„Ein elementselektiver Detektor für die Gaschromatographie auf der Basis eines miniaturisierten kapazitiv stabilisierten Plasmas“

Von der Fakultät für Chemie und Physik
der Technischen Universität Bergakademie Freiberg
genehmigte

DISSERTATION
zur Erlangung des akademischen Grades

doctor rerum naturalium
Dr. rer. nat.

vorgelegt
von Diplomchemiker Frank Martin

geboren am 25.10.1967 in Karl-Marx-Stadt

Gutachter:
Herr Prof. Dr. rer. nat. Matthias Otto, Freiberg
Herr O. Univ.-Prof. Dr. Ing. Günther Knapp, Graz
Herr Prof. Dr. rer. nat. Helmut Müller, Merseburg

Tag der Verleihung: 19.10.2001
1. Einleitung .. 3

2. Grundlagen .. 5
 2.1 Plasmen als Anregungsquelle in der Analytischen Chemie .. 5
 2.1.1 Allgemeines .. 5
 2.1.2 Indukтив gekoppeltes Plasma ... 7
 2.1.2.2 Mikrowellenplasmen .. 8
 2.1.2.4 Glimmentladungen .. 9
 2.1.2.5 Stabilisiertes kapazitives Plasma ... 9
 2.1.2.6 µ-ESD .. 10
 2.2 Plasmen als elementselektive Detektoren in der Gaschromatographie 11
 2.2.1 Anforderungen an einen GC – Detektor ... 11
 2.2.2 Elementselective Detektoren ... 12
 2.2.3 ESDs im Vergleich mit anderen GC – Detektoren .. 16
 2.3 Die optische Erfassung der Atomlinien ... 17
 2.3.1 Optische Spektrometer .. 17
 2.4 Interferenzen bei der Atomemissionsdetektion ... 24
 2.4.1 Chemische Interferenzen ... 24
 2.4.2 Physikalische Interferenzen ... 24
 2.4.3 Spektrale Interferenzen ... 25
 2.5 Interpretation der Meßdaten und Datenverarbeitung ... 25
 2.5.1 Allgemeines ... 25
 2.5.2 Glättung von Rohdaten ... 26
 2.5.3 Untergrundkorrektur ... 29
 2.5.4 Charakterisierung wichtiger analytischer Kenngrößen 31

3 Experimenteller Teil ... 34
 3.1 Charakterisierung des µ-ESDs .. 34
 3.1.1 Modell 1 ... 34
 3.1.2 Modell 2 ... 37
 3.2 HP – AED ... 39
 3.3 Gaschromatographie ... 41
 3.4 Chemikalien ... 42

4 Ergebnisse .. 44
 4.1 Atomemissionsspektren der Elemente C, F, Cl, Br und S im nahen Infrarot (NIR). 44
 4.2 Optimierung wichtiger Betriebsparameter für den µ-ESD ... 48
 4.2.1 Allgemeines .. 48
 4.2.2 Plasmagasfluß und Sauerstoff-Zumischung ... 49
 4.2.3 Wasserstoff-Zumischung .. 66
 4.3 Untergrundkorrektur .. 68
 4.3.1 Überblick ... 68
 4.3.2 Einfache Untergrundkorrektur .. 69
4.3.3 Korrektur mit Mehrkanalfiltern ... 75
4.3.4 Korrektur chemischer Interferenzen .. 79

4.4 Kohlenstoffdetektion als Möglichkeit zur nichtselektiven Detektion 82

4.5 Bestimmung analytischer Kenngrößen ... 83

4.6 Vergleich des µ-ESDs mit anderen GC – Detektoren 87
 4.6.1 Atomemissionsdetektor von HP .. 87
 4.6.2 Elektroneneinfangdetektor ... 91

5 Praktischer Einsatz: Bestimmung chlorierter Verbindungen in Sedimenten 93

6 Zusammenfassung und Ausblick ... 100

Literatur ... 102

Anhang
I Zusammensetzung des AED-Testmixes der Firma Hewlett Packard I-1
II Berechnung der NWG und BEC für den µ-ESD: zugrunde liegende Daten II-2
III Optimierung der Betriebsparameter der µ-ESDs: Residuen III-4
IV Vergleich von NWG und Selektivität: Arbeitsbedingungen von HP-AED und µ-ESD ... IV-7
<table>
<thead>
<tr>
<th>Tabellenverzeichnis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab 1</td>
<td>Betriebsparameter des µ-ESDs (Modell 1) .. 35</td>
</tr>
<tr>
<td>Tab 2</td>
<td>Betriebsparameter des µ-ESDs (Modell 2) .. 38</td>
</tr>
<tr>
<td>Tab 3</td>
<td>Kenndaten des HP-AEDs .. 41</td>
</tr>
<tr>
<td>Tab 4</td>
<td>Beschreibung der verwendeten GC-Säulen .. 41</td>
</tr>
<tr>
<td>Tab 5</td>
<td>Zusammensetzung der Standardlösung HP-AED 1 (Auszug) ... 42</td>
</tr>
<tr>
<td>Tab 6</td>
<td>Zusammensetzung der Standardlösung EPA Cl-Pesticide Mix 2 von Ehrenstorfer GmbH (Auszug) ... 42</td>
</tr>
<tr>
<td>Tab 7</td>
<td>Auszug aus den NIST-Tabellen für die Elemente Br, C, Cl, F und S 44</td>
</tr>
<tr>
<td>Tab 8</td>
<td>Relative Intensitäten wichtiger Emissionslinien im NIR ... 48</td>
</tr>
<tr>
<td>Tab 9</td>
<td>Für die Optimierung von Empfindlichkeit und Selektivität der Brombestimmung variierte Gasflüsse .. 49</td>
</tr>
<tr>
<td>Tab 10</td>
<td>Zentral zusammengesetzter Versuchsplan für die Untersuchung von zwei Einflußgrößen ... 59</td>
</tr>
<tr>
<td>Tab 11</td>
<td>Plasma zusammensetzungen für die Untersuchung des Einflusses von Wasserstoff auf die Detektionseigenschaften des µ-ESDs .. 66</td>
</tr>
<tr>
<td>Tab 12</td>
<td>Wertetabelle der in Abbildung 40 dargestellten Funktion .. 72</td>
</tr>
<tr>
<td>Tab 13</td>
<td>Vergleich der einfachen mit der Mehrkanaluntergrundkorrektur 78</td>
</tr>
<tr>
<td>Tab 14</td>
<td>Zusammenstellung der untergrundequivalenten Konzentrationen und der Nachweisgrenzen der untersuchten Elemente unter optimalen Bedingungen 84</td>
</tr>
<tr>
<td>Tab 15</td>
<td>Zusammenstellung der untergrundequivalenten Konzentrationen und der Nachweisgrenzen für Cl 837 und C 940 mit Modell 2 unter optimalen Bedingungen 84</td>
</tr>
<tr>
<td>Tab 16</td>
<td>Unter optimalen Bedingungen erzielbare Selektivitäten gegen Kohlenstoff für Modell 1 .. 85</td>
</tr>
<tr>
<td>Tab 17</td>
<td>Unter optimalen Bedingungen erzielbare Selektivität von Cl 837 gegen Kohlenstoff für das Modell 2 .. 87</td>
</tr>
<tr>
<td>Tab 18</td>
<td>Vergleich von µ-ESD und AED hinsichtlich Installationsaufwendungen und Betriebskosten .. 90</td>
</tr>
<tr>
<td>Tab 19</td>
<td>Arbeitsbedingungen des GC für die Analyse der Auenbodenextrakte 93</td>
</tr>
<tr>
<td>Tab 20</td>
<td>Zusammenstellung der vier jeweils größten Peaks der Chlorochromatogramme in den Extrakten A2/2C1 und A2/2C2 für den µ-ESD .. 95</td>
</tr>
<tr>
<td>Tab 21</td>
<td>Zusammenstellung der vier jeweiligen Vergleichspeakse der Chlorochromatogramme in den Extrakten A2/2C1 und A2/2C2 für den HP-AED 97</td>
</tr>
<tr>
<td>Tab 22</td>
<td>Zusammenstellung der sechs intensivsten Peaks aus A2/2C1 für den ECD 98</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abb 1 HP-AED der ersten Generation: Schnitt durch das GC-Interface und das MIP........ 12
Abb 2 Schematischer Aufbau und Arbeitsprinzip des SCPs ... 14
Abb 3 Czerny-Turner-Monochromator .. 18
Abb 4 Spaltfunktion bei gleich großem Eingangs- und Austrittsspalt 20
Abb 5 Echelle-Polychromator ... 21
Abb 6 Auswirkung einer 7-Punkte Mittelwertsglättung auf die Peakform 27
Abb 7 Einfluß einer 7-Punkte Savitzky-Golay Glättung auf die Peakform 28
Abb 8a Verlauf einer FT-Glättungsfunktion .. 29
Abb 8b Glättung mittels 7 Punkte FT-Filter ... 29
Abb 9 Querschnitt durch den µ-ESD (schematisch) ... 34
Abb 10 Schematische Darstellung des Prinzips der kapazitiven Leistungseinkopplung beim µ-ESD .. 35
Abb 11 Einkopplung des Lichts aus dem µ-ESD in das Spektrometer 36
Abb 12 µ-ESD (Modell 2) mit hochgeklapptem Umlenkspiegel 37
Abb 13 Schematischer Aufbau des Mehrkanal-IFS ... 38
Abb 14 Strahlengang beim HP-AED .. 39
Abb 15 Prinzip der Gegenspülung („Solvent Vent“) zur Verhinderung des Eindringens des Lösungsmittels in das Plasma... 40
Abb 16 Emissionslinien im Fenster 1 von 685 nm bis 746 nm .. 46
Abb 17 Emissionslinien im Fenster 2 von 821 nm bis 883 nm .. 47
Abb 18 Emissionslinien im Fenster 3 von 889 nm bis 946 nm .. 47
Abb 19 Verlauf der Empfindlichkeit bei Variation der Plasmagaszusammensetzung für Br 827 .. 50
Abb 20 Verlauf der Selektivität gegen Kohlenstoff für Br 827 ... 51
Abb 21 Beispiel einer einfachen Untergrundkorrektur für die Selektivitätsbestimmung 52
Abb 22 Verlauf der Empfindlichkeit für Br 889 bei Variation der Plasmagaszusammen-
setzung .. 53
Abb 23 Verlauf der Selektivität für Br 889 gegen Kohlenstoff .. 53
Abb 24 Verlauf der Empfindlichkeit für Cl 837 bei Variation der Plasmagaszusammen-
setzung .. 55
Abb 25 Verlauf der Selektivität für Cl 837 gegen Kohlenstoff .. 55
Abb 26 Verlauf der Empfindlichkeit für Cl 894 bei Variation der Plasmagaszusammen-
setzung ... 56
Abb 27 Verlauf der Selektivität für Cl 894 gegen Kohlenstoff ... 57
Abb 28 Verlauf der Empfindlichkeit für Cl 912 bei Variation der Plasmagaszusammen-
setzung ... 58
Abb 29 Verlauf der Empfindlichkeit für Cl 837 (IFS-Version) bei Variation der Plasmaga-
szusammensetzung .. 60
Abb 30 Verlauf der Selektivität für Cl 837 (IFS-Version) gegen Kohlenstoff 60
Abb 31 Verlauf der Empfindlichkeit für F 739 bei Variation der Plasmagaszusammen-
setzung ... 62
Abb 32 Form und Größe des Fluorpeaks in Abhängigkeit vom Plasmagasfluß,
untergrundkorrigiert .. 63
Abb 33 Verlauf der Selektivität für F 739 gegen Kohlenstoff ... 63
Abb 34 Verlauf der Empfindlichkeit für S 921 bei Variation der Plasmagaszusammen-
setzung ... 64
Abb 35 Verlauf der Selektivität für S 921 gegen Kohlenstoff ... 65
Abb 36 Verlauf von Empfindlichkeit und SBR für Cl 837 bei Zumischung von
Wasserstoff ... 67
Abb 37 Verlauf von Empfindlichkeit und SBR für S 921 bei Zumischung von
Wasserstoff ... 67
Abb 38 Alle zur Verfügung stehenden Datenkanäle beim IFS-Prototypen (Modell 2) des
µ-ESDs .. 70
Abb 39 Typische durch Kohlenstoff hervorgerufene Interferenzen 71
Abb 40 Abhängigkeit der Stärke der Interferenz von der Masse an Kohlenstoff im
Plasma .. 71
Abb 41 Einfache Untergrundkorrektur durch Subtraktion des Untergrundkorrektur-
kanals .. 72
Abb 42 Experimentell ermittelter Zusammenhang zwischen Interferenz und Kohlenstoff-
gehalt im Plasma ... 73
Abb 43 Darstellung des Chlorkanals und des mit Hilfe eines dynamischen Faktors
korrigierten Chlorsignals ... 74
Abb 44 Spektrale Umgebung der Schwefel-Dreiergruppe während eines chromato-
graphischen Laufes ... 75
Abb 45 Chromatogramm mit einfacher Untergrundkorrektur ... 76
Abb 46 Digitale Filter zur Wichtung der spektralen Daten für die Element- und die
Untergrundspur .. 77
Abb 47 Ergebnis der Multipunkt-Untergrundkorrektur: Vergleich von Rohdaten mit untergrundkorrigierten Daten ... 78
Abb 48 Verbesserung analytischer Parameter durch die Mehrkanaluntergrundkorrektur 78
Abb 49 Bromselektives Chromatogramm des HP-AED Testmixes, auf Br 889 aufgezeichnet .. 79
Abb 50 Ausschnitt der spektralen Umgebung von Br 889 zum Zeitpunkt der Elution des Trichlorbenzols ... 80
Abb 51 Verlauf der chemischen Interferenz sowie des Verhältnisses von Bromsignal zu chemischer Interferenz in Abhängigkeit vom Plasmagasfluß .. 81
Abb 52 Br 889-Spur ohne Wasserstoff und mit 41 µL/min Wasserstoff 81
Abb 53 Kohlenstoff-Kalibration mit drei Konzentrationsniveaus .. 82
Abb 54 Kombination von verbindungsunabhängiger Kalibration mit klassischer Kalibration auf drei Konzentrationsniveaus ... 83
Abb 55 Auswirkung der Argon-Interferenz auf die Basislinie von Cl 912 86
Abb 56 Gegenüberstellung von Modell 1 bzw. Modell 2 des µ-ESDs und dem AED: Vergleich der Nachweisgrenzen ... 88
Abb 57 Gegenüberstellung von Modell 1 bzw. Modell 2 des µ-ESDs und dem AED: Vergleich der Selektivitäten gegen Kohlenstoff ... 89
Abb 58 ECD - Chromatogramm des AED-Testmixes ... 91
Abb 59 µ-ESD - Chromatogramm des AED-Testmixes .. 92
Abb 60 Schematische Darstellung einer Soxtech-Extractionsapparatur 94
Abb 61 Chlor- und Kohlenstoffchromatogramm des Auenbodens A2/2C1, aufgenommen mit dem µ-ESD ... 94
Abb 62 Chlor- und Kohlenstoffchromatogramm des Auenbodens A2/2C2, aufgenommen mit dem µ-ESD ... 95
Abb 63 Chlor- (oben) und Kohlenstoffchromatogramm (unten) des Auenbodens A2/2C1, aufgenommen mit dem HP – AED ... 96
Abb 64 Chlor- (oben) und Kohlenstoffchromatogramm (unten) des Auenbodens A2/2C2, aufgenommen mit dem HP – AED ... 96
Abb 65 Chromatogramm des Auenbodens A2/2C1, aufgenommen mit dem ECD 97
Abb 66 Vergleich der SNR für den µ-ESD, den HP-AED und einen µ-ECD 99
Abkürzungen

μ-ESD Mikroplasma, μ-Elementselektiver Detektor
AED Atomemissionsdetektor
BEC Untergrundäquivalente Konzentration, Background equivalent concentration
CCD Charge Coupled Device
CMP Kapazitives Mikrowellenplasma, Capacitive Microwave Plasma
DCP Gleichstromplasma, Direct Current Plasma
ECD Elektroneneinfangdetektor, Electron Capture Detector
ESD Elementselektiver Detektor
FCKW Fluor-Chlor-Kohlenwasserstoff
FIA Fließinjektionsanalyse
FID Flammenionisationsdetektor
FT Fourier-Transformation
GC Gaschromatographie
HF Hochfrequenz
HP Hewlett Packard
ICP Induktiv gekoppeltes Plasma, Inductively Coupled Plasma
IFS Interferenzfilterspektrometer
LHKW Leichtflüchtige Halogen-Kohlenwasserstoffe
MIP Mikrowelleninduziertes Plasma
MOS Metall-Oxid-Halbleiterdiode, Metal Oxide Semiconductor
MS Massenspektrometrie
NETCDF NETwork Common Data Form
NIR Nahes Infrarot
NIST National Institute for Standards and Technology
NWG Nachweigrenze
OES Optische Emissionsspektrometrie
PMB polyehloriertes Biphenyl
PDA Photodiodenarray
PMT Photovervielfacher, Photomultiplier Tube
SBR Signal-zu-Untergrund-Verhältnis, Signal to Background Ratio
SCP Stabilisiertes kapazitives Plasma, Stabilized Capacitive Plasma
SEV Sekundärelektrodenvervielfacher
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR</td>
<td>Signal-zu-Rausch-Verhältnis, Signal to Noise Ratio</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>VIS</td>
<td>Sichtbarer Spektralbereich</td>
</tr>
<tr>
<td>VUV</td>
<td>Vakuum – Ultraviolett</td>
</tr>
</tbody>
</table>
1. Einleitung

In den letzten zwei Jahrzehnten hat sich die Bedeutung der analytischen Chemie in unserer Gesellschaft deutlich gewandelt. Gründe dafür sind einerseits die Entwicklung neuer moderner Technologien, die eine leistungsstarke Analytik erfordern und andererseits unsere erhöhte Sensibilität bei der Bewertung von Umweltschäden, die auf das gesteigerte Bewußtsein um die Toxizität von Elementen und Verbindungen zurückzuführen ist.

Die Atomspektroskopie, deren Grundlagen bereits 1860 von BUNSEN und KIRCHHOFF beschrieben wurden [1], stellt im Bereich der Elementanalytik Methoden zur schnellen, genauen und nachweisstarken Bestimmung der elementaren Zusammensetzung von Proben aus den Bereichen Umwelt und Industrie zur Verfügung.

Von allen bisher entwickelten elementselektiven Detektoren (ESDs) für die GC haben trotz des großen Interesses der Anwender nur wenige den Sprung zum kommerziellen Gerät geschafft. Es handelt sich dabei um wahre „Alleskönner“. Der Preis dafür ist ein außerordentlich komplexer Aufbau, der hochqualifiziertes Fachpersonal nötig macht. Für viele Anwender, die zum Teil sehr spezielle Probleme lösen müssen, sind diese Geräte überdimensioniert und zu teuer.
An dieser Stelle soll die vorliegende Arbeit ansetzen. Gegenstand der Arbeit ist ein neuer AED für die GC, der vom Institut für Analytische, Mikro- und Radiochemie der TU Graz in Zusammenarbeit mit dem Institut für Analytische Chemie der TU Bergakademie Freiberg und mit maßgeblicher Unterstützung der Firma PAAR Physica entwickelt wurde. Der neue Detektor, der \(\mu \)-ESD, kann als Weiterentwicklung und Miniaturisierung des SCP aufgefaßt werden. Mit dieser Entwicklung soll ein Schritt weg vom Universaldetektor hin zu einem hoch spezialisierbaren Detektor gegangen werden, der durch eine modulare Bauweise leicht an die Problemstellungen der Anwender angepaßt werden kann.

