>
<td>2.73</td>
<td>8.3%</td>
<td>0.12</td>
<td>-4.9%</td>
</tr>
<tr>
<td>3016_CYP2D6</td>
<td>1.80</td>
<td>13.5%</td>
<td>0.51</td>
<td>-12.0%</td>
</tr>
<tr>
<td>3020_CYP3A4</td>
<td>2.70</td>
<td>8.3%</td>
<td>0.12</td>
<td>-4.9%</td>
</tr>
<tr>
<td>3022_CYP2A6</td>
<td>2.91</td>
<td>7.8%</td>
<td>0.06</td>
<td>-4.4%</td>
</tr>
<tr>
<td>3023_CYP2A6</td>
<td>1.84</td>
<td>13.0%</td>
<td>0.49</td>
<td>-11.1%</td>
</tr>
<tr>
<td>3024_CYP2C19</td>
<td>1.99</td>
<td>11.6%</td>
<td>0.40</td>
<td>-9.0%</td>
</tr>
<tr>
<td>3025_CYP2C19</td>
<td>1.96</td>
<td>11.9%</td>
<td>0.42</td>
<td>-9.4%</td>
</tr>
<tr>
<td>3026_CYP2C19</td>
<td>1.76</td>
<td>13.9%</td>
<td>0.56</td>
<td>-13.8%</td>
</tr>
<tr>
<td>3027_CYP2C19</td>
<td>2.72</td>
<td>8.3%</td>
<td>0.12</td>
<td>-4.9%</td>
</tr>
</tbody>
</table>

8.6 geschlechtsspezifische Analysen

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>SNP ID</th>
<th>Gen</th>
<th>Seltenes Allel</th>
<th>Seltenes Allel transmittiert / nicht transmittiert</th>
<th>TDT p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>weiblich</td>
<td>3003</td>
<td>CYP1B1</td>
<td>g</td>
<td>43 / 37</td>
<td>0.503</td>
</tr>
<tr>
<td>weiblich</td>
<td>3004</td>
<td>CYP1B1</td>
<td>g</td>
<td>29 / 29</td>
<td>1.000</td>
</tr>
<tr>
<td>weiblich</td>
<td>3020</td>
<td>CYP3A4</td>
<td>c</td>
<td>7 / 8</td>
<td>0.798</td>
</tr>
<tr>
<td>männlich</td>
<td>3003</td>
<td>CYP1B1</td>
<td>g</td>
<td>5 / 7</td>
<td>0.570</td>
</tr>
<tr>
<td>männlich</td>
<td>3004</td>
<td>CYP1B1</td>
<td>g</td>
<td>1 / 3</td>
<td>0.321</td>
</tr>
<tr>
<td>männlich</td>
<td>3020</td>
<td>CYP3A4</td>
<td>c</td>
<td>0 / 1</td>
<td>0.321</td>
</tr>
</tbody>
</table>

