Der Zusammenhang von objektivem und subjektivem Blickort als Indikator für die visuelle Aufmerksamkeitsausrichtung

DISSERTATIONSSCHRIFT

zur Erlangung des akademischen Grades
Doctor rerum naturalium
(Dr. rer. nat.)

vorgelegt
der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von
Dipl.-Psych. Jens R. Helmert
geboren am 06.01.1976 in Dresden

Gutachter: ...
...
...

eingereicht am:
Danksagung

Mein herzlicher Dank gilt an erster Stelle meinem Betreuer Prof. Velichkovsky, der, neben unzähligen wertvollen wissenschaftlichen Hinweisen, vor allem mit seinem Enthusiasmus und seiner Begeisterung immer wieder motivierte und diese Arbeit voranbrachte.

Mein besonderer Dank für Diskussionen, Ratschläge und Hinweise gilt meinem Kollegen Herrn Dr. Sebastian Pannasch.

Sven-Thomas Graupner und Michael Heubner möchte ich für fruchtbare Diskussionen und technische Hilfestellungen leisten.

Constanze Liebers schulde ich Dank für unzählige Hilfe bei organisatorischen und anderen Widrigkeiten.

Sabine Born, Mathias Hofmann und Tilman Gaber danke ich für die Kooperation bei der Datenerhebung.

Außerdem möchte ich mich bei meiner Familie und Freunden bedanken, die mit Geduld und Toleranz das Entstehen dieser Arbeit erst ermöglicht haben.
Inhaltsverzeichnis

1 Einleitung.. 1

2 Theoretische Betrachtungen.. 3

2.1 Aufmerksamkeit.. 3
 2.1.1 Kurzer historischer Abriss über das Konzept.. 3
 2.1.2 Kognitive Aufmerksamkeitsmodelle... 4

2.2 Blickbewegungen.. 7
 2.2.1 Stabilisierende Bewegungen.. 8
 2.2.2 Zielführende Bewegungen... 9

2.3 Visuelle Aufmerksamkeit und Blickbewegungen.. 9
 2.3.1 Verdeckte und offene Aufmerksamkeitsverlagerungen................................. 11
 2.3.2 Lesen... 15
 2.3.3 Objekt- und Szenenwahrnehmung.. 18
 2.3.4 Natürliche Handlungsabläufe... 19
 2.3.5 Modelle zu visueller Aufmerksamkeit und Blickbewegungen........................ 21

3 Ableitungen für das experimentelle Paradigma der Arbeit............................. 27

4 Experimentelle Untersuchungen... 29

4.1 Globale Methoden... 29
 4.1.1 Stimulusmaterial.. 29
 4.1.2 Aufbau und Apparatus.. 29
 4.1.3 Versuchsablauf.. 29
 4.1.4 Abhängige Variablen.. 30

4.2 Experiment 1: Trennung von Lokalisation und Identifikation....................... 31
 4.2.1 Hypothesen... 32
 4.2.2 Methoden.. 32
 4.2.3 Ergebnisse... 36
 4.2.4 Diskussion.. 40

4.3 Experiment 2: Lokalisation und Identifikation... 42
 4.3.1 Hypothesen... 42
 4.3.2 Methoden.. 43
 4.3.3 Datenauswertung.. 44
 4.3.4 Ergebnisse... 46
 4.3.5 Diskussion.. 54
4.4 Experiment 3: Lokalisation, Identifikation und Kategorisierung

4.4.1 Hypothesen

4.4.2 Methoden

4.4.3 Datenauswertung

4.4.4 Ergebnisse

4.4.5 Diskussion

5 Allgemeine Diskussion

5.1 Zusammenfassung der vorliegenden Ergebnisse

5.2 Lokalisation

5.3 Identifikation

5.4 Lokalisation und Identifikation

5.5 Kategorisierung

5.6 Experimentelle Untersuchung zur praktischen Relevanz der empirischen Ergebnisse

5.6.1 Hypothesen

5.6.2 Methoden

5.6.3 Ergebnisse

5.6.4 Diskussion

5.7 Multi-Ebenenansatz zur Erklärung der Ergebnisse

6 Zusammenfassung und Ausblick

Literaturverzeichnis

Abbildungsverzeichnis

Tabellenverzeichnis
1 Einleitung

Ein weiterer Ansatz, der in dieser Arbeit als Ausgangspunkt herangezogen werden soll, ist die Forschung zu Blickbewegungen in natürlichen, komplexen Handlungsabläufen. Vor allem die Frage nach der Koordination von Augen- und Handbewegungen ist in diesem Kontext von Bedeutung, da sie
die Verbindung zwischen Informationsaufnahme und -verarbeitung, sowie deren Auswirkung auf die Handlungssteuerung untersucht. Gerade an solchen Untersuchungen in natürlicheren Kontexten müssen sich reine Laborexperimente auf ihre Gebrauchstauglichkeit und die Praktikabilität der zugrundeliegenden Definitionen messen lassen.

Hierarchische und heterarchische Theorien der Aufmerksamkeit zeigen Ansätze auf, über diese drei in ihrem Abstraktionsgrad und ihrer Anwendbarkeit verschiedenen Themenschwerpunkte hinweg integrative Modelle zum Verständnis von Aufmerksamkeit zu formulieren. Dabei wird Aufmerksamkeit einerseits im Rahmen der Handlungsregulation, andererseits aber auch im Kontext der kognitiven Steuerung und der phylogenetischen Entwicklung betrachtet.

2 Theoretische Betrachtungen

2.1 Aufmerksamkeit

2.1.1 Kurzer historischer Abriss über das Konzept

William James (1890): “Every one knows what attention is. It is the taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thought. Focalization, concentration, of consciousness are of its essence. It implies a withdrawal from some things in order to deal effectively with others, […]” (James, 1890)

Diese Aussage von William James findet sich wohl in beinahe jedem Lehrbuch über Aufmerksamkeit. Sie spiegelt vor allen Dingen den Optimismus wider, mit welchem das Konzept der Aufmerksamkeit als allgemeingültig und intuitiv verständlich angesehen wurde. Diesem positiven Ansatz steht die Auffassung des dänischen Gestaltpsychologen Edgar Rubin entgegen, der Aufmerksamkeit als ein Phänomen des naiven Realismus bezeichnet:

Über diese rigorose Ablehnung des Konzepts der Aufmerksamkeit in der Psychologie hinaus führt Rubin weiter aus, dass ein HaupthHEMA der Psychologie die Aufdeckung und Erforschung der subjektiven Bedingungen der Erlebnisse sei. Innerhalb eines Verständnisses im Rahmen von Aufgaben
sein diese Bedingungen von Fall zu Fall verschieden und bewirkten Verschiedenes. Darum

„... bezeichnet die A., ohne dass man es sich klar macht, entweder etwas ziemlich Unbestimmtes oder etwas nicht Einheitliches, von Fall zu Fall Verschiedenes. Deshalb ist man nie mit einer Definition der A. zufrieden gewesen, deshalb kann man scheinbar alles mit der A. erklären, und deshalb verschwindet die A. als Erklärung aus dem Gebiete, wo die Forschung in die Phänomene eindringt und die Bedingungen und Sachverhältnisse der Phänomene aufdeckt.„ (Rubin, 1926, S.212)

Auch aktuelle Aufsätze und Lehrbücher nehmen Bezug auf die Aussage von William James:

Elisabeth Styles (1997): Unfortunately, attention is a concept that psychologists have been particularly reluctant to define. Despite William James’s (1890) oft-quoted remark that “Everyone knows what attention is”, it would be closer to the truth to say that “Nobody knows what attention is” or at least not all psychologists agree. The problem is that attention is not a single concept, but the name for a variety of psychological phenomena.” (Styles, 1997, S. 1)

Patrick Cavanagh(2004): „Although we might all know what attention is (James, 1890), we do not all agree on what it does, except that it only does a limited amount of it.“ (Cavanagh, 2004)

Zusammengefasst zeigen diese Zitate, dass Aufmerksamkeit als Konzept in der wissenschaftlichen Psychologie eine Rolle spielt, und dabei kontrovers diskutiert wird. In den letzten Jahren sind mehr und mehr Modelle entstanden, die versuchen, Aufmerksamkeitsaspekte integrativ zu behandeln. Diese sollen im Folgenden dargestellt werden.

2.1.2 Kognitive Aufmerksamkeitsmodelle

alisierung und Umleitung von Informationen besteht (Shimamura, 2000), angelehnt. Es werden drei Ebenen angenommen:

(A) **Paleokinetische Regulationen**. Regulation des Muskeltonus, praktisch kein bewusster Zugang.

(B) **Synergien**. Koordination von Bewegungen größerer Muskelpompen verschiedener Körperteile, bewusste Erfahrung reduziert auf proprio- und tangorezeptorische Eindrücke innerhalb eines körperzentrierten Bezugssystems.

(C) **Räumliches Feld**. Zugang zur umgebenden Umwelt, Eindruck einer stabilen, voluminösen Umwelt, in der sich lokализierte Objekte befinden. Eindruck von den Objekten bleibt allerdings skizzenhaft.

(D) **Objektaktionen**. Detaillierte Formenwahrnehmung und objektzentrierte Manipulationen. Anbindung an und Unterstützung durch prozedurales Gedächtnis.
(E) *Konzepte Strukturen*. Fähigkeit zur Objektkategorisierung, symbolische Repräsentationen der Welt, allgemeiner Bewusstseinszustand.

(F) *Metakognitive Koordination*. Personelle und interpersonelle Bezüge, reflektiertes Bewusstsein, Umgang mit neuen Situationen und Problemen.

Für die Untersuchung des Zusammenhanges zwischen Blickbewegungen und Aufmerksamkeitsverlagerungen erweisen sich diese Modelle auf den ersten Blick als zu abstrakt. Nichtsdestotrotz zeigen sie, dass sich aktuelle Modellvorstellungen zu Aufmerksamkeit an der visuellen Modalität orientieren, im Gegensatz zu früheren, fast ausschließlich kapazitätsbezogenen, Ansätzen (z.B. Cherry, 1953; Deutsch & Deutsch, 1963). Im Folgenden sollen in einem ersten Schritt Erkenntnisse zu Blickbewegungen (2.2) dargestellt werden. Weiterhin werden Untersuchungen beschrieben, die sich mit dem Zusammenhang von Blickbewegungen und Aufmerksamkeit in verschiedener, mehr oder weniger komplexen, Umgebungen beschäftigt haben; daran anschließend werden Modelle vorgestellt, die sich auf sehr spezifische Weise mit visueller Aufmerksamkeit im Zusammenhang mit Blickbewegungen auseinandersetzen (2.3).