In dieser Arbeit sollen der Aufbau und das Funktionsprinzip des \(\mu \)-ESDs vorgestellt werden. Dazu gehört die Untersuchung der Eignung des Detektors für die selektive Bestimmung der Elemente Fluor, Chlor, Brom, Schwefel und Kohlenstoff im Bereich von 700 – 950 nm. Anhand ausgewählter Emissionslinien der genannten Elemente soll eine Charakterisierung des \(\mu \)-ESDs hinsichtlich wichtiger Detektoreigenschaften wie Selektivität, Empfindlichkeit und dynamischer Bereich erfolgen. Es werden optische Kopplungen sowohl mit Monochromatoren in Verbindung mit einem Photodiodenarray (PDA) als auch mit Mehrkanal-Interferenzfilterspektrometern betrachtet.

Abschließend soll der \(\mu \)-ESD hinsichtlich seiner analytischen Leistungsfähigkeit, aber auch unter Berücksichtigung wirtschaftlicher Gesichtspunkte, in einer kritischen Gegenüberstellung mit anderen selektiven Detektoren in der GC verglichen werden.
2. Grundlagen

2.1 Plasmen als Anregungsquelle in der Analytischen Chemie

2.1.1 Allgemeines

\[
\frac{N_{q}}{N_{p}} = \frac{g_{q}}{g_{p}} e^{-\frac{\Delta E}{kT}}
\]

mit \(N_{p,q} \) - Anzahl der Teilchen in den Zuständen \(p \) und \(q \), \(g_{p,q} \) - statistische Gewichte der Zustände \(p \) und \(q \), \(\Delta E \) - Energiedifferenz zwischen den Zuständen, \(k \) - BOLTZMANN-Konstante.

Bei den freien Elektronen im Plasma kann man zwischen energiearmen (langsamen) Elektronen und energiereichen (schnellen) Elektronen unterscheiden. Die langsamen Elektronen sind entscheidend an der Entstehung der Kontinuumstrahlung des Plasmas beteiligt:

\[
e^{-} + X^{+} \rightarrow X^{+} + h\nu
\]

mit \(X \) - Plasmagasatom.

Schnelle Elektronen sind neben der Erzeugung und Aufrechterhaltung des Plasmas auch an der Anregung der Analyten beteiligt. So ist die Anregung von Analytatomen \(A \) oder von Analytionen \(A^{+} \) durch Stöße mit schnellen Elektronen möglich:

\[
e_{schnell}^{+} + A \rightarrow A^{+} + e_{langsam}
\]

\[
e_{schnell}^{+} + A^{+} \rightarrow A^{++} + e_{langsam}
\]
Die direkte Anregung durch Stöße mit schnellen Elektronen spielt jedoch bei mikrowelleninduzierten und hochfrequenten Plasmen nur eine Nebenrolle. Statt dessen kommt es zunächst zu einer Penning-Ionisation und anschließend zu einer Rekombinationsreaktion, bei der die eigentliche Anregung stattfindet [9]. Bei der Penning-Ionisation werden Analytate durch energiereiche Teilchen, z.B. Plasmasotope, ionisiert:

\[X^m + A \rightarrow X + A^+ + e^- \]

mit \(X^m \) - metastabiles Plasmasatom.

Diese Reaktion tritt bei energiereichen Teilchen auf, deren Energie vor dem Stoß größer ist als die Summe aus Ionisierungsenergie und Anregungsenergie des Analyten.

2.1.2.1 Gleichstrombogenplasma

2.1.2.2 Induktiv gekoppeltes Plasma

Das induktiv gekoppelte Plasma (ICP – Inductively Coupled Plasma) ist heute ohne Zwei- fel die populärste Anregungsquelle für die AES, findet aber auch als Ionenquelle für die Massenspekrometrie (MS) breite Anwendung. Das Haupteinsatzgebiet des ICPs ist, ähnlich wie beim DCP, die Analytik von Metallen.

2.1.2.3 Mikrowellenplasmen

Kapazitiv gekoppeltes Mikrowellenplasma (CMP)

Aufgrund der Plasmageometrie ist die Untergrundintensität in der zentralen Plasmazone hoch. Deshalb ist die Empfindlichkeit des CMPs deutlich schlechter als die des ICPs [15]. Auch wird durch die Anwesenheit von Alkalielementen die Form und die Temperaturverteilung des Plasmas wesentlich verändert. Deshalb ist der Einsatz von Alkalipuffern zur Gewährleistung der Reproduzierbarkeit erforderlich. Trotz allem erreicht das CMP keine so gute Reproduzierbarkeit der Analysensignale wie das ICP.

Mikrowelleninduziertes Plasma (MIP)

Mikrowellenplasmen mit induktiver Leistungsuübertragung werden in einem Rohr von einigen Millimetern Durchmesser, das sich in einem Hohlraumresonator befindet, erzeugt. Eine heute häufige Bauart verwendet den Resonator nach BEENAKKER [5], mit dessen Hilfe sich aufgrund der hohen Energiedichte ein stabiles Argon- oder Heliumplasma bei Atmosphärendruck betreiben läßt. Der kommerziell verfügbare AED der Firma HP stellt die bisher erfolgreichste Anwendung des Beenakker-MIPs dar [6].

MIPs verfügen über eine gute Anregungseffizienz für Analyten, haben jedoch aufgrund der relativ niedrigen Gastemperaturen schlechte Atomisierungseigenschaften. Daher sind diese Plasmen nicht für die Einbringung flüssiger Aerosole geeignet. Aufgrund der Dimensionen des Entladungsrohres eignen sie sich aber gut als Detektoren für die GC. Bei der Verwendung von Helium als Plasmagas können sowohl Metalle als auch Nichtmetalle bestimmt werden.

2.1.2.4 Glimmentladungen

Eine Glimmentladung ist eine stille, leuchtende Entladung, die ohne Funkenbildung in einem Gas stattfindet [19]. Im einfachsten Fall kann eine Glimmentladung durch einen elektrischen Strom, der zwischen zwei Elektroden durch ein Gas fließt, erzeugt werden.

Glimmentladungen sind bereits seit langem bekannte Anregungsquellen für die Atomemissionspektroskopie und Ionenquellen für die Massenspektroskopie. Die auch heute noch überwiegend verwendete Konstruktion geht auf GRIMM zurück [20].

Generell können Glimmentladungen auch zur Analyse von Gasen oder Dämpfen, z.B. in Verbindung mit Hydridgeneratoren oder der GC, verwendet werden [22]. Die Empfindlichkeiten für die Bestimmung von Chlor und Kohlenstoff können denen eines MIPs nahekommern [23], aber der dynamische Bereich der Kalibration ist mit meist ein bis zwei Dekaden für die AES relativ klein.

Im Jahre 1985 stellten RICE et al. einen GC-Detektor vor, der auf einem modifizierten Glimmentladungs-Plasma basierte [24]. Durch das Anbringen einer Elektrode am Ende des Entladungsrohres wurde die Glimmentladung in eine kapazitive Entladung umgewandelt, die gegenüber dem Original deutlich höhere Emissionsintensitäten aufwies.

2.1.2.5 Stabilisiertes kapazitives Plasma

Das SCP ist ein Niederleistungsplasma, das durch die Wechselwirkung eines hochfrequenten elektromagnetischen Feldes mit einem Gas erzeugt wird. Es geht auf Arbeiten von PLATZER et al. zurück [25].

2.1.2.6 µ-ESD

2.2 Plasmen als elementselektive Detektoren in der Gaschromatographie

2.2.1 Anforderungen an einen GC – Detektor

Detektoren müssen einer Reihe von Anforderungen gerecht werden [28], die im folgenden aufgelistet sind:

- niedriger Rauschpegel als Grundvoraussetzung für niedrige Nachweisgrenzen
- hohe Empfindlichkeit
- geringe Basisliniendrift
- kein Einfluß von GC-Parametern wie Trägergasfluß, Temperatur und Druck auf die Anzeige
- großer dynamischer Bereich der Kalibration
- kein Beitrag zur Peakverbreiterung und keine zeitliche Verzögerung der Anzeige

2.2.2 Elementselektive Detektoren

Der Atomemissionsdetektor von HP

Prinzipiell ist es möglich, durch das Aufzeichnen aller wichtigen Elementspuren die Summenformel der untersuchten Substanz zu bestimmen [31]. Dies erweist sich jedoch als zeitaufwendig, da aufgrund des schmalen spektralen Fensters des PDAs sowie von unter-
schiedlichen Betriebsparametern für die Erfassung aller wichtigen Elemente mehrere Injektionen derselben Probe erforderlich sind. Dieser Umstand erschwert auch schnelle Übersichtsanalysen, z.B. auf halogenierte Verbindungen. Zwar können in einem spektralen Fenster die Atomlinien von Chlor (479,5 nm), Brom (478,6 nm) und Kohlenstoff (495,8 nm) simultan registriert werden, die Intensität dieser Kohlenstoff-Linie ist jedoch so gering, daß zur sicheren Erfassung der Kohlenstoffgehalte eine weitere Injektion mit Aufzeichnung des Chromatogrammes bei der Wellenlänge von 193 nm erforderlich ist.

Mit Hilfe aufwendiger und ausgeklügelter Echtzeit-Datenverarbeitung ist es HP gelungen, aus dem von ausgeprägten spektralen Interferenzen geplagten UV/VIS – Spektralbereich ein Maximum an analytischer Information zu gewinnen [32]. So werden die absoluten Nachweisgrenzen mit einigen pg und die Selektivitäten gegen Kohlenstoff mit etwa 10.000 angegeben.

Der elementselective Detektor von PAAR Physica

Die vom Detektor genutzten Atomlinien befinden sich im NIR. Dieser Spektralbereich hat gegenüber dem UV/VIS den Vorteil, daß im Heliumplasma dort bedeutend weniger spektrale Interferenzen auftreten, die durch Zumischung sogenannter Dopantgase wie Wasserstoff und Sauerstoff noch weiter vermindert werden können [33]. Damit reduziert sich der Aufwand für die Untergrundkorrektur.

Insgesamt besitzt der ESD von PAAR Physica mit dem SCP eine sehr robuste Strahlungsquelle, hat gegenüber dem HP-AED einen deutlich einfacheren Aufbau und ist auch im Routinebetrieb einfacher und sicherer zu bedienen. Dem gegenüber stehen jedoch die unzureichenden Multielementfähigkeiten. Auch weisen die im NIR zur Verfügung stehenden Emissionslinien des Schwefels und des Kohlenstoffs eine geringere Intensität auf als die entsprechenden Linien im VUV.

Andere ESDs

So beschrieben SACKS et al. 1992 eine Hohlkathoden-Glimmentladung als elementselektiven Detektor für die Niederdruck-GC [34]. Das Zellvolumen dieses Detektors betrug etwa

Die gleiche Arbeitsgruppe beschrieb 1997 eine Konstruktion zur EOX-Bestimmung, die auf zwei hintereinander geschalteten 350 kHz-Plasmen besteht [38]. Im Gegensatz zu früheren Arbeiten wurden die Plasmen in Quarzkapillaren mit einem Innendurchmesser von ca. 1 mm betrieben. Das erste Plasma diente zum Verdampfen der Probe. Im zweiten Plasma erfolgte die Atomisierung und Anregung der Analytate. Die Emission von Brom und Chlor wurde lateral mit einem niedrigauflösendem NIR-Spektrometer erfaßt. Die erreichte Nachweisgrenze von ca. 120 pg und die Selektivität gegen Kohlenstoff von etwa 1000 sind bestenfalls befriedigend.

Die in den letzten Jahren immer weiter fortschreitende Miniaturisierung im Bereich der Mikroelektronik spiegelt sich auch in aktuellen Konstruktionen wider. So beschreiben EIJKEL, STOERI und MANZ ein auf einem Chip von 2 cm × 3 cm installiertes Mikroplasma auf der Basis einer Gleichstrom-Glimmentladung [39]. Mit diesem Plasma wurden bei Makeup-Gasflüssen um 20 mL/min Kohlenwasserstoffe untersucht. Die erhaltenen Peaks
wiesen jedoch eine merkliche Verbreiterung und Tailing auf, was auf eine nicht optimale Verbindung des Detektors mit dem GC über eine unbeschichtete Quarzkapillare zurückgeführt wurde.

Von allen in der Literatur vorgestellten ESDs fand bisher nur der HP-AED eine größere kommerzielle Verbreitung. Trotz einiger vielversprechender Ansätze hatten die meisten anderen Konstruktionen mit schlechten analytischen Eigenschaften, u.a. unzureichender Reproduzierbarkeit der Ergebnisse oder zu kurzen Nutzungszeiträumen zu kämpfen.

2.2.3 ESDs im Vergleich mit anderen GC – Detektoren

Eine große Stärke der elementselektiven Detektoren ist ohne Zweifel ihre Selektivität, die im Gegensatz zu Spezialdetektoren wie den Stickstoff-Phosphor-Detektoren nicht auf einzelne Elemente beschränkt bleibt, sondern durch Anpassung der optischen Komponenten auf eine große Anzahl chemischer Elemente erweitert werden kann. Durch die Wahl geeigneter bzw. interessierender Elemente können so komplexe analytische Aufgaben gezielt vereinfacht werden. Damit werden die ESD zu vielseitigen Universaldetektoren, die durchaus das analytische Potential besitzen, mit einfachen, nicht selektiven Systemen wie dem FID zu konkurrieren.

Mehrkanalfähige Systeme bieten außerdem die Möglichkeit, mehrere elementselektive Signale bereits während eines chromatographischen Laufes aufzuzeichnen. Neben der verkürzten Analysenzeit ergibt sich daraus auch die Möglichkeit qualitativer Aussagen über unbekannte Substanzen. Die damit gewonnenen analytischen Informationen genügen aber bestenfalls zur Ermittlung von Summenformeln [43], so daß die Strukturaufklärung unbekannter Analyten auch weiterhin den MS – Detektoren vorbehalten bleibt.

Einen weiteren Vorteil bieten die ESD durch die verbindungsunabhängige Kalibration [31]. Der Analytiker kann z. B. bei der Bestimmung von halogenierten Kohlenwasserstoff-
fen im Prinzip auf nahezu jede beliebige Testsubstanz, die das entsprechende Halogen enthält, zurückgreifen, während sich eine Analyse der gleichen Substanzen mit dem ECD aufgrund der starken Abhängigkeit der Empfindlichkeit von der Struktur der Verbindung deutlich schwieriger und zeitaufwendiger gestaltet. In der Praxis wurde jedoch gezeigt, daß die verbindungsunabhängige Kalibration bei größeren Konzentrations- und Strukturunterschieden zwischen Analyt und Referenzsubstanz an ihre Grenzen stößt [43].

2.3 *Die optische Erfassung der Atomlinien*

2.3.1 Optische Spektrometer

Monochromatoren

\[d \sin \alpha \pm d \sin \beta = m \lambda \]

mit \(d \) - Gitterkonstante, \(\alpha \) - Einfallswinkel der Strahlung in Bezug zur Gitternormalen, \(\beta \) - Beugungswinkel in Bezug zur Gitternormalen, \(m \) - Beugungsordnung, \(\lambda \) - Wellenlänge.

Das Auflösevermögen eines Monochromators hängt unter anderem von der Dispersion, \(D_a \), des Gitters ab. Diese kann durch Ableitung der Gittergleichung (6) nach der Wellenlänge berechnet werden.

\[D_a = \frac{d \beta}{d \lambda} = \frac{|m|}{d \cos \beta} = \frac{\sin \alpha + \sin \beta}{\lambda \cos \beta} \]
Für die Charakterisierung eines Monochromators unter Einbeziehung seiner Brennweite, \(f \), ist jedoch die Lineardispersion in der Fokalebene \(D_l \) bzw. deren reziproker Wert, die reziproke Lineardispersion, \(R_d \), von größerer Bedeutung. Sie gibt an, in welchem Abstand auf der Fokalebene, \(x \), eine bestimmte Wellenlängenänderung beobachtet wird. Die Angabe erfolgt in nm/mm.

\[
R_d = \frac{d\lambda}{dx} = \frac{\lambda \cos \beta}{f(\sin \alpha + \sin \beta)}
\]
(8)

Die reziproke Lineardispersion ist ebenso wie \(D_a \) etwas von der Wellenlänge abhängig; mit zunehmender Wellenlänge nimmt \(R_d \) ab. Die Ursache dafür ist das sich verändernde Verhältnis von \(\lambda \) zur Gitterkonstante \(d \).

Eine weitere wichtige Kenngröße von Monochromatoren ist die spektrale Bandbreite, \(\Delta\lambda_s \). Sie ergibt sich aus der Spaltbreite, \(W \), und \(R_d \):

\[
\Delta\lambda_s = W \cdot R_d
\]
(9)

Dieser Zusammenhang gilt aber nur für Spalten mit \(W \geq 50 \mu m \), da bei kleineren Spaltbreiten die Aberrations- und Beugungseffekte, die beim Passieren des Spaltes durch das Licht auftreten, nicht mehr vernachlässigt werden können [44].

In der Atomspektroskopie werden besonders hohe Anforderungen an das Auflösungsvermögen von Monochromatoren gestellt. Dies gilt besonders für den UV/VIS - Bereich, da hier eine im Vergleich zum NIR hohe Liniendichte sowie zahlreiche Molekülbanden für spektrale Interferenzen sorgen, die zumindest teilweise mit leistungsfähigen Spektrometern vermieden werden können.

Polychromatoren

Interferenzfilterspektrometer

Bei den IFS übernehmen die sogenannten Interferenzfilter die Selektion der interessierenden Wellenlängen bzw. Wellenlängenbereiche aus dem Kontinuum. Diese sind so konstruiert, daß nur ein relativ schmaler Bereich um eine Zentralwellenlänge, λ_m, passieren kann, während die anderen Wellenlängen destruktive Interferenz erfahren. Trifft der kollimierte Strahl senkrecht auf die Filteroberfläche, kann die Bedingung für die konstruktive Interferenz der Zentralwellenlänge wie folgt beschrieben werden:

$$\lambda_m = \frac{2dn}{m}$$

mit d - Dicke der dielektrischen Schicht; n - Brechungsindex dieser Schicht; m - Interferenzordnung. Häufig für die dielektrischen Schichten verwendete Materialien sind z.B. CaF$_2$, MgF$_2$, ZnS, ThF$_4$ oder Saphir.
Durch Verändern des Einfallswinkels, θ, des Lichts auf die Filteroberfläche hat man die Möglichkeit, die Wellenlänge der größten Transmission nach kleineren Wellenlängen zu verschieben. Es gilt folgender Zusammenhang:

$$\lambda = \lambda_0 \left(1 - \frac{\sin^2 \frac{\theta}{n}}{n^2}\right)^{1/2}$$

(11)

Die heute eingesetzten Interferenzfilter bestehen meist aus mehreren alternierenden Schichten mit hohem und niedrigem Brechungsindex, die mit Cutoff- oder Breitbandfiltern kombiniert sind. Der nutzbare Spektralbereich erstreckt sich von 220 nm bis 1000 nm [45]. Die erreichbaren Halbwertsbreiten liegen bei ≤ 1 nm bei einer Transmission von 50%.

2.3.2 Strahlungsdetektoren

Photomultiplier

Die spektrale Empfindlichkeit der Photomultiplier hängt von dem verwendeten Kathodenmaterial ab [45]. So weisen etwa CsTe-Photomultiplier bei ca. 200 nm ein Empfindlichkeitsmaximum auf, sind jedoch ab ca. 300 nm praktisch wirkungslos. Demgegenüber können GaAs-Photomultiplier von ca. 190 nm bis etwa 850 nm eingesetzt werden. Zwischen 200 nm und 800 nm ist die Empfindlichkeit nahezu konstant.

Photodioden

Im Zuge der Verbreitung von Halbleiterelementen haben sich die Photodioden zur quantitativen Lichtmessung im UV/VIS und NIR etabliert. Es handelt sich um elektronische Bauelemente, die auf dem Sperrschichtphotoeffekt, auch innerer lichtelektrischer Effekt genannt, basieren. Betreibt man eine Photodiode bei Abwesenheit von Photonen in Sper-
richtung, fließt nur ein sehr geringer Sperrstrom, der sogenannte Dunkelstrom. Auftreffende Photonen erzeugen zusätzliche Ladungspaare, die als Photostrom meßbar sind.