Tabelle 43: Verteilung geschlechtsspezifische Gene/ SNPs

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>SNP ID</th>
<th>Gen</th>
<th>Seltenes Allel</th>
<th>Allelfrequenz in den Fällen</th>
<th>Allelfrequenz in den Kontrollen</th>
<th>Odds ratio (95% Konfidenzintervall)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>weiblich</td>
<td>3003</td>
<td>CYP1B1</td>
<td>g</td>
<td>39%</td>
<td>36%</td>
<td>1.16 (0.7-1.8)</td>
<td>0.499</td>
</tr>
<tr>
<td>weiblich</td>
<td>3004</td>
<td>CYP1B1</td>
<td>g</td>
<td>21%</td>
<td>21%</td>
<td>1.01 (0.6-1.7)</td>
<td>0.989</td>
</tr>
<tr>
<td>weiblich</td>
<td>3020</td>
<td>CYP3A4</td>
<td>c</td>
<td>5%</td>
<td>6%</td>
<td>0.83 (0.3-2.2)</td>
<td>0.707</td>
</tr>
<tr>
<td>männlich</td>
<td>3003</td>
<td>CYP1B1</td>
<td>g</td>
<td>54%</td>
<td>46%</td>
<td>1.4 (0.4-4.3)</td>
<td>0.570</td>
</tr>
<tr>
<td>männlich</td>
<td>3004</td>
<td>CYP1B1</td>
<td>g</td>
<td>17%</td>
<td>23%</td>
<td>0.68 (0.2-2.9)</td>
<td>0.718</td>
</tr>
<tr>
<td>männlich</td>
<td>3020</td>
<td>CYP3A4</td>
<td>c</td>
<td>0%</td>
<td>6%</td>
<td>1 (1-1)</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Tabelle 44: Allelfrequenzen in Fällen und Kontrollen bei geschlechtsspezifischer Analyse
<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>SNP ID</th>
<th>Gen</th>
<th>Seltenes Allel</th>
<th>Additives Modell</th>
<th>Dominantes Modell</th>
<th>Rezessives Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>weiblich</td>
<td>3003</td>
<td>CYP1B1</td>
<td>g</td>
<td>0.556</td>
<td>1.21 (0.7-2.2)</td>
<td>1.16 (0.5-2.5)</td>
</tr>
<tr>
<td>weiblich</td>
<td>3004</td>
<td>CYP1B1</td>
<td>g</td>
<td>0.990</td>
<td>1.07 (0.6-2)</td>
<td>0.852</td>
</tr>
<tr>
<td>männlich</td>
<td>3020</td>
<td>CYP3A4</td>
<td>c</td>
<td>0.698</td>
<td>0.82 (0.3-2.2)</td>
<td>0.697</td>
</tr>
<tr>
<td>männlich</td>
<td>3003</td>
<td>CYP1B1</td>
<td>g</td>
<td>0.577</td>
<td>2.5 (0.4-17.3)</td>
<td>0.398</td>
</tr>
<tr>
<td>männlich</td>
<td>3004</td>
<td>CYP1B1</td>
<td>g</td>
<td>0.624</td>
<td>0.88 (0.2-4.9)</td>
<td>1.000</td>
</tr>
<tr>
<td>männlich</td>
<td>3020</td>
<td>CYP3A4</td>
<td>c</td>
<td>0.270</td>
<td>1 (1-1)</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Tabelle 45: additives Modell der geschlechtsspezifischen Analyse
8.7 Vergleich mit genomweiten Analysen

<table>
<thead>
<tr>
<th>GENE level</th>
<th>min p-Wert WTCCC[3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2C9</td>
<td>0.003</td>
</tr>
<tr>
<td>CYP1A1</td>
<td>0.010</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>0.018</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>0.020</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>0.029</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>0.033</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>0.041</td>
</tr>
<tr>
<td>CYP1B1</td>
<td>0.078</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>0.114</td>
</tr>
</tbody>
</table>