2.2 Blickbewegungen

2.2.1 Stabilisierende Bewegungen

2.2.2 Zielführende Bewegungen

2.3 Visuelle Aufmerksamkeit und Blickbewegungen

In short, our analysis suggests that there is a literal skeletal conception of attention shared by all researchers, but that their actual reasoning and research are generated by specific conceptual metaphors that define how they identify the relevant phenomena and how they reason about them. (Fernandez-Duque & Johnson, 1999)

der Aufmerksamkeit zugeschrieben werden, nicht jedoch über die Art und Weise der adäquaten Untersuchung. Zu ihnen zählen:

- Dem entsprechend minimiert Aufmerksamkeit Ablenkung.
- Aufmerksamkeit verstärkt Prozesse in dem Bereich, wohin jemand seine Aufmerksamkeit richtet.
- Aufmerksamkeit umfasst eine Art von Stimulus-auswahl.
- Aufmerksamkeit erleichtert Zugang zu Bewusstheit, was bedeutet, dass Aufmerksamkeit notwendig für fokussierte Bewusstheit ist.

Die Scheinwerfer-Metapher (attentional spotlight metaphor) symbolisiert das Wirken visueller Aufmerksamkeit durch eine Taschenlampe, die im Raum bewegt werden kann und deren Lichtstrahl Objekte beleuchtet, so dass diese erkannt werden können. Die Kernaussage betrifft dabei die Tatsache, dass mindestens drei Systeme angenommen werden: (1) Aufmerksamkeit, welche von (2) einem exekutiven System gesteuert wird, und (3) einem Erkenntnissystem, das die bewusste Wahrnehmung leistet. Aus diesen Grundannahmen der Metapher leiten sich folgerichtig die relevanten Forschungsfragen ab. Dazu zählen innerhalb der Scheinwerfer-Metapher unter anderem die folgenden Punkte:
• Fällt Aufmerksamkeit bei Bewegung auch auf Regionen zwischen Anfang und Ende? (1)
• Welche Größe hat das ausgewählte Gebiet und wie flexibel ist die Anpassung der Größe? (1)
• Wie homogen ist die Beleuchtung der ausgewählten Fläche? (1)
• Welche Form hat der Lichtkegel? (1)
• Ist Selektion orts- oder objektbezogen? (2)
• Wie verhält sich die benötigte Zeit der Aufmerksamkeitsverschiebung zum zurückzulegenden Weg? (2)
• Können zwei oder mehr räumlich verschiedene Regionen gleichzeitig ausgewählt werden? (1,3)

Diese Fragestellungen werden im Überblick ausführlich von Cave und Bichot (1999) diskutiert.

2.3.1 Verdeckte und offene Aufmerksamkeitsverlagerungen

Che Position, wohingegen bei invaliden Durchgängen die beiden Reize nicht übereinstimmen. In neutralen Durchgängen wird auf den Hinweisreiz verzichtet, so dass die Aufmerksamkeit nicht vor der Reizdarbietung ausgerichtet werden kann.

(cuing-effect). Diese Befunde wurden auch für die auditive Modalität gefunden (Santangelo & Belardinelli, 2007).

(2) Werden bei einer Aufmerksamkeitsverlagerung auch Orte zwischen Start und Ziel mit Aufmerksamkeit „beleuchtet“? Aufgrund neurophysiologischer Evidenz (Motter, 1994; Schall, Hanes, Thompson, & King, 1995) kommen die Autoren zu dem Schluss, dass die Abwendung von Aufmerksamkeit von einem Ort direkt mit der Zuwendung zu einem anderen Ort verbunden ist, ohne dass der Aufmerksamkeitsscheinwerfer auf Regionen dazwischen fällt.

(3) Worin besteht der Zusammenhang zwischen der Entfernung zweier Orte und der Zeit, die benötigt wird, um die Aufmerksamkeit von einem zum anderen zu verlagern? Konsistent mit dem vorhergehenden Problem kommen die Autoren zu dem Schluss, dass die räumliche Distanz zwischen zwei Orten keinen Einfluss auf die Zeit hat, die für eine Verlagerung der Aufmerksamkeit benötigt wird. Es wird darauf geschlossen, dass es sich um eher diskrete als analoge Sprünge handelt.

(6) Welche Form hat der Scheinwerfer und wie viel Flexibilität in der Anpassung ist möglich? Diese Frage wird vor dem Hintergrund von Hemmung und Erleichterung von Informationsverarbeitung für Distraktoren und rele-

In der einen Untersuchung (Gersch et al., in press) wurde während Fixationen auf den inneren Kreisen (3x3 Gitter) pro Durchgang einmal ein Gabor-Muster eingeblendet, welches in verschiedenen Entfernungen zur aktuellen Fixation entweder vor oder hinter der Fixation (bezogen auf den zurückzulegenden Pfad), und auf bzw. neben dem Pfad liegen konnte. Der zurückzulegende Pfad wurde in einer Bedingung farblich markiert, in der anderen mussten die Sakkaden gedächtnisbasiert ausgeführt werden. Die Aufgabe der Probanden bestand darin, nach Beendigung des Durchgangs die Orientierung des Gabor-Musters anzugeben. Im Falle von farblich markierten Pfaden zeigte sich, dass die Rate richtiger Antworten für die unmittelbar vorhergehende Position vergleichbar zu der unmittelbar folgenden war. In den Durchgängen, in denen die Sakkaden ohne farbliche Markierung ausgeführt werden mussten, waren die Ergebnisse für die vorhergehende Position teilweise sogar besser.

Das in Grundzügen gleiche Paradigma wurde auch in der anderen Studie (Gersch et al., 2008) verwendet. Der einzige Unterschied bestand darin, dass statt Gabor-Mustern Buchstaben auf allen Kreispositionen eingeblendet wurden. Nach Beendigung des Durchgangs bestand für die Probanden die Aufgabe darin, die Identität eines Buchstabens an einer farblich besonders markierten Stelle anzugeben. Auch in diesem Experiment zeigte sich, dass

2.3.2 Lesen

Lesen bietet gegenüber der Szenenwahrnehmung den Vorteil, dass die Betrachtungsrichtung (zumindest innerhalb einer Zeile) mit relativ hoher

2.3.3 Objekt- und Szenenwahrnehmung

In einer Studie von Henderson et al. (1989) wurden jeweils vier Objekte in einem Gitter angeordnet den Probanden präsentiert, deren Aufgabe darin bestand, die Objekte für einen anschließenden Gedächtnistest zu identifizieren. Dabei wurde untersucht, welchen Einfluss die Vorschau auf die Identifikationsleistung, gemessen in der Fixationsdauer, hatte. Es konnte gezeigt werden, dass ausschließlich die Vorschau auf das nächste zu fixierende Objekt einen positiven Einfluss auf die nachfolgende Fixationsdauer hatte, d.h., diese Fixation war kürzer im Vergleich zur Situation, wenn keine Vorschau möglich war. Die Autoren schließen aus diesen Ergebnissen, dass die Vorschau auf das nächste Objekt es ermöglicht, visuelle Aufmerksamkeit dorthin zu verlagern und bereits Informationen über dieses Objekt zu extrahieren, obwohl das Auge sich noch am vorhergehenden Ort befindet.

hätte auch bei einer Betrachtungsduer von nur 34 ms der aktuell betrachtete Bildausschnitt als solcher erkannt werden müssen.

2.3.4 Natürliche Handlungsabläufe

Tatler (2001) untersuchte Probanden in der Küche bei der Zubereitung von Tee. Während dieser Tätigkeit wurden die Augenbewegungen gemessen. Zu unvorhersehbaren Zeitpunkten wurde das Licht ausgeschaltet, und die Aufgabe der Versuchspersonen bestand darin, so genau wie möglich zu beschreiben, was sie als letztes gesehen hatten. Die Ergebnisse zeigten, dass die Antworten der Versuchspersonen davon abhingen, wann das Licht relativ
zum Zeitpunkt der aktuellen Fixation abgeschaltet wurde: Je früher innerhalb der aktuellen Fixation (bis etwa 400 ms) das Licht ausgeschaltet wurde, desto höher war die Wahrscheinlichkeit, dass der Inhalt der vorhergehenden Fixation berichtet wurde. Ab etwa 400 ms wurde immer der aktuelle Fixationsinhalt angegeben. Unter keinen Umständen ließen sich allerdings Anzeichen dafür finden, dass potentielle Inhalte der darauffolgenden Fixation beschrieben wurden. Tatler (2001) schloss aus diesen Ergebnissen, dass seine Probanden Inhalte eines visuellen Puffers auslesen, der Inhalte der vorhergehenden Fixation bis zu 400 ms innerhalb der aktuellen Fixation enthält.

Simulationsstudien bieten der experimentellen Forschung die Möglichkeit, relativ leicht relevante Verhaltensparameter zu messen und zu bestimmten Situationen in Beziehung zu setzen. In einer Untersuchung von Velichkovsky und Kollegen (Velichkovsky et al., 2002) absolvierten Probanden Fahrten in einer simulierten Stadtumgebung, wobei ihre Aufgabe darin bestand, sich an die geltenden Verkehrsregeln zu halten und Unfälle zu vermeiden. Das Ziel der Studie bestand darin zu untersuchen, in welchem Zusammenhang Blickbewegungsparameter (Fixationsdauern, Sakkadenamplituden) und Gefahrensituationen stehen. Es konnte gezeigt werden, dass eine plötzliche, potentiell gefährliche Situation (Ampel schaltet auf Rot, Fußgänger betritt die Straße, vorausfahrendes Auto bremst) statistisch signifikant zu einer Verlängerung der aktuellen Fixationsdauer führte. Darüber hinaus konnte aber gezeigt werden, dass die Fixationsdauer unmittelbar vor Auftreten der Gefahr diagnostisch relevant dafür war, ob richtig reagiert wurde oder ein Unfall (oder Fehler) produziert wurde: Beim Überfahren roter Ampeln waren die Fixationsdauern gegenüber Situationen mit richtiger Reaktion deutlich niedriger.
Diese Ergebnisse wurden im Rahmen des Ansatzes der zwei visuellen Systeme interpretiert (z.B. Held, Ingle, Schneider, & Trevarthen, 1967; Schneider, 1967; Ungerleider & Mishkin, 1982; Velichkovsky, Dornhoefer, Pannasch, & Unema, 2000). Dabei wird davon ausgegangen, dass visuelle Informationen über den dorsalen („Wo“, ambient, räumlich) und den ventralen („Was“, figural, fokal) verarbeitet werden. Velichkovsky und Kollegen (Velichkovsky et al., 2000; Velichkovsky et al., 2005; Velichkovsky et al., 2002) gehen davon aus, dass sich die dynamische Balance beider Systeme in Blickbewegungen nachweisen lassen. Fokale Verarbeitung geht einher mit längeren Fixationsdauern innerhalb kurzer Sakkaden, wohingegen ambientes Verarbeitungs durch kurze Fixationen innerhalb längerer Sakkadenamplituden gekennzeichnet sind. Im Rahmen dieser Annahmen können die Ergebnisse dahingehend interpretiert werden, dass adäquate Reaktion auf eine Gefahr nur im Zuge fokaler Verarbeitung (längere Fixationen) sichergestellt werden kann, wohingegen ambientes Verarbeitung (kurze Fixationen) unter Umständen zu Fehlern führen kann: In ambianter Verarbeitung können zwar räumliche Informationen extrahiert werden, aber die für eine Interpretation des Gefahrenpotentials notwendige Objektinterpretation kann nicht geleistet werden.