In Abhängigkeit vom verwendeten Halbleitermaterial können Photodioden über einen großen spektralen Bereich von etwa 200 nm bis 1600 nm eingesetzt werden, wobei allerdings eine recht ausgeprägte Abhängigkeit der Empfindlichkeit von der Wellenlänge besteht. Sie stellen eine technisch unkomplizierte und preiswerte Möglichkeit der Intensitätsmessung in einem großen Spektralbereich dar.

Photodiodenarray (PDA) und Charge Coupled Device (CCD)

Gemäß der Leistungscharakteristik der p-n-Photodioden besitzen PDAs einen großen dynamischen Meßbereich. Ihre Empfindlichkeit ist jedoch begrenzt. Diesem Problem kann mit einer Verlängerung der Belichtungszeit begegnet werden. Dabei wird aber auch der Dunkelstrom pro Diode verstärkt, was wiederum zu einer Verringerung des dynamischen Meßbereiches führt. Hochwertige PDAs sind aus diesem Grund mit einer aufwendigen Peltierkühlung versehen, da der Dunkelstrom der Temperatur proportional ist.

Bei den CCDs handelt es sich im Prinzip um eine Weiterentwicklung der PDAs, die mit anderen Photodioden, den sogenannten Metall-Oxid-Halbleiterdioden (MOS) arbeiten. Die Ladungen werden hier direkt unter der Halbleiteroberfläche der MOS-Dioden gespeichert [46]. Wenn die Kapazität von etwa 10^5 Elektronen für ein Pixel erreicht ist, fließen die Elektronen in das benachbarte Element um. Die MOS-Dioden zeichnen sich gegenüber den einfacheren p-n-Dioden durch eine höhere Quantenausbeute und ein geringeres elektrisches Untergrundrauschen und damit eine größere Empfindlichkeit aus [47]. Jedoch ist der dynamische Bereich eines CCDs geringer als der eines PDAs.

Neben wissenschaftlichen Anwendungen haben CCDs vor allem im kommerziellen Sektor eine große Verbreitung gefunden. Sie sind u.a. in Scannern und Camcordern und neuerdings auch in Digitalkameras im Einsatz.

2.4 Interferenzen bei der Atomemissionsdetektion

2.4.1 Chemische Interferenzen

Unter dem Begriff „Chemische Interferenz“ kann man alle Vorgänge zusammenfassen, durch welche die Anzahl der freien Atome eines Analyten im Plasma beeinflußt wird. Im allgemeinen sind diese Prozesse temperaturabhängig; ihre Bedeutung nimmt mit steigender Atomisierungstemperatur ab.

2.4.2 Physikalische Interferenzen

Jeder Prozeß, der die Energieverteilung der Teilchen eines Plasmas beeinflußt, kann als physikalische Interferenz bezeichnet werden. Dies geschieht sowohl direkt durch Kollisionen als auch indirekt durch die Veränderung der Teilchendichte einer aktiven Spezies. Darüber hinaus spielen auch thermische Effekte, wie sie bei der Verdampfung eines Lö-
sungsmittels oder bei hohen Wasserstoffkonzentrationen im Plasma auftreten, eine gewisse Rolle.

2.4.3 Spektrale Interferenzen

Spektrale Interferenzen treten immer dann auf, wenn die Umgebung einer Spektrallinie entweder ganz oder teilweise von einem spektralen Untergrund überlagert wird. Der Ursprung dieses Untergrundes können die Emissionslinie eines anderen Atoms, Molekülbanden oder Streulicht sein. Vor allem Molekülbanden spielen eine überaus wichtige Rolle in der Atomemissionsdetektion; sie sind die Hauptideferenz.

Spektrale Interferenzen führen im Chromatogramm zu einer schlechten Basislinie bis hin zu Störpeaks und wirken sich so vor allem auf die Selektivität aus. Obwohl man sie nicht ganz vermeiden kann, lassen sie sich durch Zugabe von Reaktantgasen reduzieren [33]. Eine weitere, ergänzende Möglichkeit besteht darin, das Analytsignal mit chemometrischen Methoden aus dem Untergrund zu extrahieren. Dafür muß jedoch die Ursache der Interferenz bekannt und diese mittels eines Korrektursignals zugänglich sein.

2.5 Interpretation der Meßdaten und Datenverarbeitung

2.5.1 Allgemeines

Wie bereits in Kapitel 2.4. angesprochen, wird ein Analytsignal in der Regel durch zahlreiche verschiedene interferenzen überlagert und verändert. Daher würde eine Interpretation dieser Rohdaten unweigerlich zu mehr oder weniger falschen Ergebnissen führen. Das Ziel einer Datenverarbeitung besteht also darin, die analytische Information zu isolieren und wichtige analytische Parameter zu verbessern. Dazu müssen Interferenzen als solche erkannt werden.

Bei der Verwendung eines PDAs als Detektor erhält man z.B. ein Chromatogramm, welches durch das Ausleserauschen des PDAs überlagert wird. Dies hat eine direkte Auswirkung auf die Nachweisgrenze. Hier schafft ein Glättungsalgorithmus Abhilfe. Ein anderes

Im folgenden sollen einige Algorithmen zur Datenverarbeitung, die in der Arbeit zum Einsatz gekommen sind, sowie Alternativen dazu vorgestellt werden.

2.5.2 Glättung von Rohdaten

Gleitender Mittelwert

Savitzky-Golay-Filter

Während beim gleitenden Mittelwert alle Datenpunkte gleich gewichtet werden, erfolgt beim Savitzky-Golay-Filter eine Differenzierung durch Anpassung der Daten an ein Polynom zweiten oder dritten Grades. Für eine Filterbreite m läßt sich der gefilterte Wert für den k-ten Datenpunkt wie folgt berechnen [49]:

$$y_k^* = \frac{1}{NORM} \sum_{j=-m}^{j=m} c_j y_{k+j}$$

(12)

$NORM$ ist ein Normalisierungsfaktor, der sich aus der Summe der Koeffizienten c_j ergibt. Diese sind für verschiedene Filterbreiten tabelliert [49].

Fourier-Transformation (FT)

Die FT kann als Filter zum Glätten von Signalen genutzt werden. Dazu werden die Daten zunächst mittels FT aus der Zeitdomäne \(f(t) \) in die Frequenzdomäne \(F(\nu) \) überführt. Nun erfolgt eine Multiplikation mit einer Filterfunktion, an die sich die inverse FT zur Rückführung der Daten in die Zeitdomäne anschließt.

Grundsätzlich besteht die Möglichkeit, ein Tiefpass-Filter (für Rauschen) oder ein Hochpass-Filter (für Signaldriften) zu verwenden. Ein Tiefpass-Filter mit der Filterbreite \(m \) entfernt z.B. alle Fourier-Komponenten mit einer Frequenz \(>1/(m\Delta x) \), wobei \(\Delta x \) der Punktabstand auf der Abszisse ist. Dem Filter liegt eine parabolische Funktion zugrunde, deren Maximum bei einer Frequenz von 0 liegt und die bei der oben definierten Frequenz Null wird (Abbildung 8a). Die Parameter der Funktion sind durch die Gesamtzahl an Datenpunkten und die Filterbreite vorgegeben. Je größer die Filterbreite, um so besser ist der Glättungseffekt. Ebenso wie beim Savitzky-Golay-Filter wird beim Glättungsvorgang die Peakform praktisch kaum verändert (Abbildung 8b).
2.5.3 Untergrundkorrektur

Neben dem Plasma kann auch Streulicht einen signifikanten Beitrag zum Kontinuum liefern. Dies ist vor allem dann der Fall, wenn unverdampfte, feste Partikel im Plasma vorliegen. Bei der Zuführung gasförmiger Proben spielt Streulicht jedoch nur eine untergeordnete Rolle.

Für die Interpretation des Analysensignals sind jene Anteile des Untergrundes von großer Bedeutung, die auf die Emission von Interferenten, wie Molekülen oder Atomen, zurückzuführen sind. Vor allem die breitbandigen Molekülemissionen können eine massive Beeinträchtigung der Selektivität der Analyse darstellen und zu Fehlinterpretationen und
Fehlbefunden führen. Sie entstehen in erster Linie aus Bestandteilen des Plasmas und der Analyse. Aus den in organischen Proben stets vorliegenden Elementen Kohlenstoff und Wasserstoff sowie aus dem Sauerstoff des Plasmas und Stickstoff als Verunreinigung bilden sich u.a. die Spezies C₂, CN, CH, CO, NH und OH aus, von denen im NIR alle Moleküle ohne Wasserstoffbeteiligung eine Rolle spielen [33].

Die on-peak-Korrektur wird bei Linienüberlappung der Analytlinie mit Interferenten angewendet. Dazu ist die simultane oder sequentielle Mitmessung einer ungestörten Interferenzlinie oder –bande notwendig. Aus dem (bekannten) Verhältnis \(V_n \) der zwei Signale für die Interferenz \(n \) kann auf die Größe der Störung des Analytsignals geschlossen werden.

Für die korrigierte Intensität des Analyten \(I_{\text{korr}} \) ergibt sich:

\[
I_{\text{korr}} = I_{\text{roh}} - \frac{I_{\text{Interferent1}}}{V_1} - \frac{I_{\text{Interferent2}}}{V_2} - \ldots = I_{\text{roh}} - \sum_{r=1}^{n} f_n I_{\text{Interferent n}}
\]

(13)
mit \(f_n = 1/V_n \) – Korrekturkoeffizient für die Interferenz \(n \). Mit dieser Methode kann man neben Störelementen auch Molekülbanden korrigieren, soweit sie in einem beliebigen, spektral zugänglichen Bereich erfaßbar sind.

2.5.4 Charakterisierung wichtiger analytischer Kenngrößen

Die in der Analytik erhaltenen Daten bzw. Meßwerte sind stochastischer Natur, d.h. sie sind mit verschiedenen, zufälligen und systematischen, Fehlern behaftet. Zufällige Fehler spiegeln sich in der Präzision einer Messung wieder. Die zufallsfehlerbehelfeten Daten lassen sich durch eine statistische Verteilung, meist eine Gauss-Verteilung, charakterisieren. Die Präzision ist dann die Schätzung der Standardabweichung \(s \) vom Mittelwert \(\bar{x} \) der Gauss-Verteilung gemäß:

\[
s = \sqrt{\frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})^2}
\]

(14)

Aus Gleichung (14) geht hervor, daß eine Erhöhung der Wiederholungsmessungen \(n \) zu einer besseren Präzision führt. Die Standardabweichung ist ebenso wie das Quadrat davon, die Varianz \(s^2 \), ein Maß für die Streuung der Meßwerte um den Mittelwert. Häufig wird auch die relative Standardabweichung oder Variationskoeffizient, \(s_r \), angegeben:

\[
s_r = \frac{s}{\bar{x}} \cdot 100
\]

(15)
Eine weiterführende Beschreibung der Streuung erhält man durch das Vertrauensintervall, Δx. Es umfaßt den Bereich um den Mittelwert einer Zufallsgröße, \bar{x}, in dem ein Meßwert mit einer definierten Wahrscheinlichkeit P bzw. einer Irrtumswahrscheinlichkeit $\alpha = 1-P$ erwartet wird. Für f Freiheitsgrade wird das Vertrauensintervall wie folgt berechnet:

$$\Delta x = t(1-\alpha/2; f)s$$ \hspace{1cm} (16)

Der in Gleichung (16) auftauchende t-Wert ist das Quantil der STUDENT-t-Verteilung für eine Irrtumswahrscheinlichkeit α und f Freiheitsgrade [53].

Sollen quantitative Beziehungen zwischen einer Meßgröße und der Konzentration eines Analyten ausgewertet werden, ist eine Kalibration erforderlich. Ist die resultierende Kalibrationsfunktion in einem bestimmten Konzentrationsintervall linear, kann für diesen Bereich die Empfindlichkeit, b, der Methode als Anstieg der Kalibrationsfunktion definiert werden. Für nichtlineare Zusammenhänge kann die Empfindlichkeit nur jeweils für ein sehr kleines Konzentrationsintervall $\Delta c \to 0$ angegeben werden.

Direkt im Zusammenhang mit der Empfindlichkeit einer Methode steht die Nachweisgrenze (NWG). Sie beschreibt die mit der Methode gerade noch bestimmbare Analytkonzentration. Unter Einbeziehung der Empfindlichkeit, ergibt sich für die Konzentration an der Nachweissgrenze, c_{NWG}, folgender Zusammenhang:

$$c_{NWG} = z(\alpha) \sqrt{2} \frac{s_B}{b}$$ \hspace{1cm} (17)

mit s_B - Standardabweichung des Blindwertes. Der statistische Faktor $z(\alpha)$ bezieht sich auf das Risiko α für einen Fehler 1. und repräsentiert die Wahrscheinlichkeit, mit der ein Untergrundsignal fälschlicherweise als Analysensignal interpretiert wird. In der Praxis wird $z(\alpha) = 3$ gesetzt. Der Ausdruck $\sqrt{2}$ wird unter der Voraussetzung eingefügt, daß bei sehr kleinen Konzentrationen die Standardabweichungen von Untergrundsignal und Analysensignal gleich groß sind. Zu beachten ist, daß in Gleichung (17) keine Berücksichtigung von Kalibrationsfehlern erfolgt.

\[\text{SNR} = \frac{h_{\text{Peak}}}{6s} \]

mit \(s \) als Standardabweichung analog Gleichung (14) und \(h_{\text{Peak}} \) als Peakhöhe einer Substanz bei einer bekannten Konzentration, \(c \). Unter Einbeziehung von \(c \) erhält man dann die Konzentration an der NWG mit

\[c_{\text{NWG}} = \frac{c}{\text{SNR}} \]

Eine weitere wichtige analytische Kenngröße in der Chromatographie ist die \textit{Selektivität}, \(S \). Sie kennzeichnet die Fähigkeit einer Analysenmethode, den Analyten in Gegenwart von Störkomponenten (Interferenten) zu erfassen. Ein Detektor ist für einen Analyten selektiv, wenn der Analyt mit einer größeren Empfindlichkeit erfaßt wird als die Interferenten. Im Falle der Chromatographie mit elementselektiver Detektion bezieht man sich meist auf Interferenzen, die durch Kohlenstoff induziert werden. Zur Berechnung von \(S \) müssen die Konzentrationen des Analyten, \(c_{\text{Analyt}} \), und der Interferenten, \(c_{\text{Interferent}} \), beziehungsweise deren Detektorempfindlichkeiten bekannt sein [54]:

\[S = \frac{c_{\text{Interferent}} h_{\text{Analyt}}}{c_{\text{Analyt}} h_{\text{Interferent}}} \]

Es bedeuten \(h_{\text{Analyt}} \) - Peakhöhe des Analyten; \(h_{\text{Interferent}} \) - Peakhöhe der Interferenz.
3 Experimenteller Teil

3.1 Charakterisierung des µ-ESDs

3.1.1 Modell 1

Bei der Entwicklung des µ-ESDs wurde das Ziel verfolgt, die Leistungsfähigkeit des als Grundlage dienenden SCPs weiter zu verbessern. Die angestrebte Miniaturisierung erforderte eine grundlegende Neukonstruktion der Plasmazone und aller Peripheriegeräte. Die Entwicklung erfolgte in mehreren Stufen, von denen die beiden bedeutendsten Entwicklungsstufen, im folgenden Modell 1 und Modell 2 genannt, vorgestellt werden.

Bei herkömmlichen ESDs wird ein großer Teil der Generatorleistung in überschüssige Wärme umgewandelt, die mit einem Kühlwassersystem abgeführt werden muß. Durch die Verkleinerung des Gerätes kann die Generatorleistung jedoch so weit reduziert werden,
daß die anfallende Wärme durch ein einfaches Kühlsystem in Form eines Kühlkörpers mit Unterstützung eines Lüfters abgeführt werden kann. Die Bauart des Generators entspricht etwa der des SCP-Generators und ist in Abbildung 10 schematisch dargestellt.

Abbildung 10. Schematische Darstellung des Prinzips der kapazitiven Leistungseinkopplung beim µ-ESD.

Tab. 1. Betriebsparameter des µ-ESDs (Modell 1).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF-Generatorleistung</td>
<td>10 ... 15 W</td>
</tr>
<tr>
<td>Arbeitsfrequenz</td>
<td>27,12 MHz</td>
</tr>
<tr>
<td>Leistungseinkopplung</td>
<td>kapazitiv</td>
</tr>
<tr>
<td>Plasmagas</td>
<td>Helium, mit Sauerstoff dotiert</td>
</tr>
<tr>
<td>Gasflüsse</td>
<td>Plasmagas: 5 ... 35 mL/min</td>
</tr>
<tr>
<td></td>
<td>O₂ – Zumischung: 25 ... 75 µL/min</td>
</tr>
<tr>
<td></td>
<td>Elektrodenspülung (O₂): 20 mL/min</td>
</tr>
<tr>
<td></td>
<td>Spülung des optischen Weges (He): 40 mL/min</td>
</tr>
<tr>
<td>Durchmesser der Entladung</td>
<td>110 µm</td>
</tr>
</tbody>
</table>

Das verwendete Blazegitter besitzt 1.200 Linien pro mm und macht den Spektralbereich von etwa 650 nm bis 1.000 nm zugänglich. Im Zusammenhang mit der Brennweite von 320 mm und der Spaltbreite von 120 µm ergibt sich eine Auflösung von ca. 0,6 nm und eine reziproke Lineardispersion von ungefähr 2,5 nm/mm.

3.1.2 Modell 2

Abb 12. µ-ESD (Modell 2) mit hochgeklapptem Umlenkspiegel. Quelle: PAAR Physica

Der schematische Aufbau des verwendeten IFS ist in Abbildung 13 dargestellt. Der Untergrundkorrektur-Kanal für Chlor wurde durch das Ankippen eines Chlor-Interferenzfilters,
durch die eine Wellenlängenverschiebung gemäß Gleichung (11) auf etwa 836,5 nm erzeugt wird, umgesetzt.

Tab 2. Betriebsparameter des µ-ESDs (Modell 2).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF - Generatorleistung</td>
<td>10 ... 15 W</td>
</tr>
<tr>
<td>Arbeitsfrequenz</td>
<td>40,68 MHz</td>
</tr>
<tr>
<td>Leistungseinkopplung</td>
<td>kapazitiv</td>
</tr>
<tr>
<td>Plasmasgas Gasflüsse</td>
<td>Helium, mit Sauerstoff dotiert</td>
</tr>
<tr>
<td>Plasmasgas</td>
<td>Plasmasgas: 5 ... 35 mL/min</td>
</tr>
<tr>
<td></td>
<td>O₂ – Zumischung: 20 ... 40 µL/min</td>
</tr>
<tr>
<td></td>
<td>Elektrodenspülung (O₂): 20 mL/min</td>
</tr>
<tr>
<td></td>
<td>Spülung des optischen Weges (He): 40 mL/min</td>
</tr>
<tr>
<td>Durchmesser der Entladung</td>
<td>150 µm</td>
</tr>
</tbody>
</table>
3.2 HP – AED

Das mikrowelleninduzierte Plasma ist mit einem Durchmesser von ca. 0,7 mm und einer Länge von einigen Millimetern deutlich größer als die Entladung des µ-ESDs und wird in einer Quarzkapillare betrieben. Dies bringt gegenüber der offenen Bauweise Vorteile hinsichtlich der Dichtheit. Jedoch kommt es bei den hohen Temperaturen an der Kapillarini-

Bei der Ausblendung des Lösungsmittelsignals geht HP den interessanten Weg einer Plasmagegenspülung. In einem frei wählbaren Zeitintervall wird ein starker He-Strom von der Optikseite her durch das Entladungsrohr geleitet (Abbildung 15). Der Trägergasstrom kann so nicht durch das Quarzrohr fließen und wird über ein gleichzeitig geöffnetes Ventil nach außen abgeleitet. Auf diese Weise werden durch das Lösungsmittel verursachte Rußablagerungen vermieden.