Tabelle 46: Vergleich mit genomweiten Studien

WTCCC = Wellcome Trust Case Control Consortium
Einleitung

Tabelle 47: Vergleich mit genomweiten Studien

<table>
<thead>
<tr>
<th>AG Ahner t ID</th>
<th>Gen</th>
<th>rs-Nummer</th>
<th>Chr</th>
<th>NARAC¹/ EIRA²+WTCCC min p-Wert SNP level</th>
<th>NARAC/ EIRA+ WTCCC³ min p-Wert GENE level</th>
<th>Signifikant in unserer untersuchten Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>CYP1A1</td>
<td>rs4646421</td>
<td>15</td>
<td>0.010</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>3002</td>
<td>CYP1A1</td>
<td>rs2470893</td>
<td>15</td>
<td>0.171</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>3004</td>
<td>CYP1B1</td>
<td>rs162555</td>
<td>2</td>
<td>0.120</td>
<td>0.078</td>
<td></td>
</tr>
<tr>
<td>3005</td>
<td>CYP2B6</td>
<td>rs2054675</td>
<td>19</td>
<td>0.772</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>3006</td>
<td>CYP2B6</td>
<td>rs3745274</td>
<td>19</td>
<td>no data</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>3008</td>
<td>CYP2E1</td>
<td>rs2070673</td>
<td>10</td>
<td>no data</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>3009</td>
<td>CYP2E1</td>
<td>rs2515642</td>
<td>10</td>
<td>0.252</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>3010</td>
<td>CYP2C9</td>
<td>rs4918758</td>
<td>10</td>
<td>no data</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>3011</td>
<td>CYP2C9</td>
<td>rs1799853</td>
<td>10</td>
<td>0.014</td>
<td>0.003</td>
<td>x</td>
</tr>
<tr>
<td>3013</td>
<td>CYP2C9</td>
<td>rs1505</td>
<td>10</td>
<td>0.070</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>3014</td>
<td>CYP2C9</td>
<td>rs1057910</td>
<td>10</td>
<td>0.042</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>3016</td>
<td>CYP2D6</td>
<td>rs742086</td>
<td>22</td>
<td>0.140</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>3020</td>
<td>CYP3A4</td>
<td>rs4646450</td>
<td>7</td>
<td>0.116</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>3022</td>
<td>CYP2A6</td>
<td>rs1801272</td>
<td>19</td>
<td>0.580</td>
<td>0.114</td>
<td>x</td>
</tr>
<tr>
<td>3023</td>
<td>CYP2A6</td>
<td>rs1137115</td>
<td>19</td>
<td>no data</td>
<td>0.114</td>
<td></td>
</tr>
<tr>
<td>3024</td>
<td>CYP2C19</td>
<td>rs4244285</td>
<td>10</td>
<td>0.449</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>3025</td>
<td>CYP2C19</td>
<td>rs1853205</td>
<td>10</td>
<td>0.449</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>3026</td>
<td>CYP2C19</td>
<td>rs4917623</td>
<td>10</td>
<td>0.119</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>3027</td>
<td>CYP2C19</td>
<td>rs3758581</td>
<td>10</td>
<td>0.802</td>
<td>0.018</td>
<td></td>
</tr>
</tbody>
</table>

¹ NARAC = North American Rheumatoid Arthritis Consortium
² EIRA = Swedish Epidemiological Investigation of Rheumatoid Arthritis
³ WTCCC = Wellcome Trust Case Control Consortium
Einleitung

<table>
<thead>
<tr>
<th>Gen</th>
<th>AG Ahnert ID</th>
<th>rs-Nummer</th>
<th>Minimaler p-Wert in genomweiten Studien</th>
<th>Signifikant in unserer untersuchten Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP1A1</td>
<td>3000</td>
<td>rs4646421</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>CYP1A1</td>
<td>3002</td>
<td>rs2470893</td>
<td>0.171</td>
<td></td>
</tr>
<tr>
<td>CYP1B1</td>
<td>3004</td>
<td>rs162555</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>CYP2B6</td>
<td>3005</td>
<td>rs2054675</td>
<td>0.772</td>
<td></td>
</tr>
<tr>
<td>CYP2B6</td>
<td>3006</td>
<td>rs3745274</td>
<td>no data</td>
<td></td>
</tr>
<tr>
<td>CYP2E1</td>
<td>3008</td>
<td>rs2070673</td>
<td>no data</td>
<td></td>
</tr>
<tr>
<td>CYP2E1</td>
<td>3009</td>
<td>rs2515642</td>
<td>0.252</td>
<td></td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3010</td>
<td>rs4918758</td>
<td>no data</td>
<td></td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3011</td>
<td>rs1799853</td>
<td>0.014</td>
<td>x</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3013</td>
<td>rs1505</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>CYP2C9</td>
<td>3014</td>
<td>rs1057910</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>CYP2D6</td>
<td>3016</td>
<td>rs742086</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>CYP3A4</td>
<td>3020</td>
<td>rs4646450</td>
<td>0.116</td>
<td></td>
</tr>
<tr>
<td>CYP2A6</td>
<td>3022</td>
<td>rs1801272</td>
<td>0.58</td>
<td>x</td>
</tr>
<tr>
<td>CYP2A6</td>
<td>3023</td>
<td>rs1137115</td>
<td>no data</td>
<td></td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3024</td>
<td>rs4244285</td>
<td>0.449</td>
<td></td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3025</td>
<td>rs1853205</td>
<td>0.449</td>
<td></td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3026</td>
<td>rs4917623</td>
<td>0.119</td>
<td></td>
</tr>
<tr>
<td>CYP2C19</td>
<td>3027</td>
<td>rs3758581</td>
<td>0.802</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 48: Signifikanz
9 LITERATURVERZEICHNIS