2.3.5 Modelle zu visueller Aufmerksamkeit und Blickbewegungen

Relative Unabhängigkeit von Blickbewegungen und Aufmerksamkeit

Ausgangspunkt für die Untersuchungen der Oculomotor Readiness Hypothesis (Klein, 1980) war die Überlegung, dass ein enger Zusammenhang von Aufmerksamkeit und Blickbewegung zwei klare Vorhersagen erfüllen sollte: Wenn eine Person ihre Aufmerksamkeit auf eine bestimmte Stelle gerichtet hat, sollte eine Sakkade zu diesem Ort schneller ausgeführt werden können als zu einem anderem. Wenn eine Person eine Sakkade zu einem bestimmten Ort vorbereitet, sollte die visuelle Leistung am Sakkadenziel erleichtert wer-

Zeitlich sequentieller Zusammenhang

Henderson’s *Sequential Attention Model* (Henderson, 1990, 1992; Henderson et al., 1989) geht von vier Annahmen aus, wie verdeckte Aufmerksamkeitsverlagerungen und offene Blickbewegungen miteinander verbunden sind: (1) visuell-räumliche Aufmerksamkeit ist zu Beginn foveal gebunden, (2) wenn die foveale Verarbeitung einen kritischen Punkt überschritten hat, wird die Aufmerksamkeit zu einem neuen Ort verschoben, (3) die Aufmerksamkeitsverlagerung initiiert die Programmierung einer Blickbewegung und gestattet (4) Informationsverarbeitung am neuen Ort der Aufmerksamkeit und, (5) die Augen folgen zum neuen Ort der Aufmerksamkeit, sobald die Sakkadenprogrammierung abgeschlossen ist.

Henderson et al. (1989) testeten die Annahme (4) bei der Identifikation von Objekten, in dem die Vorschau auf das nächste Objekt manipuliert wurde. Sie konnten zeigen, dass die Unterdrückung einer parafovealen Vorschau auf das nächste Objekt die Fixationsdauer auf diesem signifikant verlängerte. Daraus wurde geschlossen, dass normalerweise eine Verlagerung der Auf-

2. Von SSMA wird angenommen, dass es im dorsalen Pfad stattfindet, der vor allem für die Verarbeitung räumlicher Informationen verantwortlich ist, die für motorische Handlungen notwendig sind. Konsequenz einer Selektion ist in diesem Falle die Program-
mierung einer eines motorischen Programmes, ohne dass dieses notwendigerweise auch ausgeführt werden muss.

4. Die durch Aufmerksamkeit vermittelte Verknüpfung von SP und SSMA sagt voraus, dass auf der Verhaltensebene, während der Programmierungsphase, die Vorbereitung einer räumlich-motorischen Aktion das Wahrnehmungssystem am Ziel der Bewegung und dessen Ort gebunden ist. Das bedeutet, die perzeptuelle Repräsentation der externen Welt während der Bewegungsvorbereitung sollte für das Bewegungsziel am besten sein. Im Umkehrschluss heißt dies auch, dass die Intention, seine Aufmerksamkeit auf ein bestimmtes Objekt für eine perzeptuelle Analyse zu richten, mit der Ausführung eines motorischen Programms hin zu diesem Objekt einhergehen sollte.

Entsprechend den Annahmen dieses Modells wurden Studien veröffentlicht, bei denen im Gegensatz zu vielen herkömmlichen Paradigmen nicht nur die Entde ckung eines Reizes als Kriterium für Aufmerksamkeiteffekte herangezogen wurde, sondern die richtige Diskrimination – und damit also die Identifikation – eines Reizes im Vordergrund stand (z.B. 1999; Deubel & Schneider, 1996; Deubel, Schneider, & Paprotta, 1998; Paprotta, Deubel, & Schneider, 1999; Schneider & Deubel, 2002). In einer Serie von Experimenten (Deubel & Schneider, 1996; Deubel et al., 1998; Schneider & Deubel, 2002) wurde dafür eine Anordnung verwendet, bei der links und rechts vom zentralen Fixationskreuz zwei Zeichenketten von jeweils fünf Zeichen Länge dargeboten wurden. Das Ziel der auszuführenden Sakkade konnte entweder durch einen exogenen (Schneider & Deubel, 2002) oder endogenen (Deubel & Schneider, 1996) Hinweisreiz angezeigt werden. Der Diskriminationsstimulus wurde in einem Zeitintervall dargeboten, in dem die Sakkade bereits programmiert, jedoch noch nicht ausgeführt war. In beiden Fällen von Hinweisreizen konnte gezeigt werden, dass die Diskriminationsleistung bedeutend von der Entfernung des Diskriminationsreizes zum Sakkadenziel
abhängig ist. Je näher beieinander das Ziel der Sakkade und das Ziel der Verlagerung der Aufmerksamkeit (Diskriminationsreiz) lagen, desto größer war die Wahrscheinlichkeit für eine korrekte Antwort. Auch die Ergebnisse der Untersuchungen zur Ausführung mehrerer geplanter Bewegungen sprechen für die Annahmen des VAM, da gezeigt werden konnte, dass an allen Bewegungszielen die Diskriminationsleistung besser als an anderen Stellen ist (Baldauf & Deubel, 2008; Baldauf et al., 2006).

Gemeinsamer Ursprung von Aufmerksamkeitsausrichtung und Augenbewegung

3 Ableitungen für das experimentelle Paradigma der Arbeit

“We have no wish to deny that much experimental work studying covert visual attention has been ingenious, thorough and illuminating. Our criticism is rather directed to the assumption, often held implicitly, that covert attention forms the main means of attentional selection and that the findings of passive vision, together with an account of covert attention, might integrate to give a complete and coherent picture of visual perception.”

4 Experimentelle Untersuchungen

4.1 Globale Methoden

4.1.1 Stimulusmaterial

4.1.2 Aufbau und Apparatus

4.1.3 Versuchsablauf
urnung wurde wiedeholt, wenn für die Abweichung des Fixationsortes von einem der dargebotenen Punkte ein Wert von >1° gemessen wurde bzw. wenn die durchschnittliche Abweichung aller neun Punkte einen Wert von 0,5° überschritt.

Abbildung 4-1: (A) Driftkorrekturpunkt vor der Darbietung des Inspektionsbildschirms (B).

4.1.4 Abhängige Variablen

In allen vorgestellten Untersuchungen wurden die Blickbewegungen der Probanden aufgezeichnet. Dies ermöglichte, zu jedem beliebigen Zeitpunkt während der Untersuchung zu bestimmen, wo das Auge eines Betrachters gerade fixiert. Durch die systematische Anordnung der Stimuli und die Instruktion zum Betrachten des Kreises im Uhrzeigersinn ließ sich darüber hinaus auch vorhersagen, wo das Auge als nächstes sein wird. Damit stand ein Maß für die objektive Position des Auges zur Verfügung. In den Testanordnungen, die nach der Darbietung der Stimuli präsentiert wurden, sollte der Proband die subjektive Position der Augen zum Abschaltzeitpunkt an-
geben. Indem diese beiden Maße (subjektive und objektive Position) zueinander in Beziehung gesetzt wurden, ergaben sich drei gültige, auswertbare Reaktionen: (1) subjektive und objektive Position stimmten überein, (2) die objektive Position lag vor der subjektiven Position, (3) die subjektive Position lag vor der objektiven Position. Während (1) keinen diagnostischen Wert hatte (da es einfach nur bedeutet, dass sich subjektive und objektive Position entsprechen), ließen sich aus den Wahrscheinlichkeiten von (2) und (3) die Asynchronität zwischen subjektiv erlebtem Fokus und der tatsächlichen Position des Auges bestimmen.

Zusätzlich dazu wurden in Experiment 2 und 3 die Reaktionszeiten ausgewertet. Das Paradigma wurde zwar nicht explizit dafür angelegt, aber die Probanden waren durch die Instruktionen angewiesen, möglichst schnell und ohne nachzudenken eine Entscheidung zu fällen. In Experiment 1 wurde auf diese Auswertung verzichtet, da pro Durchgang zwei Urteile nacheinander abzugeben waren.

4.2 Experiment 1: Trennung von Lokalisation und Identifikation

4.2.1 Hypothesen

H1 – Lokalisation vs. Identifikation

In der Lokalisationsaufgabe ist die Wahrscheinlichkeit für die Angabe der Position des nächsten Piktogramms höher als in der Identifikationsaufgabe. Die Wahrscheinlichkeit für die Angabe des vorherigen Piktogramms als subjektiv zuletzt betrachtete ist in der Identifikationsaufgabe am größten.

H2 – Betrachtungsdauer

Die Wahrscheinlichkeit, dass das vorherige Piktogramm in den Testanordnungen gewählt wird, ist bei kurzen Betrachtungsdauern am größten. Bei mittleren Betrachtungsdauern ist die Wahrscheinlichkeit für die Angabe des tatsächlich betrachteten Piktogramms am größten. Mit zunehmender Dauer der Fixation steigt die Wahrscheinlichkeit, dass das nachfolgende Piktogramm angegeben wird.

H3 – Kategorienzugehörigkeit der Piktogramme zueinander

Die Variation dieser Variable dient der Kontrolle, ob semantische Beziehungen (thematische Ähnlichkeit) einen Einfluss auf das Antwortverhalten haben. Es wird davon ausgegangen, dass keine Einflüsse verzeichnet werden.

4.2.2 Methoden

Versuchspersonen

An dem Experiment nahmen 18 weibliche (n=10) und männliche (n=8) Versuchspersonen teil. Das mittlere Alter der Stichprobe betrug 27,4 Jahre (19-38 Jahre). Bei den Teilnehmern handelte es sich größtenteils um Studenten der Fachrichtung Psychologie der Technischen Universität Dresden. Alle Probanden waren normalsichtig, oder trugen Sehhilfen, die Normalsichtigkeit gewährleisteten.
Versuchsaufbau

Der Versuchsaufbau und die verwendete Apparatur entsprach den Angaben unter 4.1.2.

Stimulusmaterial

Die in diesem Experiment verwendeten Piktogramme entsprachen in ihrer Größe und Darbietung den Angaben im Abschnitt 4.1.1. Im Experiment 1 wurden insgesamt 180 verschiedene Piktogramme verwendet, die sieben verschiedenen Kategorien zugeordnet waren. Innerhalb jeder der sechs inhaltlichen Kategorien (Haushalt, Comic-Helden, Essen & Trinken, Transport, Hinweise, Tiere) gab es 24 verschiedene Stimuli. Zusätzlich dazu wurden 36 Piktogramme als Dummy-Stimuli verwendet. Diese waren keiner inhaltlichen Kategorie zugeordnet; ihre Funktion besteht darin, falsche Alarme in den Reaktionen zu ermitteln. (Beispiele aus jeder Kategorie in Abbildung 4-2). Gemäß der Formel

\[Y = 0.299* R + 0.587* G + 0.114 * B \]

mit Y als Grauwert, R als Rotanteil, G als Grünanteil und B als Blauanteil entspricht der Grauwert des verwendeten Bildschirmhintergrounds \[Y = 211.327 \].