![Abbildung 15. Prinzip der Gegenspülung („Solvent Vent“) zur Verhinderung des Eindringens des Lösungsmittels in das Plasma. Quelle: Dokumentation zum HP-AED.](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmaleistung</td>
<td>ca. 70 W</td>
</tr>
<tr>
<td>Leistungseinkopplung</td>
<td>induktiv</td>
</tr>
<tr>
<td>Plasmagas</td>
<td>He, wahlweise mit O₂, H₂, N₂ oder CH₄/N₂ dotiert</td>
</tr>
<tr>
<td>Gasflüsse</td>
<td>Plasmagas (He): 25 ... 180 mL/min</td>
</tr>
<tr>
<td></td>
<td>Spülung des optischen Weges: (He): 40 ... 50 mL/min</td>
</tr>
<tr>
<td></td>
<td>Dopantgase: 50 ... 200 µL/min</td>
</tr>
<tr>
<td>Größe der Entladung</td>
<td>ca. 0,7 mm i.D., 2 – 3 mm Länge</td>
</tr>
<tr>
<td>Ausgewählte Elementlinien</td>
<td>Chlor: 479 nm, 837 nm</td>
</tr>
<tr>
<td></td>
<td>Brom: 478 nm, 827 nm</td>
</tr>
<tr>
<td></td>
<td>Schwefel: 181 nm</td>
</tr>
<tr>
<td></td>
<td>Phosphor: 178 nm, 184 nm</td>
</tr>
<tr>
<td></td>
<td>Kohlenstoff: 193 nm, 496 nm, 834 nm</td>
</tr>
</tbody>
</table>

3.3 Gaschromatographie

Tab 4. Beschreibung der verwendeten GC-Säulen.

<table>
<thead>
<tr>
<th>Säule Typ HP 1 (Hewlett Packard)</th>
<th>Länge: 30 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Innendurchmesser: 0,32 mm</td>
</tr>
<tr>
<td></td>
<td>Filmdicke: 0,17 µm</td>
</tr>
<tr>
<td></td>
<td>Beschichtung: quervernetztes Polymethylsiloxan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Säule Typ HP 5 (Hewlett Packard)</th>
<th>Länge: 30 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Innendurchmesser: 0,25 mm</td>
</tr>
<tr>
<td></td>
<td>Filmdicke: 0,25 µm</td>
</tr>
<tr>
<td></td>
<td>Beschichtung: quervernetztes Polymethylsiloxan, 5 % der Methylgruppen durch Phenylgruppen substituiert</td>
</tr>
</tbody>
</table>
3.4 Chemikalien

Im Verlauf der Arbeit wurden verschiedene Standardmischungen eingesetzt. Verdünnungen dieser Standards erfolgten mit Lösungsmitteln der Qualitätsstufen „Suprapur“ bzw. „Zur Analyse“. In den folgenden Tabellen wird sich auf den Gehalt der für die Experimente relevanten Verbindungen beschränkt. Die vollständigen Listen befinden sich im Anhang.

Tab 5. Zusammensetzung der Standardlösung HP-AED 1 (Auszug). Die Substanzen sind in i-Octan gelöst.

<table>
<thead>
<tr>
<th>Name</th>
<th>Formel</th>
<th>Molmasse</th>
<th>Gehalt in ng/µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Octan</td>
<td>C₈H₁₈</td>
<td>114,26</td>
<td>27875,53</td>
</tr>
<tr>
<td>1-Bromhexan</td>
<td>C₆H₁₃Br</td>
<td>165,09</td>
<td>482,99</td>
</tr>
<tr>
<td>Tert-Butyldisulfid</td>
<td>C₈H₁₈S₂</td>
<td>178,38</td>
<td>344,99</td>
</tr>
<tr>
<td>1,2,4-Trichlorbenzol</td>
<td>C₆H₃Cl₃</td>
<td>181,44</td>
<td>551,99</td>
</tr>
<tr>
<td>n-Dodecan</td>
<td>C₁₂H₂₆</td>
<td>170,38</td>
<td>29669,50</td>
</tr>
<tr>
<td>n-Tridecan</td>
<td>C₁₃H₂₈</td>
<td>184,41</td>
<td>2966,95</td>
</tr>
<tr>
<td>n-Tetradecan</td>
<td>C₁₄H₃₀</td>
<td>198,58</td>
<td>896,98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Formel</th>
<th>Molmasse</th>
<th>Gehalt in ng/µL</th>
<th>Struktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etridiazol</td>
<td>C₅H₅Cl₃N₂OS</td>
<td>247,53</td>
<td>1000,0</td>
<td></td>
</tr>
<tr>
<td>Chloroneb</td>
<td>C₈H₈Cl₂O₂</td>
<td>207,06</td>
<td>1000,0</td>
<td></td>
</tr>
<tr>
<td>Propachlor</td>
<td>C₁₁H₁₄ClNO</td>
<td>211,10</td>
<td>1000,0</td>
<td></td>
</tr>
<tr>
<td>Hexachlorbenzol</td>
<td>C₆Cl₆</td>
<td>284,76</td>
<td>1000,0</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>C₆Cl₄N₂</td>
<td>265,90</td>
<td>1000,0</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Chemical Formula</td>
<td>MW</td>
<td>LogP</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Propanil (Chlorthal)</td>
<td>C₁₀H₆Cl₄O₄</td>
<td>329,90</td>
<td>1000.0</td>
<td></td>
</tr>
<tr>
<td>Chloropyriphos</td>
<td>C₉H₁₁Cl₃NO₃PS</td>
<td>350,59</td>
<td>1000.0</td>
<td></td>
</tr>
<tr>
<td>trans-Chlordan</td>
<td>C₁₀H₆Cl₆</td>
<td>409,76</td>
<td>999.8</td>
<td></td>
</tr>
<tr>
<td>cis-Chlordan</td>
<td>C₁₀H₆Cl₆</td>
<td>409,76</td>
<td>1000.3</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzilat</td>
<td>C₁₆H₁₄Cl₂O₃</td>
<td>325,20</td>
<td>1000.0</td>
<td></td>
</tr>
<tr>
<td>cis-Permethrin</td>
<td>C₂₁H₂₀Cl₂O₃</td>
<td>391,31</td>
<td>500.0</td>
<td></td>
</tr>
<tr>
<td>trans-Permethrin</td>
<td>C₂₁H₂₀Cl₂O₃</td>
<td>391,31</td>
<td>1500.0</td>
<td></td>
</tr>
</tbody>
</table>
4 Ergebnisse

4.1 Atomemissionsspektren der Elemente C, F, Cl, Br und S im nahen Infrarot (NIR)

Alle untersuchten Elementlinien befinden sich im NIR bzw. im oberen Bereich des VIS. Konkret umspannt dies den Bereich von ca. 739 nm (Fluor) bis zu ca. 940 nm (Kohlenstoff). Tabelle 6 enthält einen Auszug der Linientabellen für die Elemente C, F, Cl, Br und S in diesem Spektralbereich, wie sie vom NIST (National Institute of Standards and Technology) veröffentlicht wird [56]. Freigelassene Konfigurationen bzw. Terme entsprechen fehlenden Eintragungen in den NIST-Linientabellen.

<table>
<thead>
<tr>
<th>Linienart</th>
<th>Wellenlänge (nm)</th>
<th>relative Intensität</th>
<th>Konfiguration</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br I</td>
<td>813,152</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>815,375</td>
<td>13,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>815,400</td>
<td>33,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>826,496</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>827,244</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>833,470</td>
<td>26,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>834,370</td>
<td>13,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>844,655</td>
<td>53,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>863,866</td>
<td>26,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>879,347</td>
<td>13,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>881,996</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>882,522</td>
<td>33,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>889,762</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>916,606</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>917,363</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>917,816</td>
<td>26,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>926,542</td>
<td>53,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br I</td>
<td>932,086</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C I</td>
<td>805,862</td>
<td>25</td>
<td>2s² 2p 2p - 2s² 2p 5s</td>
<td>"P - P°"</td>
</tr>
<tr>
<td>C III</td>
<td>819,648</td>
<td>37,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ergebnisse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C III</td>
<td>833,299</td>
<td>18,8</td>
<td>2s 4d - 2p 3d</td>
<td>D° - F°</td>
</tr>
<tr>
<td>C I</td>
<td>833,515</td>
<td>65</td>
<td>2s^2 2p 3s - 2s^2 2p 3p</td>
<td>P° - S</td>
</tr>
<tr>
<td>C III</td>
<td>850,032</td>
<td>37,5</td>
<td>2s 3s - 2s 3p</td>
<td>S° - P°</td>
</tr>
<tr>
<td>C I</td>
<td>906,144</td>
<td>31,3</td>
<td>2s^2 2p 3s - 2s^2 2p 3p</td>
<td>P° - P</td>
</tr>
<tr>
<td>C I</td>
<td>906,249</td>
<td>25</td>
<td>2s^2 2p 3s - 2s^2 2p 3p</td>
<td>P° - P</td>
</tr>
<tr>
<td>C I</td>
<td>907,829</td>
<td>25</td>
<td>2s^2 2p 3s - 2s^2 2p 3p</td>
<td>P° - P</td>
</tr>
<tr>
<td>C I</td>
<td>908,851</td>
<td>31,3</td>
<td>2s^2 2p 3s - 2s^2 2p 3p</td>
<td>P° - P</td>
</tr>
<tr>
<td>C I</td>
<td>909,483</td>
<td>56,3</td>
<td>2s^2 2p 3s - 2s^2 2p 3p</td>
<td>P° - P</td>
</tr>
<tr>
<td>C I</td>
<td>911,181</td>
<td>37,5</td>
<td>2s^2 2p 3s - 2s^2 2p 3p</td>
<td>P° - P</td>
</tr>
<tr>
<td>C I</td>
<td>940,573</td>
<td>100</td>
<td>2s^2 2p 3s - 2s^2 2p 3p</td>
<td>P° - D</td>
</tr>
<tr>
<td>Cl I</td>
<td>821,204</td>
<td>18</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>P° - D°</td>
</tr>
<tr>
<td>Cl I</td>
<td>822,174</td>
<td>20</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>P° - D°</td>
</tr>
<tr>
<td>Cl I</td>
<td>833,331</td>
<td>18</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>P° - D°</td>
</tr>
<tr>
<td>Cl I</td>
<td>837,594</td>
<td>100</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>P° - D°</td>
</tr>
<tr>
<td>Cl I</td>
<td>842,825</td>
<td>15</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>P° - D°</td>
</tr>
<tr>
<td>Cl I</td>
<td>857,525</td>
<td>20</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>P° - D°</td>
</tr>
<tr>
<td>Cl I</td>
<td>858,598</td>
<td>75,1</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>P° - D°</td>
</tr>
<tr>
<td>Cl I</td>
<td>894,806</td>
<td>3</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>P° - P°</td>
</tr>
<tr>
<td>Cl I</td>
<td>912,114</td>
<td>7,5</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>P° - P°</td>
</tr>
<tr>
<td>Cl I</td>
<td>919,173</td>
<td>3</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>P° - P°</td>
</tr>
<tr>
<td>F I</td>
<td>685,603</td>
<td>100</td>
<td>2s^2 2p^3 3s - 2s^2 2p^3 3p</td>
<td>P° - D°</td>
</tr>
<tr>
<td>F I</td>
<td>690,247</td>
<td>30</td>
<td>2s^2 2p^3 3s - 2s^2 2p^3 3p</td>
<td>P° - D°</td>
</tr>
<tr>
<td>F I</td>
<td>703,746</td>
<td>90</td>
<td>2s^2 2p^3 3s - 2s^2 2p^3 3p</td>
<td>P° - P°</td>
</tr>
<tr>
<td>F I</td>
<td>712,789</td>
<td>60</td>
<td>2s^2 2p^3 3s - 2s^2 2p^3 3p</td>
<td>P° - P°</td>
</tr>
<tr>
<td>F I</td>
<td>720,236</td>
<td>30</td>
<td>2s^2 2p^3 3s - 2s^2 2p^3 3p</td>
<td>P° - P°</td>
</tr>
<tr>
<td>F I</td>
<td>731,102</td>
<td>30</td>
<td>2s^2 2p^3 3s - 2s^2 2p^3 3p</td>
<td>P° - P°</td>
</tr>
<tr>
<td>F I</td>
<td>739,868</td>
<td>20</td>
<td>2s^2 2p^3 3s - 2s^2 2p^3 3p</td>
<td>P° - P°</td>
</tr>
<tr>
<td>F I</td>
<td>775,469</td>
<td>36</td>
<td>2s^2 2p^3 3s - 2s^2 2p^3 3p</td>
<td>P° - D°</td>
</tr>
<tr>
<td>F I</td>
<td>780,021</td>
<td>30</td>
<td>2s^2 2p^3 3s - 2s^2 2p^3 3p</td>
<td>P° - D°</td>
</tr>
<tr>
<td>S I</td>
<td>921,286</td>
<td>100</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>S° - P</td>
</tr>
<tr>
<td>S I</td>
<td>922,809</td>
<td>70</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>S° - P</td>
</tr>
<tr>
<td>S I</td>
<td>923,754</td>
<td>54</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>S° - P</td>
</tr>
<tr>
<td>S I</td>
<td>941,346</td>
<td>13,3</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>D° - F</td>
</tr>
<tr>
<td>S I</td>
<td>942,193</td>
<td>13,3</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>D° - F</td>
</tr>
<tr>
<td>S I</td>
<td>943,713</td>
<td>13,3</td>
<td>3s^3 3p^4 4s - 3s^3 3p^4 4p</td>
<td>D° - F</td>
</tr>
</tbody>
</table>

In der Spalte „Konfiguration“ sind die Konfigurationen der Valenzelektronen im Ausgangs- und angeregten Zustand, getrennt durch einen Bindestrich, dargestellt. Die dazuge-
hörigen Terme befinden sich in der Nachbarspalte. Das Termsymbol lautet in allgemeiner Form \(2S+1L_J\). Die Bahndrehimpulsquantenzahl, \(L\), legt den Termcharakter des jeweiligen Atoms oder Ions fest. Bei Werten von \(L = 0, 1, 2, 3\) spricht man von \(S\), \(P\), \(D\), \(F\)-Termen. Links oben am Termsymbol steht die Multiplizität des Terms, die von der Spinquantenzahl, \(S\), bestimmt wird. Die Angabe der inneren Quantenzahl bzw. Gesamtdrehimpulsquantenzahl, \(J\), welche rechts unten an das Termsymbol geschrieben wird, fehlt in dieser Tabelle. Eine hochgestellte Null (°) symbolisiert eine ungerade Parität des Terms.

Der betrachtete Spektralbereich wurde auszugsweise über spektrale Fenster um eine Zentralwellenlänge aufgezeichnet. Dazu kam das in Kapitel 3.2 beschriebene Kontron KLM 320 mit einem Diodenarray der Firma Karger KG zum Einsatz. Die Breite des spektralen Fensters, \(B\), hängt von der in Gleichung (8) beschriebenen reziproken Lineardispersion, \(R_d\), und der Länge des Diodenarrays auf der Fokalebene, \(L\), ab:

\[B = R_d L \] (21)

Insgesamt erfolgte die Spektrenaufnahme in drei spektralen Fenstern, im folgenden als Fenster 1, Fenster 2 und Fenster 3 bezeichnet. Die Spektren wurden als transientes chromatographisches Signal aufgezeichnet, wobei jeweils das Spektrum im Maximum des chromatographischen Peaks dargestellt ist. In den folgenden Abbildungen sind die Emissionslinien der betrachteten Elemente in den entsprechenden spektralen Fenstern dargestellt.

Abb 16. Emissionslinien im Fenster 1 von 685 nm bis 746 nm
Ergebnisse

Tab 8. Relative Intensitäten wichtiger Emissionslinien im NIR. Der Vergleich zwischen SCP und µ-ESD ist nur bedingt sinnvoll, da verschiedene Spektrometer verwendet wurden.

<table>
<thead>
<tr>
<th>Emissionslinie</th>
<th>Relative Intensität SCP [25]</th>
<th>Relative Intensität µ-ESD</th>
</tr>
</thead>
<tbody>
<tr>
<td>C I – 833,299 nm</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>C I – 940,537 nm</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cl I – 837,594 nm</td>
<td>55</td>
<td>10</td>
</tr>
<tr>
<td>Cl I – 894,806 nm</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td>Cl I – 912,114 nm</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Br I – 827,244 nm</td>
<td>58</td>
<td>17</td>
</tr>
<tr>
<td>Br I – 889,762 nm</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>S I – 921,286 nm</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>S I – 922,809 nm</td>
<td>73</td>
<td>74</td>
</tr>
</tbody>
</table>

Die gefundenen Intensitätsverhältnisse stimmen in der Größenordnung auch mit Ergebnissen von HUBERT et. al. überein [57], bei denen ein MIP in Kopplung mit einem FT-NIR-Spektrometer verwendet wurde. Da die wellenlängenabhängige Empfindlichkeit der verwendeten Optik nicht bekannt war, konnten lediglich die unkorrigierten Intensitäten miteinander verglichen werden.

4.2 Optimierung wichtiger Betriebsparameter für den µ-ESD

4.2.1 Allgemeines

Wie bereits in Kapitel 2.2 beschrieben, ist Sauerstoff als Zumischgas beim Betrieb eines AEDs sehr hilfreich, da spektrale Interferenzen reduziert und Kohlenstoffablagernungen vermieden werden. Die Wirkung des Sauerstoffs beruht vor allem auf seiner Eigenschaft, schnelle Elektronen einzufangen. Damit beeinflußt die Sauerstoff-Zumischung auch direkt
 Ergebnisse

49
die Anregungseigenschaften des Plasmas. Aus diesem Grund sollte die Menge des zuge-

mischten Sauerstoffes optimiert werden.

Neben Sauerstoff sind auch andere Zumischgase, z.B. Wasserstoff, potentiell interessant.
Der Einfluß von Wasserstoff auf die Detektionseigenschaften des HP-AEDs [32] bzw. des
SCPs [33] wurden bereits untersucht. In dieser Arbeit wurden einige Übersichtsversuche
zum Einfluß des Wasserstoffs auf die Detektionseigenschaften des µ-ESDs durchgeführt.

4.2.2 Plasmagasfluß und Sauerstoff-Zumischung

Die ersten Messungen zum Einfluß von Plasmagasfluß und Sauerstoff-Zumischung auf die
Detektionseigenschaften erfolgten bereits mit einem frühen, an ein Diodenarray gekoppel-
ten Vorprototyp (Modell 1), wie er in Kapitel 3.1.1 (Abbildung 9) beschrieben ist. Dazu
wurden die beiden Einflußgrößen auf mehreren Niveaus variiert. Als Zielgrößen wurden
die Peakhöhe als Maß für die Empfindlichkeit und die Selektivität gegen Kohlenstoff
(2.510 ng C aus Dodecan, Tabelle 5) nach einer einfachen Untergrundkorrektur entspre-
chend Gleichung (13) gewählt.

In der aktuellen IFS-Version des µ-ESDs (Modell 2) beschränkten sich die Optimierungen
auf Chlor. Die Einflußgrößen wurden nach einem Versuchsplan variiert. Der Verlauf der
Zielgrößen wurde mit der Statistiksoftware Statistica® ausgewertet und graphisch dargestellt.

4.2.2.1 Brom

Für Brom kommen im NIR nur die in Tabelle 7 aufgeführten Linien in Betracht, nämlich
bei 827,244 nm und bei 889,762 nm, im folgenden als Br 827 und Br 889 bezeichnet. Um
den Einfluß von Sauerstoff-Zumischung und Plasmagasfluß auf die Zielgrößen zu erfassen,
erfolgte eine Variation auf den in der folgenden Tabelle aufgeführten Niveaus.

Tab 9. Für die Optimierung von Empfindlichkeit und Selektivität der Brombestimmung
varierte Gasflüsse.