Einleitung

Einleitung

Einleitung

Einleitung

Einleitung

(107) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447(7145):661-678.

10 **DANKSAGUNG**

An dieser Stelle möchte ich mich bei allen Personen bedanken, die mich bei der Anfertigung dieser Arbeit unterstützt haben.

Recht herzlich möchte ich Herrn Professor Doktor F. Emmrich danken, der mir die Möglichkeit gegeben hat diese wissenschaftliche Arbeit unter seiner Leitung anzufertigen.
Einleitung

11 SELBSTSTÄNDIGKEITSERKLÄRUNG

1Erklärung über die eigenständige Abfassung der Arbeit

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig und ohne unzulässige Hilfe oder Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Ich versichere, dass
Einleitung

Dritte von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen, und dass die vorgelegte Arbeit weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde zum Zweck einer Promotion oder eines anderen Prüfungsverfahrens vorgelegt wurde. Alles aus anderen Quellen und von anderen Personen übernommene Material, das in der Arbeit verwendet wurde oder auf das direkt Bezug genommen wird, wurde als solches kenntlich gemacht. Insbesondere wurden alle Personen genannt, die direkt an der Entstehung der vorliegenden Arbeit beteiligt waren.

Datum ..
Unterschrift

12 Lebenslauf

Name Maren Krause, geboren Möckel
Adresse Im Weiertsfeld 31
77948 Friesenheim
Telefon 07821/ 549164
geboren 02.09.1978
Geburtsort Bernburg
<table>
<thead>
<tr>
<th>Einleitung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Staatsangehörigkeit</th>
<th>deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familienstand</td>
<td>verheiratet, ein Kind</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>schulische Ausbildung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991- 1997</td>
</tr>
<tr>
<td>Gymnasium „Hermann Hellriegel“, Bernburg</td>
</tr>
<tr>
<td>Abschluss: Abitur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berufsausbildung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997- 2000</td>
</tr>
<tr>
<td>Gesundheits- und Krankenpflegerin, SALUS gGmbH, Bernburg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hochschulausbildung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000- 2007</td>
</tr>
<tr>
<td>Studium der Humanmedizin an der Universität Leipzig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Praktisches Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>02- 10/ 2006</td>
</tr>
<tr>
<td>Chirurgie und Innere Medizin, St. Elisabeth-Krankenhaus, Leipzig</td>
</tr>
<tr>
<td>02/ 2007-04/ 2007</td>
</tr>
<tr>
<td>Labormedizin im Universitätsklinikum Leipzig</td>
</tr>
<tr>
<td>04- 05/ 2007</td>
</tr>
<tr>
<td>Strahlentherapie im Universitätsklinikum Leipzig</td>
</tr>
<tr>
<td>10/ 2007</td>
</tr>
<tr>
<td>Abschluss: Staatsexamen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ärztliche Tätigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>seit 2008</td>
</tr>
<tr>
<td>Facharztweiterbildung</td>
</tr>
<tr>
<td>Anästhesiologie am Klinikum Offenburg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elternzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011- 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Promotion</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/ 2004</td>
</tr>
<tr>
<td>Beginn Promotion</td>
</tr>
<tr>
<td>01/ 2005 – 07/ 2005</td>
</tr>
<tr>
<td>studentische Hilfskraft im Institut für klinische Immunologie und Transfusionsmedizin der Universität Leipzig</td>
</tr>
</tbody>
</table>
Einleitung