![Abbildung 4-2: Beispielimuli aus Experiment 1. Von links nach rechts: Haushalt, Comic-Held, Essen & Trinken, Transport, Hinweise, Tiere, Dummy.](image)

Versuchsablauf

Uhrzeigersinn) eines der ersten vier nach dem Startpiktogramm und wurde per Zufall bestimmt. Der Countdown hatte – ebenfalls randomisiert – eine Dauer von 350 bis 600 ms, in 50 ms Schritten.

Unmittelbar danach wurden die Testanordnungen präsentiert: In der Identifikationsaufgabe sollte angegeben werden, welches Piktogramm der Proband unmittelbar zum Abschaltzeitpunkt betrachtet hatte (C in Abbildung 4-3). Dazu wurden fünf Piktogramme dargeboten. Zwei davon waren Dummy-Stimuli, die der Proband in keinem Durchgang zu sehen bekam. Die restlichen drei wurden online über die Daten des Blickbewegungsmesssystems ermittelt: das Piktogramm, auf dem das Auge tatsächlich zum Zeitpunkt des Abschaltens fixierte (aktuell), dasjenige im Uhrzeigersinn Vorhergehende (vorher) und das Nachfolgende (nächstes). In der Lokalisationsaufgabe (D in Abbildung 4-3) war die Aufgabe des Probanden, mit der Maus die Position des Piktogramms anzuklicken, welches er subjektiv als letztes betrachtete.

Abbildung 4-3: Schematischer Ablauf in Experiment 1: Nach der Driftkorrektur (A) wurden die Piktogramme präsentiert (B). Die Reihenfolge der Testanordnungen (C und D) wurde experimentell kontrolliert.

Im Programm war die Möglichkeit für den Versuchsleiter vorgesehen, einen Durchgang manuell abzubrechen, wenn die Kalibrierung des Blickbewegungsmesssystems ungenügend genaue Daten lieferte und dadurch der Kreis

Tabelle 4-1: Übersicht über Gründe für den Ausschluß von Daten von der Auswertung.

<table>
<thead>
<tr>
<th>Aller Durchgänge</th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ungenau Aufzeichnung</td>
<td>35</td>
<td>1.9</td>
</tr>
<tr>
<td>Letzte Fixation nicht auf Piktogramm</td>
<td>62</td>
<td>3.1</td>
</tr>
<tr>
<td>Dummy-Piktogramm ausgewählt</td>
<td>12</td>
<td>0.6</td>
</tr>
<tr>
<td>Abschalten während einer Sakkade</td>
<td>157</td>
<td>8.1</td>
</tr>
<tr>
<td>Unterschiede in Antwort (Lokalisatik & Identifikation)</td>
<td>44</td>
<td>2.2</td>
</tr>
<tr>
<td>Durchgänge ausgewertet</td>
<td>1634</td>
<td>84.1</td>
</tr>
</tbody>
</table>

Letztlich ausgewertet wurden also alle Fälle, in denen die Versuchspersonen in beiden Abfragen das Piktogramm auswählten, von dem sie annahmen, dass sie es als letztes betrachteten: das Piktogramm, welches in der Reihenfolge vor dem steht, bei welchem abgeschaltet wurde (vorher), das zum Abschaltzeitpunkt aktuell fixierte (aktuell) oder das Piktogramm, welches nach dem aktuell fixierten betrachtet worden wäre (nächstes). Für alle drei abhängigen Variablen wurden in jeder Bedingung die relativen Häufigkeiten be-
rechnet. Das bedeutet, dass die Summe der Variablen pro Bedingung immer 100% ergibt.

4.2.3 Ergebnisse

Kategorienzugehörigkeit

In einem ersten Schritt wurde geprüft, in wieweit die semantische Ähnlichkeit einen globalen Effekt auf das Antwortverhalten der Probanden hatte. Die entsprechenden t-Tests für die abhängigen Variablen vorher, aktuell und nächstes sind in Tabelle 4-2 dargestellt. Aufgrund dieser Ergebnisse wurde diese unabhängige Variable im Folgenden in den Analysen nicht mehr berücksichtigt und über die Fälle gemittelt.

Tabelle 4-2: Wahl des Piktograms in Abhängigkeit von der thematischen Ähnlichkeit der Piktogramme.

<table>
<thead>
<tr>
<th>Abhängige Variable</th>
<th>Kategorie (%)</th>
<th>t(17)</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gleich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td>7.4</td>
<td>6.4</td>
<td>0.757</td>
</tr>
<tr>
<td>Aktuell</td>
<td>92.5</td>
<td>93.5</td>
<td>0.752</td>
</tr>
<tr>
<td>Nächstes</td>
<td>0.1</td>
<td>0.1</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Reihenfolge der Abfrage und Betrachtungsdauern

Tabelle 4-3: Einteilung der Betrachtungsdauer auf dem Piktogramm zum Abschaltzeitpunkt aufgrund von Perzentilen (Angaben in ms).

<table>
<thead>
<tr>
<th>Betrachtungsdauer</th>
<th>Minimum</th>
<th>Median</th>
<th>Maximum</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurz</td>
<td>0</td>
<td>73</td>
<td>149</td>
<td>510</td>
</tr>
<tr>
<td>Mittel</td>
<td>150</td>
<td>250</td>
<td>356</td>
<td>558</td>
</tr>
<tr>
<td>Lang</td>
<td>357</td>
<td>444</td>
<td>612</td>
<td>566</td>
</tr>
</tbody>
</table>

Zum Vergleich sind in Abbildung 4-4 die Betrachtungsdauern mit den Perzentilgrenzen gegen die gemessenen Fixationsdauern auf allen anderen Piktogrammen abgetragen. Die Verteilungsspitzen bei langen Betrachtungsdauern haben ihre Ursache in der Wirkung des Countdown-Algorithmus, der bei 350, 400, 450, 500, 550 und 600 ms die Darbietung abgebrochen hat.

Abbildung 4-4: Betrachtungsdauern auf dem letzten Piktogramm vor der generellen Fixationsdauerverteilung auf allen anderen Piktogrammen.

Mit den Betrachtungsdauern und der Abfragereihenfolge als unabhängige Variablen wurden für alle abhängigen Variablen 3x2 gestufte ANOVAs mit Messwiederholung berechnet. Die Reihenfolge der Abfrage hatte bei keiner der abhängigen Variablen einen signifikanten Einfluss, alle $F(1,17) < 1.6, p > .23$. Die Betrachtungsdauer zeigte bei der Wahl des vorhergehenden und aktuellem Piktogramms einen signifikanten Einfluss (vgl. Tabelle 4-4), nicht aber für das nächste.
Tabelle 4-4: Einfluss der Betrachtungsdauer auf dem letzten Piktogramm auf die abhängigen Variablen.

<table>
<thead>
<tr>
<th>Abhängige Variable</th>
<th>Betrachtungsdauer (%)</th>
<th>F(2,34)</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorher</td>
<td>Kurz: 21.7, Mittel: 0.7, Lang: 1.0</td>
<td>55.414</td>
<td>p < .0001</td>
</tr>
<tr>
<td>Aktuell</td>
<td>Kurz: 78.2, Mittel: 99.1, Lang: 99.0</td>
<td>55.173</td>
<td>p < .0001</td>
</tr>
<tr>
<td>Nächstes</td>
<td>Kurz: 0.1, Mittel: 0.2, Lang: 0.00</td>
<td>1.000</td>
<td>p = 1.000</td>
</tr>
</tbody>
</table>

Die Interaktionen zwischen Abfrage und Betrachtungsdauer waren nicht signifikant, alle $F(2,34) < 1.1, p > .37$. Abbildung 4-5 verdeutlicht, dass die Wahl eines Piktogramms direkt von der Betrachtungsdauer abhängig ist.

![Antwortverteilung in Bezug auf die Betrachtungsdauer auf dem letzten Piktogramm.](image)

Abbildung 4-5: Antwortverteilung in Bezug auf die Betrachtungsdauer auf dem letzten Piktogramm. Zu beachten: Die Prozentwerte pro Betrachtungsdauer addieren sich jeweils zu 100%.

Ausblendung während einer Sakkade

Der Abschaltzeitpunkt relativ zum Beginn der letzten Fixation wurde nicht direkt, sondern indirekt über einen Countdown-Algorithmus realisiert. Dadurch gab es auch Fälle, in denen der Präsentationsbildschirm abgeblendet wurde, als bereits die Sakkade zum nächsten Piktogramm ausgeführt wurde. Die Betrachtung dieser Fälle ist von hohem Interesse, auch wenn die Datenlage keine inferenzstatistische Behandlung zulässt. In diesen Fällen ruht also das Auge nicht mehr auf dem Piktogramm, welches als *aktuell* bezeichnet wird, sondern ist bereits in Bewegung zum *nächsten* Piktogramm. In Abbildung 4-6 sind die Betrachtungsdauern auf dem letzten Piktogramm,
die Verteilung der Sakkadendauern und die Abschaltzeitpunkte relativ zum Sakkadenbeginn abgebildet.

Abbildung 4-6: Prozentuale Verteilung der Fälle, in denen während der Sakkade zum nächstn Piktogramm abgeschaltet wurde: Bezogen auf die Dauer der letzten Fixation (A), und bezogen auf die Dauer der Sakkade (B); Dauer der Sakkade bis zum Abschalten (C).

Die senkrechten Linien bezeichnen dabei die Perzentilgrenzen (in Abbildung 4-6 A entsprechen diese Grenzen denen aus Tabelle 4-3), die die Daten in Gruppen (kurz, mittel, lang) bzgl. der Betrachtungsdauer auf dem letzten Piktogramm (Abbildung 4-6 A), Dauer der Sakkade zum nächsten Piktogramm (Abbildung 4-6 B) und der Zeit zwischen Beginn der Sakkade und dem Abschalten des Präsentationsbildschirms (Abbildung 4-6 C) teilen.

Für alle drei Diagramme in Abbildung 4-7 lässt sich der gleiche Trend feststellen: Die Wahrscheinlichkeit, dass das vorhergehende Piktogramm angegeben wird, liegt auf einem Niveau um 0%. Die Wahrscheinlichkeit, dass das Sakkadenziel angegeben wird, steigt in allen drei Diagrammen für die letzte Kategorie, also lange Betrachtungsdauern (A), lange Sakkaden (B) und spätes Abschalten innerhalb der Sakkade (C). Im überwiegenderen Teil der Fälle wird allerdings das Piktogramm des Sakkadenstarts angegeben.

