Reducing Metal Contamination in Cu-64 production
S. Ponigera,b, H. Tochon-Danguya, J. Sachinidisa, K. Altc, C. Hagemeyerc, A. Scotta,b

aCentre for PET, Austin Health, Melbourne, Australia
bLudwig Institute of Cancer Research, Melbourne branch, Australia
cHeart & Diabetes Institute, Baker IDI, Melbourne, Australia

Introduction
In the past several years there has been a growing interest in the development of radiopharmaceuticals labeled with metallic radionuclides (1). Of particular interest is the positron emitter 64Cu ($t_{1/2} = 12.7$ h) for molecular imaging of small molecules as well as peptides and antibodies (2).

This has led us to the recent implementation of a solid target production facility using commercially available target irradiation station and chemistry modules. Using the 64Ni(p,n)64Cu nuclear reaction, routine production of 64Cu was achieved with an average E.O.B. yield of 58.8 MBq (1.59 mCi)/µAh at 13.0 MeV, however purification of 64Cu has proven to be problematic; with several metallic contaminants compromising subsequent radiolabeling.

We report in this work, the step by step procedure which led us to the successful production of low metal contaminant 64Cu with high specific activity and high labeling efficiency.

Material and Methods

Detailed implementation of our solid target was reported earlier (3). A Nirta Solid Target from IBA was coupled to our 18/9 cyclotron using a 2-meter external beam line. Typical irradiation parameters were 13.0 MeV and 14.9 MeV at 35 µA for 4-6 hours with 64Ni platings ranging from 10-60 µm thickness and 6-12 mm Ø. A pneumatic solid target transfer system (STTS) designed by TEMA was used to deliver the irradiated target disks to a dedicated hotcell. Two separate modules developed by IBA (Pinctada metal) were used for 1) electroplating 64Ni onto a Ag disk and 2) acid dissolution and purification of the irradiated target material (see pictures 1 and 2).

1) Electroplating: Highly enriched (>99%) 64Ni (100mg) was dissolved in 10mL 12M HCl (Sigma TraceSELECT) and refluxed for >8 hours under vacuum with gentle heating in a PFA round bottom flask until all 64Ni had dissolved. Ag disks were prepared for electroplating by fine sanding, etched in 20% HNO$_3$ for 5min under ultrasound to dissolve any traces of oxides and then rinsed with D.I. water and acetone. The electroplating cell was filled with the 64Ni solution (1-2mL) and completed to 55mL with NH$_4$OH. Electroplating of 64Ni onto a 1mm thick 24mm diameter Ag disk was carried out at 3.0-5.0mA using a chopped saw tooth current for ~24 hours (Picture 1 A & B).

2) Dissolution/purification: After irradiation, the target disk was left to decay for ~10 hours before processing to reduce the amount of co-produced short lived isotopes. The irradiated disk was then loaded into the Pinctada dissolution module (Picture 2) and the 64Ni plating dissolved in recirculation 3mL 12M HCl at 70-80°C for 15-20 minutes.

The dissolved solution was then loaded onto an AG 1-X8 anion exchange cartridge and then washed with 4mL 6M and 2mL 4M HCl with the wash fractions collected separately to enable recycling of 64Ni for further productions.
64Cu was eluted from the cartridge with 0.1M HCl in ~1.5mL.

Results and Conclusion

Initial 64Cu purifications following the manufacturers recommended method show that despite 64Ni being plated directly on an Ag disk, little Ag contamination was observed. However, high levels of Cu, Fe and Zn metal contaminants were observed (see Table 1, ID 1). After several productions, visual inspection of the module quickly revealed that the copper heater block used for heating the back of the Ag target disk may have been the cause of our contaminations as it was heavily corroded. Replacing the heater block with a PEEK heater block drastically reduced the levels of Cu and Fe contaminants.

Unfortunately, unusually high levels of Zn were still observed regardless of the stringent conditions and ultrapure reagents used during the processing (see Table 1, ID 5). In our quest for answers, ICP-MS analysis of the 64Ni plating solution as well as critical stock reagents such as Milli-Q water (18 MΩ cm) and 30% HCl TraceSelect Ultra (Sigma) was performed (see Table 1, ID 2,3,4). The results were surprising, with high levels of Cu found not only in the 64Ni plating solution, but as well in the HCl TraceSelect Ultra.

It has been reported in the literature (5,6) that most glass contains contaminating metals, including Zn that could leach into solution and we hypothesized that the Pinctada’s glass bottles used to store the reagents, especially concentrated acidic solutions were the source of Zn contamination and all glass bottles were replaced by LDPE or PFA types. Our hypothesis was confirmed by subsequent ICP-MS analysis of fresh samples of HCl TraceSelect Ultra and the 64Ni plating solution prepared/stored in plastic containers (see Table 1, ID 6,7). We also confirmed by ICP-MS analysis that no contamination occurred when performing a non-radioactive dissolution/purification sequence on the Pinctada module using a blank PTFE target disk in conjunction with the change to plastic reagent storage bottles (see Table 1, ID 8).

