A novel measure to assess self-discrimination in binge eating disorder and obesity

Almut Rudolph, Ph.D.*, Anja Hilbert, Ph.D.

The final typeset article A novel measure to assess self-discrimination in binge-eating disorder and obesity is available at http://dx.doi.org/10.1038/ijo.2014.89.

Integrated Research and Treatment Center AdiposityDiseases, University of Leipzig
Medical Center, Department of Medical Psychology and Medical Sociology,
University of Leipzig, Leipzig, Germany

* Corresponding author. Integrated Research and Treatment Center AdiposityDiseases, Department of Medical Psychology and Medical Sociology, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany. Phone: +49 341 97-15366, Fax: +49 341 97-15359, Email: almut.rudolph@medizin.uni-leipzig.de.

Acknowledgements. This research was supported by grant 01EO1001 from the Federal Ministry of Education and Research (BMBF), Germany. The work was conducted at Philipps University of Marburg, Marburg, Germany.
Conflict of interest statement: The authors declare no conflict of interest.
ABSTRACT

Stigmatized obese individuals tend to internalize the pervasive weight stigma which might lead to self-discrimination and increased psychopathology. While explicit and implicit weight stigma can be measured using self-report questionnaires and Implicit Association Tests (IAT), respectively, the assessment of self-discrimination relied solely on self-report. The present study sought to develop an IAT measuring implicit self-discrimination (SD-IAT) in samples of obese individuals with and without binge-eating disorder (BED). Seventy-eight individuals were recruited from the community and individually matched in three groups. Obese participants with BED, obese participants without BED (OB), and a normal weight control group without eating disorder psychopathology (HC) were assessed with the SD-IAT and other measures relevant for convergent and discriminant validation. Results revealed significantly higher implicit self-discrimination in the BED group when compared to both OB and HC. Furthermore, significant correlations were found between the SD-IAT with body mass index, experiences of weight stigma, depressive symptoms, and implicit self-esteem. Finally, implicit self-discrimination predicted eating disorder psychopathology over and above group membership, and experiences of weight stigma. This study provides first evidence of the validity of the SD-IAT. Assessing implicit self-discrimination might further increase understanding of weight stigma and its significance for psychosocial functioning among vulnerable obese individuals.

KEY WORDS

weight stigma; self-discrimination; Implicit Association Test; convergent validity; discriminant validity; weight bias;
Obese individuals often experience weight stigma in multiple areas of life and tend to internalize the pervasive negative stereotypes and prejudice regarding their weight, leading to actual discriminative behaviors to the own person. Consequently, self-discrimination has been strongly associated with depressive symptoms, eating disorder psychopathology, lower quality of life, and poor weight loss outcomes (1-3).

Weight stigma can be measured through various methods. Self-report questionnaires assess deliberate accessible explicit weight stigma towards obese individuals. Additionally, indirect measures such as the Implicit Association Test (IAT) have been used to assess more automatic and not necessarily conscious implicit evaluations (4). The IAT as a computerized measure assesses the relative strength of associations between a pair of opposing attribute and target categories. In a Weight Stigma IAT (see Table 1), respondents classify target stimuli (i.e., skinny, plump) into a thin or fat category, and attribute stimuli (i.e., smart, stupid) into a positive or negative category. Responses are typically faster if the four categories are configured in a compatible pairing (i.e. thin and positive, fat and negative) rather than an incompatible pairing (i.e. thin and negative, fat and positive). The Weight Stigma IAT has repeatedly been used to measure weight stigma in normal weight, overweight, and obese individuals (5, 6). Several studies have documented the reliability of the IAT (e.g., 7, 8), its predictive validity over and above self-reports (9, 10), and its ability to distinguish disordered and healthy individuals regarding a range of psychopathology (11).

Whereas explicit and implicit weight stigma have been comprehensively examined, the assessment of self-discrimination relied solely on self-report (12). However, the IAT is an interesting tool as it complements self-report measures in research domains where individuals are motivated to deceive others (i.e., if the topic...
is socially sensitive) or where they lack self-insight and even deceive themselves (4).

To elucidate the influence of prevalent weight stigma on implicit self-evaluations in obese individuals, we designed an IAT measuring self-discrimination defined as automatic, and not necessarily conscious self-directed negative reactions caused by self-discrimination. The Self-Discrimination IAT comprises the target categories self vs. other, and the attribute categories discriminated vs. accepted.

This study was part of a larger project extensively described elsewhere (8).