<table>
<thead>
<tr>
<th>Versuch Nr.</th>
<th>Plasmagasfluß [mL/min]</th>
<th>O₂ – Fluß [µL/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,25</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>10,25</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>32,5</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>5,5</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>5,5</td>
<td>41</td>
</tr>
</tbody>
</table>
Die in den Abbildung 19 und 20 graphisch dargestellten Beziehungen zwischen Einfluß- und Zielgrößen für Br 827 zeigen, daß die Optima für die Selektivität und die Empfindlichkeit bei unterschiedlichen Bedingungen erreicht werden. Die besten Werte für die Empfindlichkeit liegen bei niedrigen Helium- und Sauerstoff-Flüssen, da bei geringen Plasmagasflüssen offenbar ein Konzentrierungseffekt zum Tragen kommt. Unter diesen Bedingungen reagierte das Plasma in der verwendeten Bauform jedoch empfindlich auf hohe Stoffbeladung, so daß sich die Selektivität gegen Kohlenstoff merklich verschlechterte.

\[
z = 11310 - 202,8x + 87,7y + 2,753x^2 + 1,705xy - 1,451y^2
\]

Zur Charakterisierung des Modells erfolgte eine Berechnung der mittleren Reststreuung, \(R\), gemäß folgender Gleichung:

\[
R = \sqrt{\frac{\sum_{i=1}^{n} (z_{Exp} - z_{Modell})^2}{\sum_{i=1}^{n} z_{Exp}^2}} \cdot 100\%
\]

(22)

mit \(z_{Exp}\) – im Experiment ermittelte Zielgröße, \(z_{Modell}\) – mit dem Modell berechnete Zielgröße. Es wird über \(n\) Meßwerte summiert. Für das Modell aus Abbildung 19 ergibt sich...
nach Gleichung (22) eine mittlere Reststreuung von 7,54%. Eine Tabelle mit allen der Berechnung zugrundeliegenden Daten befindet sich im Anhang.

Für die Selektivitätsbestimmung wurde ein Störsignal herangezogen, daß durch 2.510 ng Kohlenstoff (aus Dodecan) entstand. Die Störung wurde mittels einer Untergrund-Korrekturspur vom Chromatogramm gemäß Gleichung (13) subtrahiert und das resultierende Signal bei der Retentionszeit des Dodecans im Verhältnis zum Bromsignal ausge-
Ergebnisse

wertet (Abbildung 21). Details zu den durchgeführten Untergrundkorrekturberechnungen finden sich im Kapitel 4.3.

Die zweite untersuchte Bromlinie, Br 889, stellte sich als wesentlich intensiver heraus als Br 827. Wie den Abbildung 22 und 23 zu entnehmen ist, ergibt sich auch ein etwas anderer Verlauf der Zielgrößen. Bei niedrigen Flüssen, bei denen die Empfindlichkeit der Br-Linie am größten ist, kommt es aufgrund der geringeren Verdünnung der Analyten im Plasma verstärkt zur Bildung von Interferenzen; die Selektivität nimmt ab.
Ergebnisse

Br 889: Selektivität

\[z = 7144 - 178,7x + 123,9y + 2,475x^2 - 2,606xy - 0,745y^2 \]

\[z = 5638 - 2041x + 390,7y + 129,6x^2 + 13,38xy - 3,56y^2 \]
Die erzielten Reststreuungen betragen für die Optimierung der Empfindlichkeit \(R = 12,7\% \) und für die Optimierung der Selektivität \(R = 4,29\% \).

4.2.2.2 Chlor

Ergebnisse

Die erzielten Reststreuungen betragen für die Optimierung der Empfindlichkeit $R = 4,24\%$ und für die Optimierung der Selektivität $R = 5,03\%$.

Während in der Literatur Cl 837 bei mehreren Anregungsquellen als die intensivste Emissionslinie im NIR geführt wird [56] und darüber hinaus in einem für konventionelle Spektrometer leicht zugänglichen spektralen Bereich liegt, zeichnet sich Cl 894 durch ein sehr gutes SBR und geringe Anfälligkeit gegen spektrale Interferenzen aus. Wie aus der Tabelle 8 hervorgeht, weist diese Emissionslinie bei dem verwendeten Versuchsaufbau sogar eine größere Intensität auf als Cl 837. Die guten Eigenschaften werden durch die geringe Abhängigkeit der Zielgrößen von der Sauerstoff-Zumischung bestätigt (Abbildung 26). Die nach Gleichung (22) berechneten Reststreuungen betragen für die Empfindlichkeit 10,3% und für die Selektivität 3,10%.

Die Zunahme der Selektivität mit steigendem Plasmagasfluß (Abbildung 27) ist vor allem auf eine bessere Stabilität der Entladung zurückzuführen. Dies führt dazu, daß Interferenzemissionen stärker unterdrückt werden als die Chloremission. Leider stand für Cl 894 kein Interferenzfilter zur Verfügung, so daß auf die Untersuchung dieser vielversprechenden Linie mit dem stark verbesserten IFS-Prototyp des µ-ESDs verzichtet werden mußte.

\[z = 10170 - 128,7x + 111,7y + 1,34x^2 - 2,63xy - 2,34y^2 \]

Durch die genannten Interferenzen ist Cl 912 keiner einfachen Untergrundkorrektur zugänglich. Die Auswertung der durchgeführten Messungen beschränkte sich daher auf die Empfindlichkeit.

Ergebnisse

Tab 10. Zentral zusammengesetzter Versuchsplan für die Untersuchung von zwei Einflußgrößen.

<table>
<thead>
<tr>
<th>Versuch Nr.</th>
<th>Faktor 1 Plasmagasfluß</th>
<th>Faktor 2 O₂ – Fluß</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kodiert</td>
<td>mL/min</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>-1,414</td>
<td>7,9</td>
</tr>
<tr>
<td>10</td>
<td>1,414</td>
<td>22,1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

Der dargestellte Versuchsplan ermöglicht eine statistisch vorteilhafte Beschreibung der Beziehungen zwischen Einfluß- und Zielgrößen. Die Anzahl, r, der notwendigen Versuche berechnet sich in diesem Falle zu

$$r = 2^{k-p} + 2k + n_0$$ \hfill (23)

Darin bedeuten k – Anzahl der Faktoren (Einflußgrößen); p – Grad der Reduktion des vollständigen Versuchsplans ($p = 0$); n_0 – Anzahl der Experimente im Zentrum des Versuchsplans. Im vorliegenden Fall wurde $n_0 = 4$ gewählt. Die Sternpunkte des Versuchsplans werden so gewählt, daß sie auf einem Kreis (zwei Faktoren) bzw. der Oberfläche einer Kugel (drei Faktoren) liegen. Der Abstand vom Zentrum des Versuchsplans, α, kann mit folgender Gleichung berechnet werden:

$$\alpha = 2^{(k-p)/4}$$ \hfill (24)

Der in Abbildung 29 gezeigte Verlauf der Empfindlichkeit in Abhängigkeit von den Einflußgrößen weist vor allem bei mittleren Sauerstoff-Zumischungen beachtliche Konstanz auf. Nur bei hohen Sauerstoff-Flüssen knickt die Antwortfläche etwas ein. Im Vergleich zu der mit Modell 1 für Cl 837 durchgeführten Optimierung (Abbildung 24) fällt die Verlage rung des Optimums zu mittleren Gasflüssen bei geringem Einfluß des Plasmagasflusses auf, wobei die aktuelle Optimierung aufgrund des verwendeten Modells und der höheren Datenzahl als zuverlässiger einzustufen ist.

\[z = 58.9 + 1.92x + 6.39y - 0.129x^2 + 0.055xy - 0.11y^2\]

\[Peakhöhe\ in\ counts\]

\[z = 9625 \cdot 1437x + 284.6y + 55.9x^2 - 1.71xy - 3.53y^2\]
Der wesentliche Grund für die geringe Abhängigkeit der Empfindlichkeit von den Einflußgrößen liegt in der mittlerweile verbesserten Technik des µ-ESDs, welche den Detektor unempfindlicher gegen Schwankungen in den Betriebsbedingungen macht. Wie allerdings aus Abbildung 30 hervorgeht, kann diese Aussage nicht auf die Selektivität übertragen werden. Hier ist eine starke Abhängigkeit von den Einflußgrößen festzustellen. Die bei Plasmagasflüssen über 20 mL/min besonders guten Selektivitäten sind, ähnlich wie bei Cl 894, wahrscheinlich darauf zurückzuführen, daß störende Molekülemissionen unterdrückt werden, während die Atomemission kaum beeinflußt wird oder sogar zunimmt.

Die nach Gleichung (22) berechneten mittleren Reststreuungen betragen für die Empfindlichkeit 6,31% und für die Selektivität 14,7%.

Betrachtet man zusammenfassend die für die drei Chlorlinien Cl 837, Cl 894 und Cl 912 erhaltenen Ergebnisse, bietet sich kein einheitliches Bild. Allerdings scheinen die optimalen Bedingungen für die Empfindlichkeit eher bei niedrigen Plasmagasflüssen zu liegen, während das Optimum für die Selektivität bei mittleren oder hohen Plasmagasflüssen erreicht wird. Je nach Zielstellung muß also ein Kompromiß zwischen beiden Zielgrößen gewählt werden.

Die potentiell besonders hohe Selektivität von Cl 894 sowie die außerordentliche Empfindlichkeit von Cl 912 machen beide Linien interessant für weitere Untersuchungen in der Zukunft. Aufgrund mangelnder technischer Voraussetzungen konnte dies im Rahmen der vorliegenden Arbeit nicht realisiert werden.

4.2.2.3 Fluor

Die einzige erfolgversprechende Linie für Fluor befindet sich im oberen VIS, bei 739,868 nm (F 739). Die laut NIST intensivste Linie bei 685,603 nm (siehe Tabelle 7) erreicht im µ-ESD nur knapp 50 % der Intensität von F 739. In seinen Detektionseigenschaften weist Fluor einige auch von anderen Anregungsquellen bekannte Eigenheiten auf, die in seiner hohen Reaktivität begründet liegen. Dies geht auch aus Abbildung 31 hervor. Die mittlere Reststreuung für die Optimierung der Empfindlichkeit wurde mit \(R = 11,9\% \) berechnet.
Ergebnisse

Fluor - Spur
bei 5,5 ml/min Plasmagasfluß
bei 48,0 ml/min Plasmagasfluß

Zeit
Intensität

Abb 32. Form und Größe des Fluorpeaks in Abhängigkeit vom Plasmagasfluß, untergrundkorrigiert. Zur besseren Übersicht wurden die Chromatogramme mit einem x- und y-Offset dargestellt.

F 739: Selektivität

Selektivität vs. Kohlenstoff

O₂-Fluß in µL/min
Plasmagasfluß in mL/min

$z = -18790 + 967,1x + 1310y - 14,5x^2 - 1,17xy - 21,7y^2$

Der in Abbildung 33 dargestellte Verlauf der Selektivität gegen Kohlenstoff entspricht weitgehend den Erwartungen. Interessant sind die trotz recht geringer Empfindlichkeit erzielten sehr guten Selektivitäten von z.T. über 12.000. Auch fällt der dominierende Einfluß des Plasmagasflusses gegenüber der Sauerstoff-Zumischung auf. Offenbar profitiert die Selektivität vom Verlauf der Empfindlichkeit. Die mittlere Reststreuung für die Optimierung der Selektivität beträgt 8,09%.

Beim Fluor tritt der seltene und wünschenswerte Fall ein, daß Empfindlichkeit und Selektivität weitgehend bei gleichen Bedingungen ein Optimum erreichen, so daß beim Einstellen der Meßbedingungen kein Kompromiß eingegangen werden muß. Insgesamt bleibt die fluorselektive Detektion mit dem µ-ESD jedoch relativ unempfindlich.

4.2.2.4 Schwefel

Wie für Fluor existiert auch für Schwefel lediglich eine analytisch interessante Linie im NIR. Sie liegt bei 921,286 nm (S 921) und ist die intensivste Linie einer Dreiergruppe. Das Intensitätsverhältnis der Linien zueinander entspricht weitgehend den vom NIST veröffentlichten Werten (Tabelle 7). In Abbildung 34 ist der Empfindlichkeitsverlauf von S 921 dargestellt.

\[z = 9849 + 189,3x - 242,9y - 0,648x^2 - 7,41xy + 4,21y^2 \]

Abschließend kann zu S 921 festgestellt werden, daß die Linie trotz ihrer im Vergleich zu S 181 geringeren Empfindlichkeit ein sehr gutes Potential hinsichtlich der Selektivität besitzt. Dadurch wird S 921 als alternative Linie interessant, zumal im NIR die Möglichkeit besteht, einfache und im Vergleich zu konventionellen Spektrometern kostengünstige Lösungen wie IFS einzusetzen.
4.2.3 Wasserstoff-Zumischung

In der vorliegenden Arbeit wurde der Einfluß des Wasserstoffs auf die Detektionseigenschaften des µ-ESDs anhand einiger Übersichtsversuche untersucht. Zu diesem Zweck erfolgte für die Elemente Brom, Chlor, Fluor und Schwefel eine Zumischung von Wasserstoff zum Plasmagas gemäß folgender Tabelle:

<table>
<thead>
<tr>
<th>Versuch Nr.</th>
<th>Faktor 1 Plasmagasfluß [mL/min]</th>
<th>Faktor 2 H$_2$ – Fluß [µL/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,5</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>10,25</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>32,5</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>32,5</td>
<td>41</td>
</tr>
</tbody>
</table>

Zur Auswertung wurde die Netto-Intensität und das Signal-zu-Untergrund-Verhältnis (SBR) der gewählten Linien herangezogen. Es zeigte sich, daß eine Zumischung von Wasserstoff zu einer Verschlechterung beider Parameter führte. Dies ist beispielhaft für Cl 837 und S 921 in Abbildungen 36 bzw. 37 dargestellt. Im direkten Vergleich von Empfindlichkeit und SBR wird deutlich, daß sich die Wasserstoff-Zumischung auf verschiedene Arten auswirkt. Zunächst verschlechtert sich die Anregungsbedingungen im Plasma [60], was sich besonders auf hochenergetische Übergänge auswirkt. Dadurch verschlechtert sich vor
Ergebnisse

... die Empfindlichkeit. Der spektrale Untergrund ist davon weniger betroffen, da das SBR merklich weniger als die Empfindlichkeit reduziert wird. Dies dürfte zum einen ebenfalls auf den Verlust an He⁺-Teilchen, die gemäß Gleichung (2) maßgeblich am Entstehen des Kontinuums beteiligt sind, zurückzuführen sein. Andererseits werden durch Reaktionen zwischen dem Wasserstoff und im Plasma vorhandenen Radikalen und Molekülfragmenten Untergrundkomponenten, die aus der Emission angeregter Verbindungen wie N₂, NO oder C₂ resultieren, abgebaut und durch im UV/VIS emittierende Verbindungen wie NH oder CH ersetzt.

Bei S 921 tritt bei mittleren Helium-Flußraten eine leichte Verbesserung des SBR trotz Verschlechterung der Empfindlichkeit auf. Diese Linie ist besonders von CN-Emissionen...
betroffen, die durch Wasserstoff-Zumischung deutlich zurückgedrängt werden. Dieser Effekt spielt jedoch nur dann eine Rolle, wenn der Detektor nicht ausreichend gegen das Eindiffundieren von Luft gesichert ist, wie dies bei Modell 1 der Fall war.

4.3 Untergrundkorrektur

4.3.1 Überblick

Im vorangegangenen Kapitel wurden für die Optimierung der Selektivität bereits untergrundkorrigierte Daten verwendet. An dieser Stelle soll auf die Problematik der Untergrundkorrektur eingegangen und verschiedene Ansätze auf dem Weg zum Ziel diskutiert werden.

Um eine erfolgreiche Untergrundkorrektur durchführen zu können, ist es zunächst erforderlich, die vorliegende Interferenz zu analysieren, sie einer verursachenden Spezies zuzuordnen. Ist dies geschehen, muß ein spektraler Bereich gefunden werden, in dem der Interferent, seinerseits ungestört, erfaßt werden kann. Hier liegt eine der Hauptschwierigkeiten, da es oft sehr diffizil ist, einen solchen spektralen Bereich zu finden. Darüber hinaus wird ein Analysensignal in der Regel von mehreren Interferenzen überlagert, die sich z.T. gegenseitig kompensieren, so daß der Einfluß des einzelnen Interferenten nur ungenau erfaßt werden kann.

Bevor man eine numerische Untergrundkorrektur durchführt, sollte sichergestellt sein, daß bereits eine Minimierung der Interferenz auf physikalisch-chemischem Wege, in diesem Falle durch die Optimierung der Gasströme und der Zusammensetzung des Plasmagases, stattgefunden hat. Die hier aufgeführten Berechnungen wurden daher nur mit Datensätzen durchgeführt, die unter optimalen Bedingungen erhalten wurden.
4.3.2 Einfache Untergrundkorrektur

Unter guten Bedingungen liefert bereits die einfachste aller Korrekturmöglichkeiten, die Subtraktion eines Untergrundkorrekturkanals, befriedigende Ergebnisse hinsichtlich der Selektivität des Analyten gegen eine Interferenz und damit der Sicherheit des Analysenergebnisses. Da prinzipiell pro zu korrigierender Interferenz nur ein Datenpunkt pro Zeiteinheit notwendig ist, eignet sich diese Methode besonders für die IFS-Version des µ-ESDs. Wie bereits geschildert, werden gemäß Gleichung (13) ein oder mehrere Untergrundkanäle vom Analytkanal abgezogen.

Bei dem verwendeten Prototypen des µ-ESDs standen neben dem Kohlenstoff- und dem Chlorkanal ein Chloruntergrundkanal, ein Gesamtlichtkanal und ein Feldstärkekanal für die Untergrundkorrekturversuche zur Verfügung. Diese Kanäle sind in der Abbildung 38 für ein einfaches Stoffgemisch (HP-AED Mix, siehe Tabelle 5) dargestellt.

Der auf allen Kanälen erkennbare ausgeprägte Einbruch zwischen 1,5 min und 2,2 min kommt durch ein vorübergehendes Ausschalten des Detektors zustande, eine einfache Möglichkeit, Schäden durch das Lösungsmittel zu verhindern.

Im Prinzip zeigen außer der Feldstärke alle zur Verfügung stehenden Kanäle ausgeprägte Reaktionen auf die den Detektor passierenden Substanzen. Die Feldstärke verändert sich nur beim Durchgang sehr großer Substanzmengen und einer damit verbundenen Veränderung der Leitfähigkeit des Plasmas. Der Gesamtlichtkanal reagiert dagegen sehr ausgeprägt bereits auf geringe Stoffmengen mit einem Signaleinbruch. Das registrierte Licht stammt hauptsächlich von Sauerstoff- und Heliumemissionen. Es wird durch den „Verbrauch“ von Sauerstoff, aber auch durch eine allgemeine Abkühlung und damit eine verringerte Gesamtmission reduziert; die Helligkeit des Plasmas nimmt ab.
Alle zur Verfügung stehenden Datenkanäle beim IFS-Prototypen (Modell 2) des µ-ESDx. Der Gesamtlichtkanal erfasst sämtliches, oberhalb von 500 nm vom µ-ESD emittiertes Licht. Aufnahmebedingungen: 10 mL/min Plasmagasfluß, 48,5 µL/min Sauerstoff-Fluß, Split: 10:1.
Bereits ein einfacher visueller Vergleich der Kanäle bescheinigt dem Chloruntergrundkanal die besten Voraussetzungen zum Beschreiben der Interferenzen auf dem Chlorkanal. In der folgenden Abbildung sind diese beiden Kanäle in einem anschaulichen Maßstab dargestellt.

Abb 39. Typische durch Kohlenstoff hervorgerufene Interferenzen. 1 – 2970 ng Dodecan; 2 – 297 ng Tridecan; 3 – 90 ng Tetradecan.