Abbildung 4-7: Prozentuale Antworthäufigkeiten in den Sakkadenfällen: Unterteilung bezogen auf die Betrachtungsdauer auf dem letzten Piktogramm (A), die Dauer der anschliessenden Sakkade (B), sowie die Sakkadendauer bis zum Abschalten des Präsentationsbildschirims (C).
Unterschiede zwischen Lokalisation und Identifikation in den Antworten

Wie bereits weiter oben erwähnt, wurden in lediglich 2,2% aller Fälle Unterschiede zwischen den Aufgaben Lokalisation und Identifikation registriert. Diese Fälle sollen hier auf einer deskriptiven Ebene untersucht werden.

Tabelle 4-5 stellt die Unterschiede in den Antworten als Relation dar: Wurde auf die Lokalisation mit dem aktuellen Piktogramm geantwortet, und in der Identifikationsaufgabe mit vorhergehendem, dann stellt dies eine Relation Lokalisation vor Identifikation (Lok vor Ident) dar. Demgegenüber werden alle Fälle, in denen bei der Identifikationsaufgabe gegenüber der Lokalisation ein späteres Piktogramm gewählt wurde, als Identifikation vor Lokalisation (Ident vor Lok) bezeichnet.

Tabelle 4-5: Unterschiede in den Antworten zur Lokalisation und Identifikation (N=44, prozentuale Angaben in Klammern).

<table>
<thead>
<tr>
<th>Aufgabenreihenfolge</th>
<th>Relativer Zusammenhang der Antworten</th>
<th>Lok vor Ident</th>
<th>Ident vor Lok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>23 (52.3%)</td>
<td>21 (47.7%)</td>
<td></td>
</tr>
<tr>
<td>Lokalisation zuerst</td>
<td>8 (80.0%)</td>
<td>2 (20.0%)</td>
<td></td>
</tr>
<tr>
<td>Identifikation zuerst</td>
<td>15 (44.1%)</td>
<td>19 (55.9%)</td>
<td></td>
</tr>
</tbody>
</table>

Betrachtet man nur die Gesamtheit aller Fälle, zeigt sich eine relative Ausgewogenheit der Relationen (52 vs 48%). Allerdings – mit aller Vorsicht angesichts der geringen Fallzahlen – zeigt sich ein Einfluss der Reihenfolge der Aufgaben, die bisher – in den globalen Vergleichen – keine Rolle zu spielen schienen: Wenn die Lokalisationsaufgabe zuerst gestellt wurde, ergibt sich ein Trend in die hypothetisierte Richtung, so dass mehr Fälle gefunden werden, in denen die Lokalisation der Identifikation um ein Piktogramm voraus ist (80 vs. 20%). Dieser Trend findet sich nicht für die Fälle, in denen die Identifikationsaufgabe zuerst bearbeitet wurde (44 vs. 56%).

4.2.4 Diskussion

Die in diesem Experiment erhobenen Daten weisen keinen Unterschied zwischen der Lokalisations- und Identifikationsaufgabe aus. Unabhängig von der Reihenfolge der Testanordnungen stimmten die Antworten in beiden Aufgaben in der überwiegenden Mehrheit der Durchgänge überein; in lediglich 42 der insgesamt 1944 erhobenen Durchgänge (2,2%) traten überhaupt Unterschiede auf. Die Interpretation dieser wenigen Daten zeigt einen spekulativen Trend: Wenn Lokalisation die erste Aufgabe der Probanden war, gab es eine etwas höhere Wahrscheinlichkeit, dass die Lokalisation ein Piktogramm weiter ist als die Identifikation. In den Fällen, in denen die erste Aufgabe die Identifikation beinhaltete, sind diese Wahrscheinlichkeiten annähernd gleich. Ein auf der Hand liegender Schluss aus diesen Daten ist,

Ziel dieses Experiments war die Untersuchung des Einflusses der Reihenfolge der Testanordnungen und der semantischen Kategorien der Piktogramme auf das Antwortverhalten der Probanden. Für keinen der Faktoren konnte ein signifikanter Einfluss nachgewiesen werden. Es konnte aber zeigte werden, dass die Ergebnisse durch die Betrachtungsdauer auf dem

4.3 **Experiment 2: Lokalisation und Identifikation**

Ausgehend von den Erfahrungen in Experiment 1 wurde dieses Experiment durchgeführt, um die Unterscheidung der Lokalisations- und Identifikationsaufgabe gezielter vorzunehmen. Zu diesem Zweck wurde pro Durchgang nur eine Aufgabe gestellt: Entweder das zuletzt betrachtete Piktogramm aus einer Reihe anderer zu identifizieren oder die Position zu bestimmen, an der das Piktogramm stand. Zusätzlich dazu wurde eine weitere Aufgabe (Kombination) eingeführt, in der sowohl die Positions- als auch die Identitätsinformation kombiniert zur Verfügung steht. Ein Ergebnis in Experiment 1 war, dass die semantischen Beziehungen zwischen den Stimuli keine Rolle spielen. Aus diesem Grunde wurde auf eine erneute Sortierung des Materials verzichtet und stattdessen ein neues Set von Piktogrammen verwendet, welches eine größere thematische Vielfalt beinhaltet.

4.3.1 Hypothesen

H1 – Lokalisation vs. Identifikation

In der Lokalisationsaufgabe ist die Wahrscheinlichkeit für die Angabe des nächsten Piktogramms höher als in der Identifikationsaufgabe. Die Wahrscheinlichkeit für die Angabe des vorherigen Piktogramms ist in der Identifikationsaufgabe am größten. Die kombinierte Aufgabe liegt in den Wahrscheinlichkeiten zwischen Lokalisation und Identifikation.

H2 – Betrachtungsdauer

Die Wahrscheinlichkeit, dass das vorherige Piktogramm gewählt wird, ist bei kurzen Betrachtungsdauern am größten. Bei mittleren Betrachtungsdauern ist die Wahrscheinlichkeit für die Angabe des tatsächlich betrachteten Piktogramms am größten. Mit zunehmender Betrachtungsdauer steigt die Wahrscheinlichkeit, für die
Angabe des nachfolgenden Piktogramms.

H3 – Interaktion Betrachtungsdauer x Aufgabe
Lokalisation führt zu deutlich höheren Wahrscheinlichkeiten für danach-Antworten bei langer Betrachtungsdauer, wohingegen Identifikation in Zusammenhang mit kurzen Betrachtungsdauern zu höheren Wahrscheinlichkeiten für Vorher-Antworten führt.

H4 - Reaktionszeiten
Lokalisation wird zu den geringsten Reaktionszeiten führen; bei der Identifikation werden die längsten Reaktionszeiten erwartet. Für die kombinierte Aufgabe werden mittlere Zeiten vermutet.

4.3.2 Methoden

Versuchspersonen
Am Experiment 2 nahmen 18 weibliche (n=9) und männliche (n=9) Versuchspersonen teil. Das mittlere Alter der Stichprobe betrug 23,4 Jahre (20-31 Jahre). Bei den Teilnehmern handelte es sich größtenteils um Studenten der Fachrichtung Psychologie der Technischen Universität Dresden. Alle Probanden waren normalsichtig oder trugen Sehhilfen, die Normalsichtigkeit gewährleisteten.

Versuchsaufbau
Der Versuchsaufbau und die verwendete Apparatur entsprach den Angaben unter 4.1.2.

Stimulusmaterial
Die in diesem Experiment verwendeten Piktogramme entsprachen in ihrer Größe und Darbietung den Angaben im Abschnitt 4.1.1. Im Experiment 2 wurden insgesamt 121 verschiedene Piktogramme (Beispiele vgl. Abbildung 4-8) verwendet; im Gegensatz zu Experiment 1 wurde auf eine Einteilung der Stimuli in Kategorien verzichtet. Da es in Experiment 1 praktisch keine Fälle gab, in denen Probanden die Dummy-Piktogramme auswählten, wurde in diesem Experiment auf diese Kontrolle verzichtet. Die Piktogramme waren wiederum schwarz-weiß vor einem Hintergrund mit dem gleichen Grauwert wie in Experiment 1 (Y= 211.327).
Versuchsablauf

4.3.3 Datenauswertung

Analog zu Experiment 1 wurde in einem ersten Schritt eine Datenbereinigung vorgenommen. In Tabelle 4-6 sind die genauen Fallzahlen dargestellt. Bei ungenauer Aufzeichnung und manuell abgebrochenen Durchgängen konnten keine auswertbaren Reaktionen aufgezeichnet werden; in den meisten Fällen konnte dann erst durch eine Neukalibrierung des Eyetrackingsystems die Genauigkeit der Aufzeichnung wieder hergestellt werden.
werden. Wenn die Probanden innerhalb von 10 s nicht reagierten, wurde der Durchgang automatisch abgebrochen. Die Fälle, die in Tabelle 4-6 als Reaktionen außerhalb des Gültigkeitsbereichs bezeichnet werden, sind solche Durchgänge, bei denen Probanden zwar reagiert hatten, aber bei Lokalisation oder der Kombinationsaufgabe mit der Maus zu weit außerhalb eines Piktogramms klickten.

Tabelle 4-6: Übersicht über Gründe für den Ausschluss von Daten von der Auswertung.

<table>
<thead>
<tr>
<th>Grund</th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Durchgänge</td>
<td>3240</td>
<td>100</td>
</tr>
<tr>
<td>Ungenaue Aufzeichnung</td>
<td>196</td>
<td>6.0</td>
</tr>
<tr>
<td>keine Reaktion aufgezeichnet</td>
<td>65</td>
<td>2.0</td>
</tr>
<tr>
<td>manuell abgebrochene Durchgänge</td>
<td>255</td>
<td>7.9</td>
</tr>
<tr>
<td>Abschalten während einer Sakkade</td>
<td>339</td>
<td>10.4</td>
</tr>
<tr>
<td>Reaktion außerhalb des Gültigkeitsbereichs</td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>Durchgänge ausgewertet</td>
<td>2380</td>
<td>73.5</td>
</tr>
</tbody>
</table>

Die post-hoc ermittelten Betrachtungsdauern auf dem letzten Piktogramm wurden wie in Experiment 1 mit Hilfe von Perzentilen in drei gleich große Gruppen eingeteilt (vgl. Tabelle 4-7).

Tabelle 4-7: Betrachtungsdauer auf dem Piktogramm zum Abschaltzeitpunkt aufgrund von Perzentilen (Angaben der Percentilgrenzen in ms).

<table>
<thead>
<tr>
<th>Betrachtungsdauer</th>
<th>Minimum</th>
<th>Median</th>
<th>Maximum</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurz</td>
<td>1</td>
<td>73</td>
<td>139</td>
<td>795</td>
</tr>
<tr>
<td>Mittel</td>
<td>140</td>
<td>243</td>
<td>400</td>
<td>824</td>
</tr>
<tr>
<td>Lang</td>
<td>401</td>
<td>498</td>
<td>601</td>
<td>761</td>
</tr>
</tbody>
</table>
Abbildung 4-10 stellt den Zusammenhang zwischen den natürlichen aufgetretenen Fixationsdauern bei der Betrachtung der Piktogramme und der Einteilung der Betrachtungsduern dar.