The sample comprised 63 female and 15 male participants recruited from the community in three groups (each N = 26). The binge eating disorder group (BED) comprised obese participants with BED according to the Diagnostic and Statistical Manual of Mental Disorders (13) diagnosed using the Eating Disorder Examination interview (14) and a body mass index (BMI) ≥ 30 kg/m². The obesity only group (OB) comprised participants with a BMI ≥ 30 kg/m² whereas participants in the normal weight control group (HC) had a BMI between 18.5 and 24.9 kg/m². Exclusion criteria in OB and HC groups were episodes of binge eating or compensatory behaviors within the past six months. All groups were individually matched according to sex, age, and education, and BED and OB groups were also matched according to BMI. All participants answered the Eating Disorder Examination-Questionnaire (EDE-Q; 15) to assess specific eating disorder psychopathology within the past 28 days, the Stigmatizing Situations Inventory (SSI; 16; German translation by AH, unpublished manuscript) to indicate experiences of weight stigma over the life span, and the Beck Depression Inventory (BDI; 17) to rate severity of depressive symptoms over the past week. During individual laboratory assessments, participants completed three IATs on self-discrimination, weight stigma, and self-esteem that all conformed to a canonical five-block structure (4, 10; see Figure 1 for
details). To control for position effects, the sequence of the IATs was
counterbalanced between the participants within each group using a 3x3 Latin-
square repeated measures design.

For the Self-Discrimination IAT (SD-IAT), AH compiled a set of adjectives
representative for each category, and selected stimuli controlling for features of
shared similarity (e.g., word length). Attribute categories contained four
discrimination (e.g., underestimated, spurned) and acceptance (e.g., notable,
respected) adjectives, target categories contained four self-related (e.g., me, myself)
and other-related (e.g., they, their) stimuli. The SD-IAT index was calculated as the
difference between the incompatible and the compatible pairing using the D-Index
(18) with a higher score indicating stronger automatic preference for self –
discriminated over self – accepted.

Due to matched groups, repeated measures ANOVAs were used to test
between-subjects effects with post-hoc Bonferroni tests. Significant differences were
found for the EDE-Q, the SSI (both BED > OB > HC; see 10 for statistics), and the
BDI (BED > OB = HC; means ± standard deviations; BED: 19.15 ± 9.70; OB: 8.12 ±
4.91; HC: 5.08 ± 5.08; [F(2,24) = 24.00, p < 0.001, partial η² = 0.71]). Furthermore, a
significant group difference emerged for the SD-IAT D-Index (BED: -0.10 ± 0.36; OB:
-0.34 ± 0.29; HC: -0.44 ± 0.24; [F(2,24) = 10.61, p < 0.001, partial η² = 0.30]): While
participants in the BED group reported higher levels of self-discrimination compared
to the HC group, BED and OB as well as OB and HC groups did not differ.

Pearson correlations revealed relations of the SD-IAT with BMI \((r_{SD-IAT_BMI} =
0.43, p < 0.001) \), experiences of weight stigma \((r_{SD-IAT_SSI} = 0.47, p < 0.001) \), severity
of depressive symptoms \((r_{SD-IAT_BDI} = 0.53, p < 0.001) \), and eating disorder
psychopathology \((r_{SD-IAT_EDE-Q} = 0.21, p = 0.07) \), although the latter fell short of
significance. Thus, participants with higher levels of implicit self-discrimination had a higher BMI, reported more experiences of weight stigma, and more depressive symptoms. The SD-IAT was not associated with a Weight Stigma-IAT (WS-IAT; r_{SD-IAT_WS-IAT} = -0.16, p = 0.16). However, the SD-IAT was negatively associated with a Self-Esteem IAT (SE-IAT; r_{SD-IAT_SE-IAT} = -0.39, p < 0.001): Participants with higher levels of implicit self-discrimination had significant lower implicit self-esteem.

Finally, a stepwise multiple regression analysis was run to determine whether and to what extent implicit self-discrimination (SD-IAT) predicted eating disorder psychopathology (EDE-Q) over and above group membership (dummy coded with HC as reference group), and self-reported experiences of weight stigma (SSI). Group membership was a significant predictor of eating disorder psychopathology when controlled for depressive symptoms (BDI). Interestingly, while weight stigma did not change the overall amount of variance explained, the implicit self-discrimination added another small-sized but significant amount of variance (see Table 2 for statistics).

We have presented a novel measure of implicit self-discrimination, the SD-IAT, and provided first evidence of implicit self-discrimination in obese individuals with BED. This result is in line with previous studies reporting both decreased but not negative implicit self-evaluations (11) and highest levels of explicit weight stigma in obese individuals with BED compared to obese individuals without BED (19).

Regarding convergent validity, implicit self-discrimination was associated with experiences of weight stigma as obese individuals tend to internalize this stigma (1). Further, the SD-IAT was correlated with a Self-Esteem IAT but not with a Weight Stigma IAT. From an exploratory perspective, we believe that the former measures
corresponded conceptually, in that they reflected the same target (i.e., specific implicit associations with the self), and thus, achieved greater convergent validity (8).

Regarding discriminant validity, implicit self-discrimination was associated with BMI and depressive symptoms. Additionally, obese individuals with BED showed higher levels of implicit self-discrimination compared to normal weight individuals which is consistent with previous findings suggesting that obese individuals with BED have higher psychopathology compared to obese individuals without BED (20).

Finally, we found that implicit self-discrimination was independently predictive of eating disorder psychology over and above weight status and experiences of weight stigma. Thus, we demonstrated that implicit self-discrimination might be a factor that is associated with psychopathology in obesity.