Auf den ersten Blick erkennt man die Proportionalität zwischen der Masse an Kohlenstoff im Plasma und der Stärke der Interferenz. Es handelt sich allerdings nicht um einen linearen Zusammenhang. Vor allem in sehr hohen Konzentrationsbereichen (Dodecan) ist mit einem Abknicken des Anstieges der Funktion zu rechnen. Unter Einbeziehung von neun der im AED-Mix enthaltenen Substanzen ergibt sich ein hyperbolischer Zusammenhang zwischen der Masse an Kohlenstoff und der Stärke der Interferenz auf dem Chloruntergrundkanal.

Abb 40. Abhängigkeit der Stärke der Interferenz von der Masse an Kohlenstoff im Plasma. \(f_1, f_2 \) - Koeffizienten
Das Abknicken der Funktion hat zwei Gründe: zum einen tritt bei den hier verwendeten hohen Konzentrationen durch die Säulenüberladung eine merkliche Peakverbreiterung ein, zum anderen wird dem Plasma infolge der großen Stoffmenge sehr viel Energie entzogen, was sich in einer verminderten Anregungseffizienz und einer geringeren Helligkeit äußert. Der letztere Effekt läßt sich auch sehr gut am Gesamtlichtkanal verfolgen.

Bereits die einfache, um einen empirisch ermittelten Faktor angepaßte Korrektur des Untergrundkanals führt zu einer Beseitigung aller kleinen Interferenzen bis etwa 75 ng C, wie in Abbildung 41 zu erkennen ist. Starke Interferenzen werden nicht restlos eliminiert.
Ergebnisse

Abb 42. Experimentell ermittelte Zusammenhang zwischen Interferenz und Kohlenstoffgehalt im Plasma.

1 Für die nichtlineare Abhängigkeit der Interferenz vom Kohlenstoffgehalt ist neben der Diskriminierung des Plasmas bei großen Stoffmengen auch der Umstand verantwortlich, daß die Bildung der Interferenten CN und CO nicht linear mit der Kohlenstoffkonzentration zunimmt.
Ergebnisse

74

die Überladung der Säule mit einhergehendem Fronting des chromatographischen Peaks aus. Bei einer (hypothetischen) Extrapolation nähert sich der Anstieg der Funktion Null.

Im nächsten Schritt wird unter Einbeziehung des Zusammenhangs in Abbildung 42 ein dynamischer Korrekturkoeffizient berechnet, der die verminderte Anregungseffizienz des Plasmas bei großen Stoffmengen berücksichtigt. Das bedeutet, daß jeder Meßpunkt des Chloruntergrundkanales mit einem eigenen Korrekturkoeffizienten korrigiert wird. Subtrahiert man dann den derart präparierten Chloruntergrundkanal vom Chlorkanal, tritt eine Überkompensation auf, die in ihrer Größenordnung der Plasmadiskriminierung entspricht.

Abb 43. Darstellung des Chlorkanals und des mit Hilfe eines dynamischen Faktors korrigierten Chlorsignals. Der Wert des Korrekturkoeffizienten liegt standardmäßig zwischen 1,0 und 1,1 und steigt bei großen Stoffmengen bis auf 2,1 an.
4.3.3 Korrektur mit Mehrkanalfiltern

Bereits eine einfache Registrierung des Chromatogrammes auf dem Maximum der intensivsten Schwefellinie bei 921,3 nm und der Einsatz einer einfachen Untergrundkorrektur (Abbildung 45) führt zu befriedigenden Ergebnissen hinsichtlich Signal-zu-Rausch-Verhältnis (SNR), Nachweisgrenze und Selektivität gegen Kohlenstoff. Durch die Nutzung der gesamten spektralen Information der Umgebung der Schwefel-Dreiergruppe besteht
die Möglichkeit, Selektivität und Empfindlichkeit weiter zu verbessern. Dazu werden je eine Elementspur und eine Untergrundspur aus dem Spektrum von 920,4 nm ... 924,7 nm mittels digitaler Filter generiert und voneinander abgezogen (Abbildung 46).

Zur Generierung der Filter wurde folgende Vorgehensweise gewählt:

- **Elementfilter**: Skalierung des Schwefelspektrums im genannten Bereich auf den Höchstwert eins; Werte unterhalb 0,03 werden gleich Null gesetzt.
- **Untergrundfilter**: Invertierung des skalierten Schwefelspektrums; Werte unterhalb 0,96 werden gleich Null gesetzt.

\[\text{Abb 45: Chromatogramm mit einfacher Untergrundkorrektur. Der empirisch ermittelte Korrekturkoeffizient gemäß Gleichung (13) beträgt 0,58.} \]
Jedes pro Zeiteinheit aufgenommene Spektrum, S_R, wird nun je einmal mit dem Elementfilter, $f_{\lambda, \text{Schwefel}}$, und dem Untergrundfilter, $f_{\lambda, \text{BG}}$, multipliziert und die Elemente des erhaltenen Vektors aufsummiert:

$$S_{\text{Schwefel}} = \sum_{\lambda} f_{\lambda, \text{Schwefel}} S_R$$

(25)

$$S_{\text{BG}} = \sum_{\lambda} f_{\lambda, \text{BG}} S_R$$

(26)

Die erhaltene Untergrundspur, S_{BG}, wird von der Elementspur, S_{Schwefel}, gemäß Gleichung (13) subtrahiert. Das Ergebnis dieser Untergrundkorrektur ist in der folgenden Abbildung dargestellt.
Zum Vergleich der Ergebnisse aus der einfachen Untergrundkorrektur und der Mehrkanal-Untergrundkorrektur wurden das SNR, die NWG und die Selektivität gegen Kohlenstoff herangezogen. Für letztere erfolgte eine Flächenintegration durch Integration von 4,58 min bis 4,80 min (Schwefelpeak) sowie von 5,23 min bis 5,45 min (Interferenz). Das Rauschen der Basislinie wurde bei 4,4 min bis 4,5 min bestimmt.

<table>
<thead>
<tr>
<th></th>
<th>Einfache Untergrundkorrektur</th>
<th>Mehrkanal-Untergrundkorrektur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peakhöhe</td>
<td>6620</td>
<td>51300</td>
</tr>
<tr>
<td>SNR</td>
<td>4300</td>
<td>4400</td>
</tr>
<tr>
<td>Selektivität (Dodecan)</td>
<td>12500</td>
<td>50800</td>
</tr>
<tr>
<td>NWG (pg)</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

Das Beispiel der Schwefelgruppe bei 921,3 ... 923,7 nm zeigt das Potential einer Mehrkanal-Untergrundkorrektur hinsichtlich der Selektivität, während sich die Empfindlichkeit der Schwefelbestimmung aufgrund des stärkeren Rauschens praktisch nicht verbessert. Als wesentlicher Nachteil bleibt analog zur einfachen Untergrundkorrektur die empirische Bestimmung des Korrekturkoeffizienten, mit dessen Hilfe die Untergrundspur an die Elementspur angepaßt wird.

4.3.4 Korrektur chemischer Interferenzen

Mischt man dem Plasma zusätzlich Wasserstoff zu (Abbildung 52), läßt sich die Interferenz noch weiter zurückdrängen. Offenbar erfolgt neben der allgemeinen Signaldepression eine Belegung der kühleren Bereiche mit Wasserstoff und unterbindet so eine Ablagerung von Bromverbindungen.
Abb 51. Verlauf der chemischen Interferenz (schwarz) sowie des Verhältnisses von Bromsignal zu chemischer Interferenz (blau) in Abhängigkeit vom Plasmagasfluß.

Abb 52. Br 889 – Spur ohne Wasserstoff (schwarz) und mit 41 µL/min Wasserstoff (rot). Der Plasmagasfluß beträgt 19,0 mL/min, die Sauerstoff-Zumischung 41 µL/min.

Die am Beispiel des Broms beschriebene Anlagerung von Fragmenten der Analyten im Inneren des Detektors und die daraus resultierenden chemischen Interferenzen wurden in
Ergebnisse

stark abgeschwächter Form auch bei Chlor und Schwefel festgestellt, stellen aber kein prinzipielles Problem dar. Sie werden durch unzureichend behandelte Oberflächen von Elektroden und anderen Bauteilen begünstigt, wie sie im verwendeten Vorprototyp (Modell 1) zum Einsatz kamen. Ein optimierter Herstellungsprozeß mit Entfernung von Graten sowie eine Politur der Oberflächen verringert die Angriffsmöglichkeiten für reaktive Fragmente und minimiert die potentielle Gefahr chemischer Interferenzen, so daß eine Wasserstoff-Zumischung mit den entsprechenden Nebenwirkungen wie Empfindlichkeitsverlust unterbleiben kann.

4.4 Kohlenstoffdetektion als Möglichkeit zur nichtselektiven Detektion

![Abb 53. Kalibration mit drei Konzentrationsniveaus. Verbindung: n-Tridecan](image-url)
Ein Vergleich der beiden Kalibrationsfunktionen zeigt nur geringe Abweichungen bei Anstieg und Ordinatenschnittpunkt. Erwartungsgemäß sinkt die Korrelation für die erweiterte Kalibration im Vergleich zur klassischen Kalibration etwas ab, was aber zumindest teilweise in der Vergrößerung des Konzentrationsbereiches begründet liegt. Der Linearitätsbereich bewegt sich mit vier Dekaden bereits im Grenzbereich. Dieser hängt jedoch nicht nur vom Detektor, sondern auch von der Probenkapazität der verwendeten GC-Säule ab.

Insgesamt zeigt das vorliegende Beispiel, daß eine verbundungsunabhängige Kalibration unter Beachtung der Struktur der Analyten erfolgreich durchgeführt werden kann. So ist zu erwarten, daß mit dieser Kalibration verschiedene Alkane in einem Konzentrationsbereich von 0,5 ng bis 100 ng bestimmt werden können.

4.5 Bestimmung analytischer Kenngrößen

Nachweisgrenze

Im Rahmen der vorliegenden Arbeit wurden für die untersuchten Elemente Brom, Chlor, Fluor, Kohlenstoff und Schwefel die Nachweisgrenzen bei optimalen Detektor-Betriebsbedingungen nach Gleichung (19) berechnet. Vor Bestimmung des SNR erfolgte eine 5-Punkte-FFT-Glättung des Chromatogrammes. Das Rauschen der Basislinie wurde an mehreren peakfreien Bereichen des Chromatogrammes bestimmt. Die Größe des Zeit-

<table>
<thead>
<tr>
<th>Element</th>
<th>Wellenlänge</th>
<th>BEC [ng]</th>
<th>NWG [pg]</th>
<th>Plasmagas [mL/min]</th>
<th>O₂-Zumischung [µL/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brom</td>
<td>827,244 nm</td>
<td>0,38</td>
<td>85</td>
<td>5,5</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>889,762 nm</td>
<td>0,40</td>
<td>19</td>
<td>5,5</td>
<td>41</td>
</tr>
<tr>
<td>Chlor</td>
<td>837,594 nm</td>
<td>0,34</td>
<td>74</td>
<td>5,5</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>894,806 nm</td>
<td>0,25</td>
<td>13</td>
<td>10,25</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>912,114 nm</td>
<td>0,40</td>
<td>7</td>
<td>5,5</td>
<td>41</td>
</tr>
<tr>
<td>Fluor</td>
<td>739,868 nm</td>
<td>1,6</td>
<td>179</td>
<td>32,5</td>
<td>41</td>
</tr>
<tr>
<td>Kohlenstoff</td>
<td>940,537 nm</td>
<td>3,0</td>
<td>28</td>
<td>19,0</td>
<td>41</td>
</tr>
<tr>
<td>Schwefel</td>
<td>921,286 nm</td>
<td>0,19</td>
<td>11</td>
<td>5,5</td>
<td>41</td>
</tr>
</tbody>
</table>

Die den Ergebnissen zugrunde liegenden Datenverarbeitungsoperationen wie Glättung und Untergrundkorrektur wurden für alle Elemente gleich gewählt, so daß z.B. die NWG für S 921 nicht nach der Multipunkt-Untergrundkorrektur, sondern nach einfacher Untergrundkorrektur berechnet wurde. Die Betriebsbedingungen des Detektors für jedes Element wurden entsprechend den in Kapitel 4.2.2 ermittelten Optima gewählt.

Mit dem weiterentwickelten IFS-Modell des µ-ESDs konnten aufgrund der zur Verfügung stehenden Interferenzfilter lediglich die Nachweisgrenzen von Cl 837 und C 940 bestimmt werden. Die Daten wurden ebenfalls vor der Bestimmung des Rauschens einer 5-Punkte-FFT – Glättung unterzogen. Das Rauschen der Basislinie wurde im Zeitfenster von 4,0 min bis 4,1 min sowie bei 6,9 min bis 7,0 min ermittelt.

<table>
<thead>
<tr>
<th>Element</th>
<th>Wellenlänge</th>
<th>BEC [ng]</th>
<th>NWG [pg]</th>
<th>Plasmagas [mL/min]</th>
<th>O₂-Zumischung [µL/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlor</td>
<td>837,594 nm</td>
<td>1,6</td>
<td>4</td>
<td>15</td>
<td>35,8</td>
</tr>
<tr>
<td>Kohlenstoff</td>
<td>940,537 nm</td>
<td>6,3</td>
<td>16</td>
<td>15</td>
<td>35,8</td>
</tr>
</tbody>
</table>
Im Vergleich zu den mit Modell 1 erhaltenen Daten fällt eine deutliche Verbesserung der NWG für die beiden untersuchten Elemente auf, wohingegen die BEC höher ausfallen. Trotz des scheinbaren Widerspruches korrespondieren beide Ergebnisse miteinander, da die Verschlechterung der BEC auf einer verstärkten Untergrundintensität beruht. Diese wiederum ist das Ergebnis einer verbesserten Lichtausbeute aufgrund der eingesetzten Optik. Die Verbesserung der NWG ist zum einen auf die größere Lichtausbeute, hauptsächlich jedoch auf das sehr niedrige Rauschen der Basislinie zurückzuführen.

Selektivität

Für die Höhe der Selektivität ist neben den apparativen Voraussetzungen wie Plasmagaszusammensetzung und Oberflächenbeschaffenheit der Bauteile im Entladungsbereich die Qualität der Untergrundkorrektur von entscheidender Bedeutung. Im Idealfall werden die Interferenzen durch die Untergrundkorrektur vollständig beseitigt. Um auch in solchen Fällen eine Selektivität angeben zu können, wurde als Interferenz-Peakhöhe das dreifache des mittleren Rauschens im Zeitfenster der Elution des n-Dodecans herangezogen. Die folgende Tabelle enthält eine Zusammenstellung der bei angegebener Plasmagaszusammensetzung mit dem Modell 1 erhaltenen Selektivitäten.

<table>
<thead>
<tr>
<th>Element</th>
<th>Wellenlänge</th>
<th>Selektivität vs. C [2510 ng]</th>
<th>Plasmagas [mL/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brom</td>
<td>827,244 nm</td>
<td>10.700</td>
<td>19,0</td>
</tr>
<tr>
<td></td>
<td>889,762 nm</td>
<td>36.200</td>
<td>19,0</td>
</tr>
<tr>
<td>Chlor</td>
<td>837,594 nm</td>
<td>26.000</td>
<td>5,5</td>
</tr>
<tr>
<td></td>
<td>894,806 nm</td>
<td>24.400</td>
<td>5,5</td>
</tr>
<tr>
<td>Fluor</td>
<td>739,868 nm</td>
<td>12.700</td>
<td>32,5</td>
</tr>
<tr>
<td>Schwefel</td>
<td>921,286 nm</td>
<td>33.400</td>
<td>5,5</td>
</tr>
</tbody>
</table>

Die beiden Linien werden bei der vorhandenen spektralen Auflösung von ca. 0,6 nm nicht ausreichend getrennt, so daß mit der einfachen Untergrundkorrektur keine befriedigende Korrektur erhalten werden konnte. Das Problem wurde nicht weiter verfolgt, da es sich um
einen konstruktionsbedingten Mangel handelte, welcher bei der Weiterentwicklung des µ-ESDs abgestellt wurde.

Erwartungsgemäß fällt die mit dem IFS-Modell erzielte Selektivität für Cl 837 schlechter aus als bei Modell 1, wie Tabelle 17 zu entnehmen ist. Dies ist nicht verwunderlich, da aufgrund der größeren Bandbreite eines Interferenzfilters verglichen zum Diodenarray-Spektrometer auch der Anteil an „Fremdlicht“ aus der unmittelbaren Umgebung der Atomlinie größer ist. Damit wirken sich breitbandige Interferenzen stärker auf die Basislinie des Chromatogrammes aus. Außerdem ist die spektrale Position des Untergrundkorrekturkanals mit ca. 836,5 nm nicht optimal für die Untergrundkorrektur bei 837,6 nm geeignet, da dieser spektrale Bereich nicht so stark unter dem Einfluß der Sauerstofflinie bei 840 nm steht wie Cl 837.

Tab 17. Unter optimalen Bedingungen erzielbare Selektivität von Cl 837 gegen Kohlenstoff für das Modell 2.

<table>
<thead>
<tr>
<th>Wellenlänge</th>
<th>Selektivität vs. C [2510 ng]</th>
<th>Plasmagas [mL/min]</th>
<th>O₂-Zumischung [µL/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>837,594 nm</td>
<td>3420</td>
<td>20</td>
<td>35,8</td>
</tr>
</tbody>
</table>

4.6 Vergleich des µ-ESDs mit anderen GC – Detektoren

4.6.1 Atomemissionsdetektor von HP

Nachweisgrenzen, Selektivität

Anhand des Diagramms wird der Qualitätssprung vom Modell 1 zu Modell 2 deutlich. Eine Übertragung auf die Elemente Brom, Fluor und Schwefel scheint legitim, so daß auch für diese Elemente mit einer deutlichen Verbesserung der Nachweisgrenzen gerechnet werden kann. Es ist allerdings nicht wahrscheinlich, daß für Schwefel und Kohlenstoff die Nachweisgrenzen des AEDs erreicht werden können, da die entsprechenden Linien im VUV deutlich empfindlicher sind.

Auffällig ist das schlechte Abschneiden von Br 827 beim AED. Diese Linie ist jedoch nicht erste Wahl für die Bromdetektion. Sie wurde zum Vergleich herangezogen, da sie mit beiden Detektoren erfaßt wird.
Die Selektivitäten gegen Kohlenstoff fallen für Modell 1 des µ-ESDs und den AED durchaus vergleichbar aus. Für Modell 2 fällt die Selektivität erwartungsgemäß schlechter aus. Die Gründe hierfür wurden in Kapitel 4.4 beschrieben.

Einsatzbereich, Flexibilität

Aufgrund seines PDA-Spektrometers können mit dem HP-AED eine Vielzahl an Elementen, darunter neben den typischen Haupt- und Heteroelementen der organischen Chemie auch einige Metalle bestimmt werden. Liegen die Analytlinien innerhalb eines spektralen Fensters und passen die Elemente von den Meßbedingungen her zueinander, erfolgt die Bestimmung simultan. Damit ist der Detektor von Hewlett Packard ein leistungsfähiger Universaldetektor; seine Stärken liegen in häufig wechselnden Analysenproblemen. Durch die erhaltenen Elementinformationen eignet er sich sehr gut als Ergänzung zur GC-MS.

Betriebskosten

Zur Erhöhung der Attraktivität des µ-ESDs gegenüber kommerziell bereits etablierten Detektoren sind niedrige Betriebskosten vorteilhaft. Dazu werden hier neben der Gasversorgung auch Installationsaufwendungen und Verschleißteile gerechnet. Die folgende Tabelle zeigt einen Vergleich von HP-AED und µ-ESD.