Abbildung 4-10: Betrachtungsduern auf dem letzten Piktogramm vor der generellen Fixationsdauerverteilung auf allen anderen Piktogrammen (senkrechte Linien entsprechen den Grenzen der Perzentile).

4.3.4 Ergebnisse

Die Basis für die Auswertung der formulierten Hypothesen ist eine 3 (Aufgabe: Lokalisation, Identifikation, Kombination) x 3 (Betrachtungsduer: kurz, mittel, lang) ANOVA mit Messwiederholung. Für vorher wurde ein signifikanter Einfluss sowohl der Aufgaben (Lokalisation 5.19%, Identifikation 11.14% und Kombination 8.96%), $F(2,34) = 3.904, p = .030$, als auch der Betrachtungsduer (kurz 22.65%, mittel 2.16% und lang 0.49%) gefunden, $F(2,34) = 25.226, p < .0001$. Auch die Interaktion beider Faktoren erwies sich als bedeutsam, $F(4,68) = 6.900, p < .0001$.

Bezüglich der abhängigen Variable aktuell zeigte sich kein bedeutsamer Effekt für die Aufgaben (Lokalisation 86.67%, Identifikation 85.75% und Kombination 81.71%), $F(2,34) = 1.706, p = .197$. Die Betrachtungsduern (kurz 74.54%, mittel 90.47% und lang 89.12%) hatten einen signifikanten Einfluss, $F(2,34) = 7.011, p = .003$, ebenso wie die Interaktion zwischen beiden Faktoren, $F(4,68) = 9.932, p < .0001$.
In der Variable nächstes waren sowohl die Aufgaben (Lokalisation 8.14%, Identifikation 3.12% und Kombination 9.32%), $F(2,34) = 5.302, p = .010$, als auch die Betrachtungsdauern (kurz 2.81%, mittel 7.38% und lang 10.39%), $F(2,34) = 8.010, p = .001$, von signifikanten Einfluss. Auch die Interaktion zwischen Aufgabe und Betrachtungsdauer erreichte Signifikanz, $F(4,68) = 5.583, p = .001$.

Lokalisation vs. Identifikation

Abbildung 4-11: Antwortverteilung aufgrund der Aufgaben in Experiment 2.
Betrachtungsdauer

Für \textit{vorher} zeigten Bonferroni-korrigierte Einzelvergleiche signifikante Unterschiede zwischen kurzer Betrachtungsdauer und den beiden anderen, die sich nicht voneinander unterschieden, \(p'<.001 \). Für \textit{aktuell} ist nur der Unterschied zwischen kurzer und mittlerer Betrachtungsdauer bedeutsam, \(p = .022 \). In \textit{nächstes} wurde ein signifikanter Unterschied zwischen kurzer und langer Betrachtungsdauer festgestellt, \(p = .016 \). Die Antworthäufigkeiten aufgrund der Betrachtungsdauer sind in Abbildung 4-12 dargestellt.

Abbildung 4-12: Antwortverteilung aufgrund der Betrachtungsdauern in Experiment 2.
Betrachtungsdauer x Aufgabe

Die Interaktionen zwischen Betrachtungsdauer und Aufgabe waren in den globalen Analysen sowohl für vorher als auch nächstes signifikant.

Abbildung 4-13 stellt die Interaktion für vorher dar. Zum Vergleich der Unterschiede zwischen den Aufgaben wurden drei einfaktorielle Varianzanalysen mit Messwiederholung für jede Betrachtungsdauer berechnet.

Abbildung 4-13: Interaktion zwischen Betrachtungsdauer und Aufgabe.

Bei kurzer Betrachtungsdauer unterscheiden sich die drei Aufgaben (Lokalisation 12.89%, Kombination 23.39% und Identifikation 31.64%) signifikant voneinander, *F*(2,34) = 6.076, *p* = .006. Bonferroni-korrigierte post-hoc Tests zeigen, dass dieser Unterschied in der deutlichen Differenz zwischen Lokalisation und Identifikation, *p* = .013, begründet liegt. Beide Aufgaben unterscheiden sich allerdings nicht von der kombinierten Aufgabe, alle *p*’s > .05. In der mittleren (alle Aufgaben zwischen 1.78% und 2.42%) und langen (alle Aufgaben zwischen 0% und 1.07%) Betrachtungsdauer unterscheiden sich alle Aufgaben nicht voneinander, alle *p*’s > .20.
Abbildung 4-14 verdeutlicht die Interaktion zwischen Betrachtungsdauer und Aufgabe für die Fälle, in denen das aktuelle Piktogramm gewählt wurde.

Abbildung 4-14: Interaktion zwischen Betrachtungsdauer und Aufgabe.
In der kurzen Betrachtungsdauer unterscheiden sich die Antworthäufigkeiten (Lokalisation 85.0%, Kombination 72.91% und Identifikation 65.71%), \(F(2,34) = 5.411, p < .009 \). Bonferroni-korrigierte post-hoc Tests führen dies auf die Differenz zwischen Lokalisation und Identifikation zurück, \(p = .019 \). In der mittleren Betrachtungsdauer ergibt sich ein signifikanter Unterschied zwischen den Aufgaben (Lokalisation 89.32%, Kombination 87.28% und Identifikation 94.79%), \(F(2,34) = 4.266, p = .022 \), der in Bonferroni-korrigierten post-hoc Tests nicht bestätigt wird. Bei langen Betrachtungsdauern unterscheiden sich die Aufgaben (Lokalisation 89.32%, Kombination 87.28% und Identifikation 94.79%) höchst signifikant, \(F(2,34) = 9.730, p < .0001 \). Post-hoc Tests zeigen, dass sich Identifikation deutlich von den beiden anderen Aufgaben unterscheidet, \(p's < .008 \), die sich allerdings nicht von einander unterscheiden.
Abbildung 4-15 verdeutlicht die Interaktion zwischen Betrachtungsdauer und Aufgabe für die Fälle, in denen das nächste Piktogramm ausgewählt wurde.

Abbildung 4-15: Interaktion zwischen Betrachtungsdauer und Aufgabe.

Ausblendung während einer Sakkade

Analog zum Vorgehen bei der Auswertung von Experiment 1 wurden auch hier die Fälle, in denen während einer Sakkade abgeschaltet wurde, deskriptiv untersucht. Alle dargestellten Fälle (N=339) wurden basierend auf der Dauer der letzten Fixation, der Sakkadendauer und der Dauer der Sakkade bis zum Abschalten (vgl. Abbildung 4-16 A bis C) in Perzentile aufgeteilt.

Abbildung 4-16: Prozentuale Verteilung der Fälle, in denen während der Sakkade zum nächsten Piktogramm abgeschaltet wurde: Bezogen auf die Dauer der letzten Fixation (A), und bezogen auf die Dauer der Sakkade (B); Dauer der Sakkade bis zum Abschalten (C).

Im Vergleich zu Experiment 1 ist auffällig, dass die Rate für die Angabe des Sakkadenziels wesentlich höher ist. Insgesamt überwiegt – unabhängig von diesen Einteilungen – die Angabe des Piktogramms, auf dem die Sakkade startete (Abbildung 4-17).

Abbildung 4-17: Prozentuale Antworthäufigkeiten in den Sakkadenfällen: Unterteilung bezogen auf die Betrachtungsdauer auf dem letzten Piktogramm (A), die Dauer der anschließenden Sakkade (B), sowie die Sakkadendauern bis zum Abschalten des Präsentationsbildschirms (C).
Einen systematischen Ansatz zur Erklärung bietet die Unterteilung der Fälle aufgrund der aktuellen Aufgabe (vgl. Abbildung 4-18). In der Lokalisationsaufgabe überwiegt der Anteil der Fälle, in denen das Sakkadenziel angegeben wird. Im Gegensatz dazu besteht in der Identifikationsaufgabe eine sehr viel klarere Präferenz für das Piktogramm, von dem die Sakkade startete.

Abbildung 4-18: Antworthäufigkeiten in den Sakkadenfällen in Beziehung zur Aufgabe.

Reaktionszeiten

4.3.5 Diskussion

Auf der Basis der statistischen Analysen wurde die Wirkung der Aufgaben als Haupeffekt nachgewiesen. Die Richtung der Unterschiede zwischen den Aufgaben entspricht den Erwartungen: Die Wahrscheinlichkeit für die Angabe der nächsten Position ist für die Lokalisation höher als für die Identifikation, wohingegen in der Identifikationsaufgabe die Angabe des vorherigen Piktogramms wahrscheinlicher ist.

Eine Sonderstellung in diesen Vergleichen nimmt die Aufgabe Kombination ein. Hier standen sowohl die Positions- als auch die Inhaltsinformation zur Verfügung. In den Fällen, in denen sich die Probanden für das vorhergehende Piktogramm entschieden, liegt die Wahrscheinlichkeit in dieser Aufgabe zwischen den Lokalisation und Identifikation, wohingegen die Wahrscheinlichkeit für die Angabe des nächsten Piktogramms in der kombinierten Aufgabe höher war als bei der Lokalisationsaufgabe.

Die Betrachtungsdauer zeigte bei allen drei abhängigen Variablen einen signifikanten Einfluss. Am deutlichsten ist dieser globale Effekt – vgl. auch Ergebnisse im Experiment 1 Abbildung 4-5 – für die kurze Betrachtungsdauer. Die Wahrscheinlichkeit für die Angabe des vorhergehenden Piktogramms ist bei kurzer Betrachtungsdauer am höchsten, und fällt dann sehr schnell auf ein geringes Niveau. Im Gegensatz zu Experiment 1 zeigt sich auch eine Veränderung der Wahrscheinlichkeit für das nachfolgende Piktogramm: bereits
bei mittlerer Betrachtungsdauer steigt die Wahrscheinlichkeit für die Angabe des nächsten Piktogramms.

Für die Identifikationsaufgabe wurden höhere Reaktionszeiten gefunden als für die kombinierte Aufgabe, die wiederum höher waren als bei Lokalisation. Auf der Grundlage der etwas unterschiedlichen Wege, die bei den verschiedenen Aufgaben mit der Computermaus zurückgelegt werden mussten, wäre ein anderes Ergebnis zu erwarten gewesen: Bei Lokalisation und in der kombinierten Aufgabe waren die Auswahlflächen größer, so dass hier höhere Reaktionszeiten plausibel gewesen wären. Die Ergebnisse indes zeigen genau in die andere Richtung: Lokalisation weist die geringste Reaktionszeit auf, Identifikation die längste, wobei die kombinierte Aufgabe dazwischen liegt. Die Vermutung liegt also nahe, dass die zusätzlichen Verarbeitungsprozesse, die für die Identifikation eines Objekts notwendig sind, diese Verlängerung der Reaktionszeit bewirkten. Dafür spricht auch die mittlere Reaktionszeit der kombinierten Aufgabe: Es lässt sich mit diesem Paradigma nicht feststellen, aufgrund welcher Information die Probanden ihre Entscheidung jeweils getroffen haben. Da sowohl die räumliche Information als auch das eigentliche Objekt zur Verfügung standen, kann man spekulieren, dass bei der Entscheidung beide Informationen genutzt wurden.