As a limitation, OB and HC groups did not differ in implicit self-discrimination which might lead to the assumption that the SD-IAT does not measure self-discrimination as a consequence of experiences of weight stigma. However, we believe that stigmatized obese individuals without BED are less vulnerable to the negative effects of weight stigma than obese individuals with BED (see 20), and therefore, show lower levels of implicit self-discrimination. In line with this argument, OB and HC groups did not differ in general psychopathology, and explicit and implicit self-esteem (10). Nevertheless, further research is needed to distinguish between self-discrimination due to weight stigma and mental health issues.

Assessing implicit self-discrimination and its psychosocial correlates might help to understand weight stigma and its significance for psychosocial functioning in obese individuals. We provided first evidence that the assessment of implicit self-discrimination using an IAT procedure has potential value. The relation between implicit self-discrimination and mental health of obese individuals added to previous
results on experiences of weight stigma and negative self-evaluation being associated with development and maintenance of BED. Thus, implicit self-discrimination might be useful in explaining why some individuals are at greater risk than others to suffer from the harmful consequences of weight stigma. Future investigations should link implicit self-discrimination and experiences of weight stigma to investigate protective factors that prevent obese individuals from self-stigmatization. Finally, further research is warranted to explore the preliminary results on the validity of the SD-IAT (e.g., on prognostic validity) to complement psychometric evaluation of the SD-IAT.
REFERENCES

Table 1. Structural and categorical features of the Implicit Association Tests (IAT) used in this study

<table>
<thead>
<tr>
<th>Block</th>
<th>Task (Trials)</th>
<th>Self-Discrimination IAT</th>
<th>Weight Stigma IAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Left Key</td>
<td>Right Key</td>
</tr>
<tr>
<td>1</td>
<td>Single attribute discrimination (20)</td>
<td>Discriminated</td>
<td>Accepted</td>
</tr>
<tr>
<td>2</td>
<td>Single target discrimination (20)</td>
<td>Self</td>
<td>Other</td>
</tr>
<tr>
<td>3</td>
<td>Initial combined task – compatible pairing (60)</td>
<td>Discriminated</td>
<td>Accepted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Self</td>
<td>+ Other</td>
</tr>
<tr>
<td>4</td>
<td>Reversed target discrimination (40)</td>
<td>Other</td>
<td>Self</td>
</tr>
<tr>
<td>5</td>
<td>Reversed combined task – incompatible pairing (60)</td>
<td>Discriminated</td>
<td>Accepted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Other</td>
<td>+ Self</td>
</tr>
</tbody>
</table>

Table 2. Prediction of global eating disorder psychopathology by dummy coded group membership, experiences of weight bias, and implicit self-discrimination (controlling for depressive symptoms)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE (B)</th>
<th>β</th>
<th>t</th>
<th>ΔR²</th>
<th>F for ΔR²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.63</td>
<td>0.19</td>
<td></td>
<td>3.32**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy HC-BED</td>
<td>0.99</td>
<td>0.32</td>
<td>0.41</td>
<td>3.06*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy HC-OB</td>
<td>0.54</td>
<td>0.25</td>
<td>0.22</td>
<td>2.13*</td>
<td>0.43</td>
<td>18.36**</td>
</tr>
<tr>
<td>BDI</td>
<td>0.05</td>
<td>0.02</td>
<td>0.37</td>
<td>3.16*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.63</td>
<td>0.19</td>
<td></td>
<td>3.23*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy HC-BED</td>
<td>0.94</td>
<td>0.36</td>
<td>0.38</td>
<td>2.57*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy HC-OB</td>
<td>0.49</td>
<td>0.29</td>
<td>0.20</td>
<td>1.69</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>BDI</td>
<td>0.05</td>
<td>0.02</td>
<td>0.36</td>
<td>2.93*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[B]</td>
<td>[SE]</td>
<td>[\beta]</td>
<td>[T]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSI</td>
<td>0.06</td>
<td>0.17</td>
<td>0.04</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.14</td>
<td>0.27</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy HC-BED</td>
<td>0.96</td>
<td>0.35</td>
<td>0.40</td>
<td>2.74*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy HC-OB</td>
<td>0.46</td>
<td>0.28</td>
<td>0.19</td>
<td>1.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDI</td>
<td>0.06</td>
<td>0.02</td>
<td>0.45</td>
<td>3.63*</td>
<td>0.05</td>
<td>6.24*</td>
</tr>
<tr>
<td>SSI</td>
<td>0.16</td>
<td>0.17</td>
<td>0.11</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-IAT</td>
<td>-0.92</td>
<td>0.37</td>
<td>-0.26</td>
<td>-2.50*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. \(N = 78\). \(B\) = unstandardized coefficient; \(SE\) = standard error; \(\beta\) = standardized coefficient; \(T\) = \(t\) statistic; \(BDI\) = Beck Depression Inventory; \(SSI\) = Stigmatizing Situations Inventory; \(SD-IAT\) = Self Discrimination Implicit Association Test. ** \(p < 0.001\), * \(p < 0.05\).