<table>
<thead>
<tr>
<th>Checkliste Verbrauchsmittel</th>
<th>µ-ESD (Modell 2)</th>
<th>AED (G2350A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsaufnahme Generator</td>
<td>ca. 15 W</td>
<td>ca. 70 W</td>
</tr>
<tr>
<td>Benötigte Gasanschlüsse</td>
<td>He (Makeup, Optics purge) O₂ (Dopantgas, Elektroden- spülung)</td>
<td>He (Makeup, Window purge O₂ (Dopantgas) H₂ (Dopantgas) N₂ (Spektrometerspülung)</td>
</tr>
<tr>
<td>Heliumverbrauch</td>
<td>≤ 80 mL/min</td>
<td>≤ 100 mL/min; bis zu 250 mL/min im High Flow - Modus</td>
</tr>
<tr>
<td>Kühlung</td>
<td>Luft (12 V – Ventilator)</td>
<td>Wasser (Umlaufkühlung)</td>
</tr>
<tr>
<td>Anschluß an PC</td>
<td>Serielle Schnittstelle</td>
<td>HPIB - Karte</td>
</tr>
<tr>
<td>Benötigte Zusatzgeräte</td>
<td>Keine</td>
<td>He-Getter zur Reinigung von He N50 Reinigungssäule zur Trocknung des Spül – N₂</td>
</tr>
<tr>
<td>Entladungszone, Austausch</td>
<td>Elektrodeneinheit, ca. 5 bis 10 min</td>
<td>Quarzkapillare, ca. 30 min</td>
</tr>
<tr>
<td>Stellfläche</td>
<td>Keine, wird auf dem GC montiert</td>
<td>ca. 50 cm × 60 cm, neben GC</td>
</tr>
</tbody>
</table>
4.6.2 Elektroneneinfangdetektor

dungsgruppe es sich handelt.

Im Gegensatz dazu ist die Empfindlichkeit des µ-ESDs und jedes anderen Atomemissionsdetektors auf halogenierte Verbindungen bedeutend geringer. Dafür besteht im Allgemeinen nur eine geringe Abhängigkeit der Empfindlichkeit von der Struktur der Verbindung [31, 43], so daß mit der verbindungsunabhängigen Kalibration eine Reduzierung des Kalibrationsaufwandes möglich wird. Weiterhin trägt die elementselektive Detektion zur Vereinfachung der Chromatogramme und damit des analytischen Problems bei. Die Abbil-
dung 59 dient als Vergleich zu Abbildung 58. Bei Verwendung der gleichen AED-
Testmischung wird nur für das Trichlorbenzol ein Peak erhalten.
5 Praktischer Einsatz: Bestimmung chlorierter Verbindungen in Sedimenten

Die Palette in der Umwelt auffindbarer halogenierter Verbindungen anthropogenen Ursprungs ist groß. Der größte Anteil entfällt auf chlorierte Verbindungen. Als Quellen treten sowohl Industrie als auch Landwirtschaft und Haushalte auf. Typische Vertreter anthropogener Halogenorganika sind chlorierte Benzole und Phenole, PCBs, Dioxine sowie FCKWs.

Neben den vom Menschen erzeugten und in die Umwelt eingetragenen Verbindungen werden auch bei biologischen und geochemischen Prozessen eine Vielzahl der unterschiedlichsten chlorierten Verbindungen gebildet [62]. Dazu gehören zum Beispiel auch bei Waldbränden gebildete Dioxine und bei Vulkanausbrüchen freigesetzte LHKWs.

Von einigen Verbindungsgruppen abgesehen ist die überwiegende Mehrheit der chlororganischen Verbindungen in Wasser mehr oder weniger schlecht löslich. Im Falle des Eintrages in Gewässer reichern sie sich daher im Sediment an, wo sie entsprechend den Umgebungsbedingungen unter Umständen viele Jahre verbleiben können.

Tab 19. Arbeitsbedingungen des GC für die Analyse der Auenbodenextrakte

<table>
<thead>
<tr>
<th>Säule</th>
<th>HP5 30 m (vernetztes Polymethysiloxan mit 5% Phenylgruppen), i.D.: 0,25 mm, Filmdicke: 0,25 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Phase</td>
<td>Helium, druckkonstanter Modus, 112 kPa</td>
</tr>
<tr>
<td>Ofenprogramm</td>
<td>50°C /1'/ 12,82°C/-140°C /8°C/-280°C /3'/ 35°C/-310°C /2'</td>
</tr>
<tr>
<td>Injektortemperatur / Modus</td>
<td>250°C / Splitless</td>
</tr>
<tr>
<td>Injektionsvolumen</td>
<td>1 µl</td>
</tr>
</tbody>
</table>
Ergebnisse mit dem µ-ESD

Abb 60. Schematische Darstellung einer Soxtech-Extraktionsapparatur. Das Extraktionsmittel wird am Rückfluß gekocht; das Kondensat rinnt permanent durch die Probe zurück in den Vorratskolben.

Abb 61. Chlor- und Kohlenstoffchromatogramm des Auenbodens A2/2C1, aufgenommen mit dem µ-ESD. Der größte Peak im Chlorchromatogramm erreicht ca. 420 mV.
Praktischer Einsatz

Abb 62. Chlor- und Kohlenstoffchromatogramm des Auenbodens A2/2C2, aufgenommen mit dem µ-ESD. Der größte Peak im Chlorchromatogramm erreicht ca. 190 mV.

Bei den dargestellten Proben A2/2C1 und A2/2C2 handelt es sich um Proben aus der gleichen Probenahmestelle, jedoch aus unterschiedlicher Tiefe. Bereits auf den ersten Blick ist eine Ähnlichkeit zwischen den Proben zu erkennen, wobei die Konzentration an chlorierten Verbindungen in der oberen Schicht (14 bis 30 cm, A2/2C1) höher ist als in der darunterliegenden Schicht (30 bis 50 cm, A2/2C2). Zum Vergleich der Ergebnisse mit den anderen Detektoren wurden die je vier intensivsten Peaks des Chlorkanals ausgewählt und das SNR berechnet.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Peak Nr.</th>
<th>Retentionszeit [min]</th>
<th>Fläche</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2/2C1</td>
<td>1</td>
<td>17,68</td>
<td>14,623</td>
<td>4,040</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>22,23</td>
<td>0,678</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>25,27</td>
<td>0,637</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24,68</td>
<td>0,504</td>
<td>95,3</td>
</tr>
<tr>
<td>A2/2C2</td>
<td>1</td>
<td>17,67</td>
<td>4,943</td>
<td>822</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>22,24</td>
<td>0,383</td>
<td>70,1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>23,86</td>
<td>0,340</td>
<td>54,6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24,68</td>
<td>0,210</td>
<td>30,8</td>
</tr>
</tbody>
</table>
Ergebnisse mit dem HP-AED

Abb 63. Chlor- (oben) und Kohlenstoffchromatogramm (unten) des Auenbodens A2/2C1, aufgenommen mit dem HP – AED. Der größte Peak im Chlorchromatogramm erreicht ca. 750 Counts.

Abb 64. Chlor- (oben) und Kohlenstoffchromatogramm (unten) des Auenbodens A2/2C2, aufgenommen mit dem HP – AED. Der größte Peak im Chlorchromatogramm erreicht ca. 130 Counts.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Peak Nr.</th>
<th>Retentionszeit [min]</th>
<th>Fläche</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2/2C1</td>
<td>1</td>
<td>16,60</td>
<td>8,070</td>
<td>2.940</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20,90</td>
<td>200,7</td>
<td>124,5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>23,80</td>
<td>166,9</td>
<td>68,50</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>23,19</td>
<td>81,20</td>
<td>30,00</td>
</tr>
<tr>
<td>A2/2C2</td>
<td>1</td>
<td>16,54</td>
<td>837,6</td>
<td>343,0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20,89</td>
<td>127,0</td>
<td>72,50</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>23,85</td>
<td>82,03</td>
<td>26,25</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>23,22</td>
<td>73,16</td>
<td>24,50</td>
</tr>
</tbody>
</table>

Der Vergleich der SNR aus den Tabellen 20 und 21 bestätigt die bereits in Kapitel 4.5 formulierte Erkenntnis, daß der µ-ESD dem HP-AED in Bezug auf die Empfindlichkeit der Chlordetektion überlegen ist. Dies ist im wesentlichen auf das geringere Rauschen der Basislinie des µ-ESDs zurückzuführen.

Vergleichsmessung mit dem ECD

![Chromatogramm des Auenbodens A2/2C1, aufgenommen mit dem ECD. Der größte Peak erreicht ca. 51600 Hz.](image)

Ebenso wie der AED erzeugt auch der ECD einen anderen Gegendruck auf den Säulenausgang als der µ-ESD. Dies führt zu der beobachteten annähernd linearen Retentionszeitver-
schiebung. Der größte Peak bei 16,24 min diente als Bezug beim Vergleich der Chromatogramme.

Tab 22. Zusammenstellung der sechs intensivsten Peaks aus A2/2C1 für den ECD. Für die Berechnung des SNR wurde die sechsfache Standardabweichung des Rauschens der Basislinie in einem peakfreien Bereich zugrunde gelegt.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Peak Nr.</th>
<th>Retentionszeit [min]</th>
<th>Fläche</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2/2C1</td>
<td>1</td>
<td>16,24</td>
<td>292,500</td>
<td>30,000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>22,28</td>
<td>86,750</td>
<td>6,085</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>20,68</td>
<td>60,750</td>
<td>5,115</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24,38</td>
<td>26,000</td>
<td>1,823</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>22,70</td>
<td>336,2</td>
<td>92,3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>23,18</td>
<td>11,110</td>
<td>920</td>
</tr>
</tbody>
</table>

Zusammenfassung

Der intensivste Peak in allen Chromatogrammen, vermutlich Hexachlorbenzol, besitzt aufgrund seiner sechs Chloratome eine gute Empfindlichkeit bei den elementselektiven Detektoren und aufgrund seiner Struktur eine ausgezeichnete Empfindlichkeit beim ECD. Die nicht identifizierten Peaks 5 und 6 (Tabelle 22) enthalten zwar ebenfalls Chlor, fallen gegen Peak 1 jedoch sehr stark ab. Dies deutet auf weit weniger elektrophile Strukturkomponenten hin. Umgekehrt fällt der nicht identifizierte Peak 2 beim ECD weniger stark hinter Peak 1 zurück (ca. 1:5) als bei den elementselektiven Detektoren (ca. 1:23). Offensichtlich besitzt die entsprechende Verbindung eine ausgeprägte elektrophile Struktur, was zu einer Verstärkung der Empfindlichkeit führt.

Insgesamt bleibt festzustellen, daß trotz einiger Grenzfälle, bei denen die Empfindlichkeit des ECDs für eine Substanz auf die Größenordnung der ESD sinken kann, die Empfindlichkeit der elementselektiven Detektion erwartungsgemäß deutlich hinter der eines ECDs zurückbleibt. Dies entspricht erwartungsgemäß den Ergebnissen ähnlicher Untersuchungen in der Literatur [64]. Die Abbildung 66 veranschaulicht noch einmal das Verhältnis des SNR der drei eingesetzten Detektoren.
Abb 66. Vergleich der SNR für den µ-ESD, den HP-AED und einen µ-ECD. Für Peak 4 (entspricht Peak 5 aus Tabelle 22) bewegen sich die SNR in der gleichen Größenordnung.
6 Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde ein neuer elementselektiver Detektor für die GC, der µ-ESD, vorgestellt. Das derzeit aktuelle Modell 2 ist an ein 4-Kanal-IFS gekoppelt und ermöglicht die simultane Detektion von Kohlenstoff und Chlor. Der Detektor wurde anhand der Selektivität und der Empfindlichkeit der Chlordetektion charakterisiert. Dazu erfolgte eine Optimierung der Betriebsgrößen Makeup-Gasfluß (Plasmagasfluß) und Sauerstoff-Zumischung.

Der µ-ESD wurde mit zwei Spektrometertypen gekoppelt, einem PDA-Spektrometer und einem IFS. Beim PDA-Spektrometer ist die Lichtausbeute zugunsten der Auflösung begrenzt, was bei Modell 1 zu niedrigeren Empfindlichkeiten führte. Der große Vorteil dieser Variante besteht in der spektralen Information, die eine Vielzahl von Möglichkeiten zur Multielementdetektion eröffnet. Dem gegenüber erlaubt das IFS eine starke Verkleinerung und Vereinfachung des Detektors, die eine Implementierung in bestehende GC-Systeme entscheidend erleichtert. Durch die hohe Lichtausbeute können bessere Empfindlichkeiten erreicht werden. Da die spektrale Bandbreite eines Interferenzfilters mit ca. 1 nm deutlich über der Auflösung eines guten PDA-Spektrometers mit Czerny-Turner Aufbau liegt, muß ein erhöhter Aufwand zur Gewährleistung einer ausreichenden Selektivität betrieben werden.

Ein Vergleich mit aktuellen GC-Detektoren wie dem AED von Hewlett Packard oder dem ECD zeigt die Leistungsfähigkeit und die gegenwärtigen Grenzen des µ-ESDs. Zwar erreicht der µ-ESD nicht die hervorragende Empfindlichkeit des ECDs bei der Detektion halogenierter Verbindungen, besitzt jedoch eindeutige Vorteile durch die Möglichkeit der verbindungsunabhängigen Kalibration und die Vereinfachung der Chromatogramme durch die Elementselektivität. Im direkten Vergleich mit dem AED zeigt der µ-ESD Schwächen bei der Selektivität der Chlordetektion, weist aber eine etwas bessere Empfindlichkeit auf. Dank seiner guten Empfindlichkeit der Kohlenstoffdetektion (NWG ca. 16 pg) ist der µ-ESD prinzipiell auch für den Einsatz als nichtselektiver Detektor, vergleichbar einem FID, geeignet.

Beim gegenwärtig aktuellen Modell 2 erfolgt die Datenaufnahme und –bearbeitung, insbesondere die Untergrundkorrektur, noch mit externen Programmen im offline – Modus. Zur besseren Etablierung wäre jedoch die Kompatibilität mit einer weit verbreiteten Chromatographiesoftware vorteilhaft. Die notwendige Datenbearbeitung sollte weitgehend von ei-

Literatur

Chemical analysis by means of spectral observations
Poggendorff Ann. Physik 110, 161 (1860)

Atomic emission spectrometry

Sensitive Selective Gas Chromatography Detector based on Emission Spectrometry of organic compounds
Anal. Chem. 37, 1470 (1965)

Microwave induced electrical discharge detectors for Gas Chromatography

Evaluation of a Microwave-Induced Plasma in Helium at atmospheric pressure as an Element-Selective Detector for Gas Chromatography

Evaluation of a Microwave Cavity, Discharge Tube, and Gas flow System for combiend Gas Chromatography-AED

An element-specific Detector for Gas Chromatography based on a novel capacitively coupled Plasma

[8] M. Otto
Atomspektroskopie

Microwave supported discharges
Appl. Spectrosc. 35, 357 (1981)

A three-electrode direct current plasma as compared to an inductively coupled argon plasma

Design and construction of a low-flow, low-power torch for inductively coupled plasma spectrometry
Appl. Spectrosc. 36, 626 (1982)

Simultaneous inductively coupled argon plasmaemission spectrometer as a multi-element specific detector for high pressure liquid chromatography: the determination of arsenic, selenium and phosphorus compounds
Directly coupled chromatography – atomic spectroscopy. Part 2: Directly coupled liquid chromatography – atomic spectroscopy
Analyst 112, 1 (1987)

Generation of a Helium inductively coupled plasma in a low-gas-flow torch
Anal. Chem. 58, 2342 (1986)

Emissionspektrometrische Bestimmung von Elementspuren in wässrigen Lösungen mit einem mantelgasstabilisierten, kapazitiv angekoppelten Mikrowellenplasma (CMP)

Microsample introduction by tungsten filament electrode into capacitively coupled microwave plasma for atomic emission spectroscopy: analytical figures of merit

Investigation of halogen determination in a helium capacitively coupled microwave plasma atomic emission spectrometer
Appl. Spectrosc. 48, 643 (1994)

Comparative study of a Beenakker cavity and a surfatron in combination with electrothermal evaporation from a tungsten coil for microwave plasma optical emission spectrometry (MIP-AES)
Talanta 38, 863 (1991)

Glow Discharges at DC and low frequencies

[20] W. Grimm
Eine neue Glimmentladungslampe für die optische Emissionsspektralanalyse

[21] K. Wagatsuma, S. Suzuki
Comparative study on emission characteristics of d.c.- and r.f.-powered Grimm glow discharge plasmas. Use of Ar spectral lines

[22] J. A. C. Broekaert
Requirements of the glow discharge techniques to the fundamentals - an exemplary approach

Potential of radio frequency glow discharge optical emission spectrometry for the analysis of gaseous samples
Anal. Chem. 69, 3702 (1997)

A new helium discharge-afterglow and its application at a gas chromatographic detector

[25] B. Platzer
Development of a plasma discharge and an emission spectrometer for element-selective detection in gas chromatography
Dissertation TU Graz, Institut für Analytische, Mikro- und Radiochemie, 1993
Determination of halides by microwave induced plasma and stabilized capacitive plasma atomic
emission spectrometry after online continuous halogen generation.
Talanta 44 (4), 535 (1997)

[27] G. Knapp, E. Leitner, M. Michaelis, B. Platzer, A. Schalk
Element specific GC-Detection by plasma atomic emission spectroscopy - a powerful tool in envi-
ronmental analysis

[28] G. Schwedt
Chromatographische Trennmethoden

[29] C. F. Poole, S. K. Poole
Chromatography today

Characterisation of computerized photodiode array spectrometer for Gas Chromatography-AED

[31] M. J. Szelewski
Empirical formula determinations and compound-independent calibration using a GC-AED system
HP Application Note 228-382 (1997)

Characterisation of interferences affecting selectivity in Gas Chromatography - Atomic Emission
Spectrometry

Atomic emission gas chromatographic detection – chemical and spectral interferences in the stabili-
zied capacitive plasma (SCP)

[34] M. Klemp, L. Puig, K. Trivedi, R. Sacks
Characterization of a low-pressure microvolume plasma emission detector for gas chromatography

Radio frequency plasma detector for sulfur selective capillary gas chromatographic analysis of fossil
fuels

On-column bromine- and chlorine-selective detection for capillary gas chromatography using a radio
frequency plasma

[37] S. Pedersen-Bjergaard, T. Greibrokk
On-column atomic emission detection in capillary gas chromatography using a radio frequency
plasma

[38] T. N. Asp, S. Pedersen-Bjergaard, T. Greibrokk
Determination of extractable organic chlorine and bromine by probe injection dual-microplasma
atomic emission spectrometry
Anal. Chem. 69, 3558 (1997)
A dc Microplasma on a chip employed as an optical emission detector for gas chromatography
Anal. Chem. 72, 2547 (2000)

[40] A. M. Bilgic, E. Voges, C. Prokisch, J. A. C. Broekaert
Streifenleitungsanordnung mit integrierten Gaszuführungen für mikrowelleninduzierte Plasmapa-
len zur Anwendung in der analytischen Atomspektrometrie
DE-Patentblatt 120 (2000), Heft 19

A microwave-induced plasma based on microstrip technology and its use for the atomic emission
spectrometric determination of mercury with the aid of the cold-vapor technique
Anal. Chem. 72, 193 (2000)

A low-power 2.45 GHz microwave induced helium plasma source at atmospheric pressure based on
microstrip technology

[43] C. Struppe
Anwendungsmöglichkeiten der Methodenkombination Gaschromatographie-Atomemissions-
spektroskopie in der Umweltanalytik

[44] J. D. Ingle, S. R. Crouch
Optical components of spectrometers

[45] H. H. Perkampus
Lexikon Spektroskopie, VCH Weinheim (1993)

[46] S. M. Sze
MIS-Diode and Charge Coupled Device

[47] D. C. Harris
Detektoren von Spektralphotometern
Lehrbuch der quantitativen Analyse, Vieweg Braunschweig (1998)

[48] S. R. Koirtyohann
Effect of nitrogen impurity on fluorine and chlorine emission from an atmospheric pressure helium
microwave plasma
Anal. Chem. 55, 374 (1983)