In Experiment 2 wurden die Aufgaben Lokalisation und Identifikation voneinander getrennt und in einzelnen Durchgängen dargeboten. Zusätzlich wurde eine Bedingung untersucht, in der sowohl die räumliche als auch die Objektinformation zur Verfügung stand. Die in Experiment 2 gewonnenen Daten beinhalten wichtige Implikationen zur Interpretation der Daten aus Experiment 1: Bei einem Vergleich von Abbildung 4-5 und Abbildung 4-13 ist die Ähnlichkeit des Kurvenverlaufs über die Betrachtungsdauern für Experiment 1 insgesamt und die Identifikationsaufgabe in Experiment 2 augenfällig. Diese Ähnlichkeit unterstützt die Vermutung, dass das experimentelle Design in Experiment 1 zu einer Überlegenheit der Identifikationsaufgabe über die Lokalisationsaufgabe führte. Aufgrund dieser Überlegenheit konnten keine Unterschiede zwischen Lokalisation und Identifikation in Experiment 1 festgestellt werden.
In Experiment 2 hingegen wurde die Dissoziation zwischen Lokalisation und Identifikation erreicht. Dies zeigt sich in den deutlichen Unterschieden in den Antworttendenzen für die beiden Aufgaben, besonders unter Berücksichtigung der Betrachtungsdauer auf dem letzten Piktogramm. Unterstützt wird diese Aussage auch eindrücklich durch die Fälle, in denen beim Ende des Durchgangs gerade eine Sakkade initiiert wurde. Hier kann sehr deutlich der Einfluss der aktuellen Aufgabe auf das Antwortverhalten aufgezeigt werden (vgl. Abbildung 4-18). In fast 60% der Fälle für die Lokalisationsaufgabe wird das Sakkadenziel angegeben, wohingegen bei der Identifikationsaufgabe die Rate bei unter 10% liegt.

4.4 Experiment 3: Lokalisation, Identifikation und Kategorisierung

In Experiment 2 wussten die Versuchspersonen vorher nicht, welche Aufgabe sie zu lösen hatten, wenn der Durchgang begann. Aufgrund des deutlichen Einflusses der Aufgabe wäre allerdings zu erwarten, dass die Kenntnis über die im aktuellen Durchgang zu lösenden Aufgabe eine strategische Vorgehensweise bei der Betrachtung der Piktogramme provoziert. Dies soll in Experiment 3 geprüft werden.

4.4.1 Hypothesen

H1 – Lokalisation vs. Identifikation vs. Kategorisierung

Für die Angabe des vorhergehenden Piktogramms sind die Wahrscheinlichkeiten für Kategorisierung am höchsten, gefolgt von Identifikation und am geringsten für die Lokalisation. Die umgekehrte Reihenfolge gilt für die Angabe des nachfolgenden Piktogramms.

H2 – Betrachtungsdauer

Die Wahrscheinlichkeit, dass das vorherige Piktogramm in den Testanordnungen gewählt wird, ist bei kurzen Betrachtungsdauern am größten. Bei mittleren Betrachtungsdauern ist die Wahrscheinlichkeit für die Angabe des tatsächlich betrachteten Piktogramms am größten. Mit zunehmender Dauer der Fixation steigt die Wahrscheinlichkeit, dass das nachfolgende Piktogramm angegeben wird.
H3 – Kenntnis über die Aufgabe
Die Probanden, die vor der Präsentation eines Durchgangs über die Aufgabe Kenntnis haben, werden deutlichere Unterschiede in ihrem Antwortverhalten aufweisen gegenüber denjenigen, bei denen die Aufgabe nach dem Durchgang zufällig erscheint.

H4 – Interaktion Aufgabe x Betrachtungsdauer
Lokalisation führt zu deutlich höheren Wahrscheinlichkeiten für danach-Antworten bei langer Betrachtungsdauer im Vergleich mit den anderen Aufgaben, wohingegen Identifikation und Kategorisierung in Zusammenhang mit kurzen Betrachtungsdauern zu höheren Wahrscheinlichkeiten für vorher-Antworten führen.

H5 – Reaktionszeiten
Die geringsten Reaktionszeiten werden für die Lokalisationsaufgabe erwartet, die höchsten für Kategorisierungsaufgabe; für die Identifikation werden mittlere Reaktionszeiten hypothetisiert.

4.4.2 Methoden

Versuchspersonen
Am Experiment 3 nahmen 32 weibliche (n=23) und männliche (n=9) Versuchspersonen teil. Das mittlere Alter der Stichprobe betrug 23,5 Jahre (18-33 Jahre). Bei den Teilnehmern handelte es sich größtenteils um Studenten der Fachrichtung Psychologie der Technischen Universität Dresden. Alle Probanden waren normalsichtig oder trugen Sehhilfen, die Normalsichtigkeit gewährleisteten.

Versuchsaufbau
Der Versuchsaufbau und die verwendete Apparatur entsprach den Angaben unter 4.1.2.

Stimulusmaterial
Die in diesem Experiment verwendeten Piktogramme entsprechen in ihrer Größe und Darbietung den Angaben im Abschnitt 4.1.1. Im Experiment 3
wurden insgesamt 144 verschiedene Piktogramme (Beispiele vgl. Abbildung 4-20) verwendet; jeweils 24 in sechs verschiedenen Kategorien:

- Essen und Trinken
- Comic-Helden
- Kleidung
- Tiere
- Verkehr
- Werkzeug

Die Piktogramme waren wiederum schwarz-weiß vor einem Hintergrund mit dem gleichen Grauwert wie in Experiment 1 und 2 (\(Y=211.327\)).

Abbildung 4-20: Beispiele aus den Stimuluskategorien (Essen und Trinken, Comic-Helden, Tiere, Kleidung, Verkehr, Werkzeug).

Versuchsablauf

Im Experiment absolvierte jeder Proband zunächst 36 Probedurchgänge, und dann drei Versuchsblöcke mit je 144 Durchgängen. Zwischen den Blöcken hatten die Versuchspersonen die Möglichkeit, eine Pause zu machen und den Eyetracker abzunehmen. Vor jedem Block, und wenn nötig zwischen-durch, wurde eine Kalibrierung durchgeführt. Jeder einzelne Durchgang wurde mit einer Driftkorrektur begonnen, wie in 4.1.3 beschrieben. Die Aufgabe der Probanden nach der Betrachtung der Piktogramme bestand je nach Durchgang darin, entweder die Position anzugeben, auf die sie als letztes subjektiv geblickt hatten, oder das Piktogramm aus drei dargebotenen auszuwählen, welches sie als letztes betrachtet hatten, oder im Falle der Kategorisierung die richtige Kategorie aus drei dargebotenen auszuwählen.
4.4.3 Datenauswertung

Analog zu den vorangegangenen Experimenten wurde in einem ersten Schritt eine Datenbereinigung vorgenommen. In Tabelle 4-8 sind die genauen Fallzahlen dargestellt. Die Gründe, die zum Ausschluß von Daten führten, entsprechen den für Experiment 2 beschriebenen Situationen (Abschnitt 4.3.3).

Tabelle 4-8: Ausgewertete Fälle.

<table>
<thead>
<tr>
<th></th>
<th>Anzahl</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Durchgänge</td>
<td>13824</td>
<td>100</td>
</tr>
<tr>
<td>Ungenaue Aufzeichnung</td>
<td>2179</td>
<td>15.8</td>
</tr>
<tr>
<td>manuell abgebrochene Durchgänge</td>
<td>752</td>
<td>5.4</td>
</tr>
<tr>
<td>Abschalten während einer Sakkade</td>
<td>71</td>
<td>0.5</td>
</tr>
<tr>
<td>Letzte Fixation ungenau aufgezeichnet</td>
<td>797</td>
<td>5.8</td>
</tr>
<tr>
<td>Reaktion außerhalb des Gültigkeitsbereichs</td>
<td>36</td>
<td>0.3</td>
</tr>
<tr>
<td>Durchgänge ausgewertet</td>
<td>9989</td>
<td>72</td>
</tr>
</tbody>
</table>

Die post-hoc ermittelten Betrachtungsdauern auf dem letzten Piktogramm wurden wie in Experiment 1 und 2 mit Hilfe von Perzentilen in drei gleich große Gruppen eingeteilt (Tabelle 4-9).

Tabelle 4-9: Einteilung der Betrachtungsdauer auf dem Piktogramm zum Abschaltzeitpunkt aufgrund von Perzentilen.

<table>
<thead>
<tr>
<th>Betrachtungsdauer</th>
<th>Minimum</th>
<th>Median</th>
<th>Maximum</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurz</td>
<td>1</td>
<td>67</td>
<td>115</td>
<td>3340</td>
</tr>
<tr>
<td>Mittel</td>
<td>116</td>
<td>174</td>
<td>240</td>
<td>3345</td>
</tr>
<tr>
<td>Lang</td>
<td>241</td>
<td>311</td>
<td>506</td>
<td>3304</td>
</tr>
</tbody>
</table>
Abbildung 4-21 stellt den Zusammenhang zwischen den natürlich aufgetretenen Fixationsdauern bei der Betrachtung der Piktogramme und der Einteilung der Betrachtungsdauern bei Experiment 3 dar.

Abbildung 4-21: Betrachtungsdauern auf dem letzten Piktogramm vor der generellen Fixationsdauerverteilung auf allen anderen Piktogrammen.

4.4.4 Ergebnisse

Die Auswertung der Ergebnisse beruht auf drei 3 (Aufgabe: Lokalisation, Identifikation, Kategorisierung) x 3 (Betrachtungsdauer: kurz, mittel, lang) x 2 (Block: Zufall, Systematisch) Varianzanalysen, wobei die ersten beiden Faktoren Messwiederholungen darstellen. In analoger Vorgehensweise zu den beiden vorangegangenen Experimenten wurde für jede abhängige Variable, vorher, aktuell und nächstes, eine separate Analyse berechnet.

Für vorher wurde ein signifikanter Einfluss sowohl der Aufgaben (Lokalisation 1.8%, Identifikation 3.9% und Kategorisierung 4.5%), $F(2,60) = 11.00, p < .0001$, als auch der Betrachtungsdauer (kurz 5.6%, mittel 2.5% und lang 2.1%) gefunden, $F(2,60) = 12, p < .0001$. Die geblockte (3.4%) vs. zufällige (3.5%) Präsentation der Aufgaben zeigten keinen bedeutsamen Einfluss, $F(2,60) = .018, p = .895$. Keine der möglichen Interaktionen wurde signifikant.