Initially the purification protocol was modified as described by Ometakova et al. (7) to help reduce the co-elution of Zn contaminants with the 64Cu from the AG1-X8 resin. Unfortunately, this change resulted in a significant amount of 64Cu eluting from the resin during the resin washing steps, so that protocol was abandoned and the protocol as described by Thieme et al. (8) was adopted. By modifying the AG1-X8 resin washing protocol and eluting the 64Cu from the column with 0.1M HCl rather than Milli-Q water, we were able to further reduce metal contaminants especially Zn (see Table 1, ID 9).

Routine production of 64Cu was achieved with an average E.O.B. production yield of 58.8 MBq (1.59 mCi)/µAh at 13.0 MeV. Typical irradiations at 13.0MeV and 36 µA for 3-4 hours resulted in the average recovery of 3.5 GBq (95 mCi) of purified 64Cu at E.O.S.. ICP-MS/AES shows that during the course of these experiments, the true specific activity of 64Cu increased from as low as 0.44 GBq/µmol (12 mCi/µmol) of Cu (n=2, Table 1, ID 1) to 24 GBq/µmol (649 mCi/µmol) of Cu (n=7, Table 1, ID 5) and finally to 148 GBq/µmol (4412 mCi/µmol) of Cu (n=3, Table 1, ID 9). In the same time, the effective specific activity increased from 1.1 ± 0.74 MBq (0.03 ± 0.02 mCi) per 20 µg of...
Table 1. ICP-MS metal analysis and corresponding specific activity of Cu scFv-MeCOSar64Cu before optimization, to 3.7 ± 0.3 MBq (0.1 ± 0.01 mCi) per 20 µg of scFv-MeCOSar64Cu after optimization of the procedures.

In conclusion, a significant reduction in Cu, Fe and Zn contaminants was achieved when processing 64Cu using the Pinctada module: i) after replacement of the Cu heater block; ii) after elimination of glass reagent storage containers from the Pinctada module and procedures during preparation of the 64Ni plating solution and iii) after implementation of a new purification protocol (8). Introduction of a 6M HCl wash-up cycle of the module prior to the dissolution procedure was also effective. However in recent 64Cu productions slightly elevated Ag levels have been observed and are under investigation (see Table 1, ID 9).

References

Acknowledgements

This research was undertaken using the “Solid Target Laboratory, an ANSTO-Austin-LICR Partnership”.

<table>
<thead>
<tr>
<th>ID</th>
<th>Sample Description</th>
<th>ICP-MS / ICP-AES Results</th>
<th>S.A. Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial Cu-64 productions (avg.; n=2)</td>
<td>0.0215 5.5524 7.8471 0.9322 0.3199 19.3364</td>
<td>0.44 (12)</td>
</tr>
<tr>
<td>2</td>
<td>Stock reagent, 30% HCl TraceSelect Ultra (Sigma), stored in glass bottle</td>
<td>0.0008 0.0135 0.1125 0.0075 0.0203 21.7500</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>Milli-Q water (18MΩ cm-1), stored in glass bottle</td>
<td>0.0001 0.0001 0.0050 0.0010 0.0001 0.0060</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>Ni-64 plating solution, prepared with/stored in glass bottle</td>
<td>0.0100 0.5000 0.5000 11000.0 0.6500 83.0000</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>Cu-64 productions, replaced target disk heater block (Cu to PEEK) (avg.; n=7)</td>
<td>0.0101 2.3898 0.7159 1.0373 0.1078 40.7143</td>
<td>24 (649)</td>
</tr>
<tr>
<td>6</td>
<td>Stock reagent, 30% HCl TraceSelect Ultra (Sigma), stored in LDPE/PFA bottle</td>
<td>0.0008 0.0008 0.0375 0.0075 0.0458 0.0075</td>
<td>NA</td>
</tr>
<tr>
<td>7</td>
<td>Ni-64 plating solution, prepared with/stored in LDPE/PFA containers</td>
<td>0.0060 0.0180 0.3000 3.1800 0.4920 0.0600</td>
<td>NA</td>
</tr>
<tr>
<td>8</td>
<td>Pinctada module non-radioactive contamination test with blank PTFE target disk</td>
<td>0.0009 0.0891 0.2182 0.0182 0.0173 0.0909</td>
<td>NA</td>
</tr>
<tr>
<td>9</td>
<td>Cu-64 productions, LDPE/PFA reagent storage bottles, revised purification protocol (avg.; n=3)</td>
<td>0.0150 0.5450 0.8000 0.1500 2.3300 1.0000</td>
<td>148 (4412)</td>
</tr>
</tbody>
</table>