[49] M. Otto
Signalverarbeitung und Zeitreihenanalyse

[50] R. Gross
Optimierung des „Stabilized Capacitive Plasma“ (SCP) für die elementspezifische Analytik von
Nichtmetallen unter besonderer Berücksichtigung der Korrektur spektraler Interferenzen
Dissertation TU Graz, Institut für Analytische, Mikro- und Radiochemie, 1998

[51] B. Hill
Recursive Kalman Filters
[52] S. C. Rutan
Kalman filtering approaches for solving problems in analytical chemistry
J. Chemometr. 1, 7 (1987)

[53] M. Otto
Statistische Prüfverfahren

[54] L. S. Ettre, J. V. Hinshaw, L. Rohrschneider
Grundbegriffe und Gleichungen der Gaschromatographie, Hüthig Verlag Heidelberg (1996)

A comparison of the HP G2350A AED vs. HP 5921A AED for average values of MDL and selectivity for selected elements

[56] Homepage National Institute for Standards and Technology
http://physics.nist.gov/cgi-bin/AtData/lines_form

[57] J. Hubert, H. v. Tra, K. C. Tran, F. I. Baudais
Emission from an atmospheric Helium microwave-induced plasma using a Fourier transform spectrophotometer
Appl. Spectrosc. 40, 759 (1986)

[58] J. P. Matousek, J. M. Mermet
The effect of added hydrogen in electrothermal vaporization inductively coupled emission spectrometry

Microwave-excited atmospheric pressure helium plasma emission detection characteristics in fused silica capillary chromatography

[60] G. R. Ducatte, G. L. Long
Effect on carbon dioxide and hydrogen on nonmetal emission intensities in a helium MIP

[61] R. Buffington, M. K. Wilson
Detectors for Gas Chromatography – a practical primer
Hewlett Packard Co. (1991), Avondale, PA, HP Part No. 5958-9433

[62] G.W. Gribble
The natural production of chlorinated compounds

[63] P. Beuge, A. Ulrike
Abschlußbericht zum Forschungsvorhaben „Stoffliche Belastung von Auenböden“
TU Bergakademie Freiberg, Institut für Mineralogie (1997)

Comparison of GC-ECD, GC-MS and GC-AED for the determination of polychlorinated biphenyls in highly contaminated marine sediments
Chromatographia 43, 44 (1996)

[65] Homepage NetCDF
http://www.unidata.ucar.edu/packages/netcdf/
Anhang

Zusammensetzung des AED-Testmixes der Firma Hewlett Packard (jetzt Agilent Technologies)

<table>
<thead>
<tr>
<th>Name</th>
<th>Formel</th>
<th>Molmasse</th>
<th>Gehalt in ng/µL</th>
<th>Gehalt C in ng/µL</th>
<th>Gehalt Hetero-element in ng/µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Octan</td>
<td>C₈H₁₈</td>
<td>114,26</td>
<td>27,875,53</td>
<td>23,440,23</td>
<td>-</td>
</tr>
<tr>
<td>4-Fluoranisol</td>
<td>C₇H₇FO</td>
<td>126,14</td>
<td>482,99</td>
<td>321,91</td>
<td>F: 72,75</td>
</tr>
<tr>
<td>1-Bromhexan</td>
<td>C₆H₁₃Br</td>
<td>165,09</td>
<td>482,99</td>
<td>210,82</td>
<td>Br: 233,76</td>
</tr>
<tr>
<td>Tetraethylortho-silan</td>
<td>C₈H₂₀SiO₄</td>
<td>208,37</td>
<td>344,99</td>
<td>159,08</td>
<td>-</td>
</tr>
<tr>
<td>n-Decan deuteriert</td>
<td>C₁₀D₂₂</td>
<td>142,32</td>
<td>344,99</td>
<td>291,13</td>
<td>-</td>
</tr>
<tr>
<td>Nitrobenzol</td>
<td>C₆H₅NO₂</td>
<td>123,12</td>
<td>482,99</td>
<td>282,69</td>
<td>N: 54,96</td>
</tr>
<tr>
<td>tert-Butyldisulfid</td>
<td>C₉H₁₆S₂</td>
<td>178,38</td>
<td>344,99</td>
<td>185,82</td>
<td>S: 124,01</td>
</tr>
<tr>
<td>1,2,4-Trichlor-benzol</td>
<td>C₆H₃Cl₃</td>
<td>181,44</td>
<td>551,99</td>
<td>219,23</td>
<td>Cl: 323,55</td>
</tr>
<tr>
<td>n-Dodecan</td>
<td>C₁₂H₂₆</td>
<td>170,38</td>
<td>29,669,50</td>
<td>25,096,65</td>
<td>-</td>
</tr>
<tr>
<td>n-Tridecan</td>
<td>C₁₃H₂₈</td>
<td>184,41</td>
<td>2,966,95</td>
<td>2,511,96</td>
<td>-</td>
</tr>
<tr>
<td>n-Tetradecan</td>
<td>C₁₄H₃₀</td>
<td>198,58</td>
<td>896,98</td>
<td>759,49</td>
<td>-</td>
</tr>
</tbody>
</table>
II Berechnung der NWG und BEC für den µ-ESD: den Berechnungen zugrunde liegende Daten

Tab II–1. Daten zur Berechnung der BEC und der NWG für das Modell 1 des µ-ESD

<table>
<thead>
<tr>
<th>Spezies</th>
<th>Wellenlänge</th>
<th>Konzentration in ng</th>
<th>Nettointensität</th>
<th>Untergrundintensität</th>
<th>Rauschen</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br 827</td>
<td>827,244 nm</td>
<td>22,9</td>
<td>1.730</td>
<td>28</td>
<td>6,44</td>
<td>268,6</td>
</tr>
<tr>
<td>Br 889</td>
<td>889,762 nm</td>
<td>22,9</td>
<td>10.460</td>
<td>178</td>
<td>8,66</td>
<td>1.208</td>
</tr>
<tr>
<td>Cl 837</td>
<td>837,594 nm</td>
<td>31,7</td>
<td>2.780</td>
<td>29</td>
<td>6,50</td>
<td>427,7</td>
</tr>
<tr>
<td>Cl 894</td>
<td>894,806 nm</td>
<td>31,7</td>
<td>9.720</td>
<td>75</td>
<td>3,97</td>
<td>2.448</td>
</tr>
<tr>
<td>Cl 912</td>
<td>912,114 nm</td>
<td>31,7</td>
<td>31.080</td>
<td>387</td>
<td>6,17</td>
<td>5.037</td>
</tr>
<tr>
<td>F 739</td>
<td>739,868 nm</td>
<td>7,1</td>
<td>250</td>
<td>56</td>
<td>6,31</td>
<td>39,62</td>
</tr>
<tr>
<td>C 940</td>
<td>940,537 nm</td>
<td>31,6</td>
<td>3.420</td>
<td>322</td>
<td>3,03</td>
<td>1.129</td>
</tr>
<tr>
<td>S 921</td>
<td>921,286 nm</td>
<td>12,2</td>
<td>6.670</td>
<td>103</td>
<td>6,34</td>
<td>1.052</td>
</tr>
</tbody>
</table>
Tab II–2. Daten zur Berechnung der BEC und der NWG für das Modell 2 des µ-ESD

<table>
<thead>
<tr>
<th>Konzentration in ng</th>
<th>Nettointensität</th>
<th>Untergrundintensität</th>
<th>Rauschen</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl 837: 837,594 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,62</td>
<td>66,8</td>
<td>66,6</td>
<td>0,150</td>
<td>445,1</td>
</tr>
<tr>
<td>C 940: 940,537 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,61</td>
<td>13,5</td>
<td>52,7</td>
<td>0,136</td>
<td>99,26</td>
</tr>
</tbody>
</table>
III Optimierung der Betriebsparameter des µ-ESD: Residuentabellen

Tab III–1. Residuentabelle für Optimierungen mit Modell 1 des µ-ESD

<table>
<thead>
<tr>
<th>Br 827</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peakhöhe exp.</td>
<td>954</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peakhöhe ber.</td>
<td>954</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuum</td>
<td>0</td>
<td>3.218</td>
<td>3.218</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Selektivität exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selektivität ber.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.040</td>
<td>1.215</td>
<td>-175</td>
<td>10.046</td>
<td>9.582</td>
</tr>
<tr>
<td></td>
<td>859</td>
<td>757</td>
<td>102</td>
<td>10.738</td>
<td>11.007</td>
</tr>
<tr>
<td></td>
<td>858</td>
<td>878</td>
<td>-20</td>
<td>9.117</td>
<td>9.064</td>
</tr>
<tr>
<td></td>
<td>1.533</td>
<td>1.533</td>
<td>0</td>
<td>3.702</td>
<td>3.702</td>
</tr>
<tr>
<td></td>
<td>1.734</td>
<td>1.640</td>
<td>94</td>
<td>7.677</td>
<td>7.925</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Br 889</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peakhöhe exp.</td>
<td>7.350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peakhöhe ber.</td>
<td>7.351</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuum</td>
<td>-1</td>
<td>8.221</td>
<td>8.223</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>Selektivität exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selektivität ber.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.509</td>
<td>6.441</td>
<td>1.068</td>
<td>36.268</td>
<td>34.098</td>
</tr>
<tr>
<td></td>
<td>4.095</td>
<td>4.307</td>
<td>-212</td>
<td>103.602</td>
<td>104.034</td>
</tr>
<tr>
<td></td>
<td>8.286</td>
<td>8.286</td>
<td>0</td>
<td>6.825</td>
<td>6.826</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl 837</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peakhöhe exp.</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peakhöhe ber.</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuum</td>
<td>0</td>
<td>11.500</td>
<td>11.501</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Selektivität exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selektivität ber.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.682</td>
<td>1.847</td>
<td>-165</td>
<td>15.700</td>
<td>17.373</td>
</tr>
<tr>
<td></td>
<td>1.407</td>
<td>1.312</td>
<td>95</td>
<td>10.000</td>
<td>9.030</td>
</tr>
<tr>
<td></td>
<td>1.474</td>
<td>1.493</td>
<td>-19</td>
<td>11.000</td>
<td>11.187</td>
</tr>
<tr>
<td></td>
<td>2.775</td>
<td>2.775</td>
<td>0</td>
<td>23.000</td>
<td>23.002</td>
</tr>
<tr>
<td></td>
<td>2.440</td>
<td>2.352</td>
<td>88</td>
<td>26.000</td>
<td>25.111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl 894</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peakhöhe exp.</td>
<td>9.724</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peakhöhe ber.</td>
<td>9.573</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuum</td>
<td>151</td>
<td>16.900</td>
<td>16.901</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Selektivität exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selektivität ber.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.356</td>
<td>4.396</td>
<td>-40</td>
<td>65.120</td>
<td>65.338</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>10.455</td>
<td>9.410</td>
<td>1.045</td>
<td>24.420</td>
<td>23.399</td>
</tr>
<tr>
<td>Peakhöhe</td>
<td>Peakhöhe</td>
<td>Residuum</td>
<td>Selektivität exp.</td>
<td>Selektivität ber.</td>
<td>Residuum</td>
</tr>
<tr>
<td>30.031</td>
<td>30.029</td>
<td>2</td>
<td>entfällt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.508</td>
<td>25.648</td>
<td>-5.140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.022</td>
<td>21.037</td>
<td>2.985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.170</td>
<td>14.754</td>
<td>-584</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.464</td>
<td>31.462</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.077</td>
<td>28.328</td>
<td>2.749</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 739</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peakhöhe</td>
<td>Peakhöhe</td>
<td>Residuum</td>
<td>Selektivität exp.</td>
<td>Selektivität ber.</td>
<td>Residuum</td>
</tr>
<tr>
<td>126</td>
<td>219</td>
<td>-93</td>
<td>5.440</td>
<td>7.526</td>
<td>-2.086</td>
</tr>
<tr>
<td>149</td>
<td>167</td>
<td>-18</td>
<td>5.920</td>
<td>6.568</td>
<td>-648</td>
</tr>
<tr>
<td>249</td>
<td>219</td>
<td>30</td>
<td>11.510</td>
<td>10.341</td>
<td>1.169</td>
</tr>
<tr>
<td>249</td>
<td>260</td>
<td>-11</td>
<td>12.750</td>
<td>13.359</td>
<td>-609</td>
</tr>
<tr>
<td>168</td>
<td>108</td>
<td>60</td>
<td>5.720</td>
<td>4.368</td>
<td>1.352</td>
</tr>
<tr>
<td>250</td>
<td>251</td>
<td>-1</td>
<td>12.720</td>
<td>12.632</td>
<td>88</td>
</tr>
<tr>
<td>441</td>
<td>408</td>
<td>33</td>
<td>12.975</td>
<td>12.241</td>
<td>734</td>
</tr>
<tr>
<td>S 921</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peakhöhe</td>
<td>Peakhöhe</td>
<td>Residuum</td>
<td>Selektivität exp.</td>
<td>Selektivität ber.</td>
<td>Residuum</td>
</tr>
<tr>
<td>5.518</td>
<td>5.721</td>
<td>-203</td>
<td>17.252</td>
<td>13.693</td>
<td>3.559</td>
</tr>
<tr>
<td>2.538</td>
<td>2.561</td>
<td>-23</td>
<td>12.100</td>
<td>11.720</td>
<td>380</td>
</tr>
<tr>
<td>6.666</td>
<td>6.666</td>
<td>0</td>
<td>33.457</td>
<td>33.468</td>
<td>-11</td>
</tr>
</tbody>
</table>
Tab III-2. Residuentabelle für Optimierungen mit Modell 2 des µ-ESD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>162,5</td>
<td>167,4</td>
<td>-4,9</td>
<td>3883</td>
<td>5.181</td>
<td>-1.299</td>
<td></td>
</tr>
<tr>
<td>148,3</td>
<td>142,8</td>
<td>5,6</td>
<td>4613</td>
<td>5.518</td>
<td>-904</td>
<td></td>
</tr>
<tr>
<td>161,2</td>
<td>160,8</td>
<td>0,4</td>
<td>6445</td>
<td>7.174</td>
<td>-729</td>
<td></td>
</tr>
<tr>
<td>160,5</td>
<td>149,9</td>
<td>10,6</td>
<td>6731</td>
<td>7.083</td>
<td>-353</td>
<td></td>
</tr>
<tr>
<td>171,1</td>
<td>175,8</td>
<td>-4,7</td>
<td>5486</td>
<td>5.392</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>191,8</td>
<td>175,8</td>
<td>16,0</td>
<td>6416</td>
<td>5.392</td>
<td>1.024</td>
<td></td>
</tr>
<tr>
<td>159,3</td>
<td>154,7</td>
<td>4,6</td>
<td>5345</td>
<td>4.240</td>
<td>1.106</td>
<td></td>
</tr>
<tr>
<td>120,7</td>
<td>129,1</td>
<td>-8,4</td>
<td>4951</td>
<td>4.387</td>
<td>564</td>
<td></td>
</tr>
<tr>
<td>185,7</td>
<td>175,8</td>
<td>9,9</td>
<td>5790</td>
<td>5.392</td>
<td>398</td>
<td></td>
</tr>
<tr>
<td>156,0</td>
<td>175,8</td>
<td>-19,8</td>
<td>3839</td>
<td>5.392</td>
<td>-1.553</td>
<td></td>
</tr>
<tr>
<td>170,9</td>
<td>169,2</td>
<td>1,7</td>
<td>8151</td>
<td>6.944</td>
<td>1.207</td>
<td></td>
</tr>
<tr>
<td>163,7</td>
<td>169,4</td>
<td>-5,7</td>
<td>9885</td>
<td>9.475</td>
<td>410</td>
<td></td>
</tr>
</tbody>
</table>
IV Vergleich von NWG und Selektivität: Arbeitsbedingungen von HP-AED und µ-ESD

Tab IV–1. Chromatographische Arbeitsbedingungen

<table>
<thead>
<tr>
<th>GC</th>
<th>HP 6890 (Carlo Erba Mega 5160 für Experimente mit Modell 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säule</td>
<td>HP 5 (Polymethylsiloxan mit 5% Phenylgruppen), 30 m, i.D. 0,25 mm, Filmdicke 0,25 µm</td>
</tr>
<tr>
<td>Mobile Phase</td>
<td>Helium, druckkonstanter Modus, 112 kPa (70 kPa für Experimente mit Modell 1)</td>
</tr>
<tr>
<td>Ofenprogramm</td>
<td>70°C /1' 20°C/-210°C /5' (Modell 1)</td>
</tr>
<tr>
<td></td>
<td>60°C /1' 20°C/-100°C /8°C/-170°C /25°C/-210°C/2' (Modell 2, HP-AED, ECD)</td>
</tr>
<tr>
<td>Injektor</td>
<td>220°C, Split 10:1 (Modell 1) bzw. 20:1 (Modell 2, HP-AED, ECD)</td>
</tr>
<tr>
<td>Injektionsvolumen</td>
<td>1 µl</td>
</tr>
<tr>
<td>Detektorblocktemperatur</td>
<td>350°C (Modell 1)</td>
</tr>
<tr>
<td></td>
<td>320°C (Modell 2)</td>
</tr>
<tr>
<td></td>
<td>300°C (HP-AED)</td>
</tr>
<tr>
<td></td>
<td>300°C (ECD)</td>
</tr>
</tbody>
</table>

Tab IV–2. Detektorspezifische Arbeitsbedingungen

<table>
<thead>
<tr>
<th>Gasflüsse Modell 1 des µ-ESD</th>
<th>Makeup: Helium, 5,5 mL/min bis 32,5 mL/min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dopantgas: Sauerstoff, 22 µL/min bzw. 41 µL/min</td>
</tr>
<tr>
<td>Gasflüsse Modell 2 des µ-ESD</td>
<td>Makeup: Helium, 15 mL/min bis 20 mL/min</td>
</tr>
<tr>
<td></td>
<td>Dopantgas: Sauerstoff, 36 µL/min</td>
</tr>
<tr>
<td>Gasflüsse HP-AED</td>
<td>Makeup: Helium, 40 mL/min bis 180 mL/min (HiFlow-Modus für F)</td>
</tr>
<tr>
<td></td>
<td>Dopantgas: Sauerstoff, 150 kPa</td>
</tr>
<tr>
<td>Gasflüsse ECD</td>
<td>Makeup: Stickstoff, 30 mL/min</td>
</tr>
</tbody>
</table>
Mein Dank gilt allen, die am Zustandekommen dieser Arbeit in irgendeiner Form beteiligt waren:

... Prof. Otto für die langjährige fachliche Betreuung und die sorgfältige Durchsicht der Arbeit.

... Prof. Otto und Prof. Knapp, auf deren Initiative die Zusammenarbeit zwischen unseren Instituten zustande kam und die mir mehrere in jeder Hinsicht lehrreiche Aufenthalte am Institut für Analytische, Mikro- und Radiochemie der TU Graz ermöglichten, die mir allesamt in guter Erinnerung bleiben werden.

... Bernhard Platzer, den „Vater“ des µ-ESDs, ohne dessen Erfinder- und Forschergeist es den µ-ESD nicht geben würde und der mich nebenbei an manch langem Diskussionsabend in die Vielfalt der österreichischen Weine einführte.

... den damaligen Mitarbeitern von PAAR Physica, allen voran Andreas Schalk, auf deren Wissen und Erfahrungen die technische Realisierung der Komponenten des µ-ESDs basieren.

... Robert Gross für die Unterstützung bei das Diodenarray betreffenden Fragen und die Überlassung eines Programmes zur Spektren- und Chromatogrammextraktion aus großen Datenmatrices.

... Johann Stein für sein Interesse am Fortgang der Arbeit und seine Hilfe in chromatographischen Fragen.

... meiner Freundin Katrin für die umfassende moralische Unterstützung beim Abfassen der Arbeit und ihr Verständnis für meine zeitweilig etwas größere Zerstreuung sowie das gründliche Korrekturlesen der Arbeit.

... der Firma PAAR Physica, der Europäischen Union und dem österreichischen FFF für die Bereitstellung finanzieller Mittel, ohne die ein erfolgreicher Abschluß der Arbeit nicht möglich gewesen wäre.