Bezüglich der abhängigen Variable aktuell zeigte sich ein bedeutsamer Effekt für die Aufgaben (Lokalisation 87.1%, Identifikation 92.8% und Kategorisierung 91.8%), $F(2,60) = 11.649, p < .0001$. Auch die Betrachtungsdauern (kurz 92.6%, mittel 91.9% und lang 87.2%) hatten einen signifikanten Einfluss,
Experimentelle Untersuchungen

$F(2,60) = 7.224$, $p = .002$, ebenso wie die Interaktion zwischen beiden Faktoren, $F(4,120) = 7.718$, $p < .0001$. Auch hier blieb die Weise der Präsentation der Aufgaben ohne Bedeutung (geblockt 90.4%, Zufall 90.8%), $F(1,30) = .030$, $p = .864$.

Für die Variable nächstes waren sowohl die Aufgaben (Lokalisation 11.1%, Identifikation 3.3% und Kategorisierung 3.7%), $F(2,60) = 24.032$, $p < .0001$, als auch die Betrachtungsdauern (kurz 1.8%, mittel 5.6% und lang 10.7%), $F(2,60) = 30.148$, $p = .0001$, von signifikanten Einfluss. Auch die Interaktion zwischen Aufgabe und Betrachtungsdauer erreichte Signifikanz, $F(4,120) = 10.665$, $p < .0001$. Die Art der Darbietung (geblockt 6.2%, Zufall 5.8%) hatte keinen Einfluss, $F(1,30) = .063$, $p = .804$.

Lokalisation vs. Identifikation vs. Kategorisierung

![Abbildung 4-22: Antwortverhalten in Beziehung zu den Aufgaben.](image)

Betrachtungsdauer

Für die Variable vorher zeigten Bonferroni-korrigierte Einzelvergleiche signifikante Unterschiede zwischen kurzer Betrachtungsdauer und den beiden anderen, die sich nicht voneinander unterschieden, beide p's = .003. Für aktuell war der Unterschied zwischen langer Betrachtungsdauer und den beiden anderen bedeutsam, $p = .04$ (kurz) und $p = .003$ (mittel). In der Variable nächstes unterschieden sich alle Bedingungen höchst signifikant voneinander, alle $p < .0001$. Die Unterschiede der Antworthäufigkeiten aufgrund der Betrachtungsdauer sind in Abbildung 4-23 dargestellt.
Darbietung der Aufgaben

Die Varianzanalysen ergaben keinen bedeutsamen Einfluss der Weise, wie die Aufgaben dargeboten wurden. Die Kenntnis darüber, welche Aufgabe als nächstes gestellt wird, verändert die Antwortverhältnisse gegenüber der zufälligen Präsentation nicht.

Abbildung 4-23: Unterschiede im Antwortverhalten in Beziehung zur Betrachtungsdauer.
Betrachtungsdauer x Aufgabe

Obwohl die statistische Analyse für vorher die Interaktion zwischen Aufgabe und Betrachtungsdauer als nicht signifikant ausweist, sollen diese Daten hier zur Vollständigkeit präsentiert werden. Abbildung 4-24 zeigt, dass für alle Aufgaben die Antwortwahrscheinlichkeit für das vorhergehende Piktogramm bei kurzer Betrachtungsdauer am höchsten ist, und dann mit steigender Betrachtungsdauer abnimmt.

![Diagramm](image)

Abbildung 4-24: Relative Antworthäufigkeiten über Aufgabe und Betrachtungsdauer.

Die Einzelvergleiche in den Betrachtungsdauern wurden als einfache Varianzanalyse mit Messwiederholung berechnet: In der kurzen Betrachtungsdauer weisen die Aufgaben keine Unterschiede auf (Lokalisation 4.58%, Identifikation 6.58% und Kategorisierung 5.65%), $F(2,62) = 1.901$, $p = .158$. Sowohl für die mittlere (Lokalisation 0.69%, Identifikation 2.58% und Kategorisierung 4.25%), $F(2,62) = 10.474$, $p < .0001$, als auch die lange Betrachtungsdauer (Lokalisation 0.13%, Identifikation 2.55% und Kategorisierung 3.67%), $F(2,62) = 7.355$, $p = .001$, wird der Unterschied hingegen als bedeutsam ausgewiesen. Bonferroni-korrigierte post-hoc Tests zeigen, dass die Unterschiede immer zwischen Lokalisation und den beiden anderen Aufgaben begründet liegen, alle p’s < .04.
Abbildung 4-25 stellt die Interaktion für die Fälle dar, in denen das aktuell betrachtete Piktogramm angegeben wurde.

Abbildung 4-25: Relative Antworthäufigkeiten über Aufgabe und Betrachtungsdauer.

Unterschiede zwischen den Aufgaben innerhalb der Betrachtungsdauern wurden bei mittleren (Lokalisation 87.92%, Identifikation 94.78% und Kategorisierung 92.97%), $F(2,62) = 11.379, p < .0001$, und langen (Lokalisation 80.49%, Identifikation 91.64% und Kategorisierung 89.53%), $F(2,62) = 10.969, p < .0001$, Betrachtungsdauern ausgewiesen, nicht jedoch für kurze (alle Aufgaben zwischen 92.0% und 92.9%), $F < 1$. Wie schon bei den vorher – Antworten entstehen auch hier die Unterschiede zwischen Lokalisation und den beiden anderen Aufgaben, alle p's <.019, wohingegen Identifikation und Kategorisierung keine Unterschiede aufweisen.
Noch deutlicher als die beiden vorhergehenden Darstellungen zeigt Abbildung 4-26, wie eng Identifikation und Kategorisierung im Vergleich zur Lokalisation zusammenhängen.

Abbildung 4-26: Relative Antworthäufigkeiten über Aufgabe und Betrachtungsdauer.

Reaktionszeiten

Zur Analyse der Reaktionszeiten wurde eine 2 (Darbietung der Aufgabe als Block oder zufällig) x 3 (Aufgabe: Lokalisation, Identifikation, Kategorisierung) faktorielle Varianzanalyse mit Messwiederholung berechnet. Die Art der Darbietung der Aufgaben zeigte keine Unterschiede, $F < 1$, wohingegen sowohl der Haupeffekt Aufgabe (Lokalisation 1202 ms, Identifikation 1210 ms und Kategorisierung 1531 ms), $F(2,60) = 195.114, p < .0001$, als auch die Interaktion zwischen beiden Faktoren, $F(2,60) = 3.482 p = .037$, signifikante Unterschiede auswies. Bonferroni-korrigierte post-hoc Analysen zeigten, dass sich Kategorisierung von den beiden anderen Aufgaben bedeutsam unterschiedet, beide p's < .0001, die sich nicht unterschieden. Im Mittel lagen die Reaktionszeiten in der Versuchsgruppe mit blockweise dargebotenen Aufgaben höher (1340 ms) als in der Gruppe mit zufälliger Darbietung (1290 ms). Die Interaktion zwischen Darbietungsart und Aufgabe erklärt sich aus der Tatsache, dass für die Lokalisation keinerlei Unterschiede vorhanden sind (jeweils 1202 ms), wohl aber für Identifikation (Zufall 1184 ms, Block 1237 ms) und Kategorisierung (Zufall 1481 ms, Block 1581 ms). Abbildung 4-27 (A) zeigt die Ergebnisse gemittelt über die beiden Versuchsgruppen. Die Unterschiede zwischen den Versuchsgruppen, die in Abbildung 4-27 (B) dargestellt sind, erwiesen sich mit t-Tests für unabhängige Stichproben als nicht signifikant, alle p's >.21.

Abbildung 4-27: Reaktionszeiten in Experiment 3 anhand der Aufgaben (links) und getrennt nach Darbietungsart (rechts).

4.4.5 Diskussion

In allen drei abhängigen Variablen - vorher, aktuell, nächstes – zeigten sich bedeutsame Unterschiede zwischen den Aufgaben. Die post-hoc Tests ergaben, dass sich diese Unterschiede auf die Abweichungen zwischen Lokalisation und den beiden anderen Aufgaben zurückführen lassen, die keine signifikanten Differenzen aufwiesen. Damit werden zum einen die Ergebnisse aus Experiment 2 untermauert, dass verschiedene Aufgaben unterschiedliche
Reaktionsmuster hervorrufen. Gleichzeitig zeigt sich, dass Lokalisation eine Sonderstellung innerhalb der drei in Experiment 3 geprüften Aufgaben einnimmt, wie die deutlichen Unterschiede zu Identifikation und Kategorisierung belegen. Die Gemeinsamkeiten und Unterschiede zwischen den letzteten wird in 5.5 diskutiert.

Die Ergebnisse zu den Betrachtungsdauern in Experiment 3 weisen in die erwartete Richtung: Kurze Betrachtungsdauern gehen mit einer höheren Wahrscheinlichkeit einher, dass das vorhergehende Piktogramm gewählt wird, während mit steigender Betrachtungsdauer die Wahrscheinlichkeit zunimmt, dass das nachfolgende Piktogramm angegeben wird. Im Vergleich zu Experiment 2 fallen hier die Ergebnisse allerdings nicht so deutlich aus. Der Anteil an Durchgängen, in denen das tatsächlich zuletzt betrachtete Piktogramm angegeben wurde, liegt in diesem Experiment höher.

Die erwarteten Interaktionen zwischen Betrachtungsdauer und Aufgabe zeigten sich nur für die Variablen aktuell und nächstes. In Experiment 2 war der Abfall der Rate von vorher-Antworten von der kurzen Betrachtungsdauer zu den beiden längeren wesentlich deutlicher. In Experiment 3 hingegen fällt ausschließlich die Wahrscheinlichkeit für die Angabe des vorhergehenden Piktogramms in der Lokalisationsaufgabe deutlich ab. Gegenüber den Ergebnissen aus Experiment 2 muss darüber hinaus festgehalten werden, dass die Wahrscheinlichkeiten für die Angabe des aktuellen Piktogramms über alle Bedingungen und Aufgaben hinweg höher lag. Des Weiteren ist auffällig, dass das vorhergehende Piktogramm in der Identifikations- und in der Kategorisierungsaufgabe mit relativ hoher Wahrscheinlichkeit auch bei mittleren und langen Betrachtungsdauern angegeben wurde. Es bleibt offen, ob die Unterschiede zwischen Experiment 2 und 3 auf die zusätzliche Bedingung Kategorisierung zurückzuführen sind.

Die nach Betrachtungsdauer und Aufgabe aufgeschlüsselten Werte zeigen hingegen wieder das erwartete Bild: In der kurzen Betrachtungsdauer sind die Wahrscheinlichkeiten für die Angabe des vorhergehenden Piktogramms am höchsten, mit den höchsten Werten für Identifikation und Kategorisierung. Bezüglich der Variable nächstes wurde ebenfalls die erwartete Verteilung von Antwortraten gefunden: Bei Kategorisierung und Identifikation bleibt die Rate über die drei Betrachtungsdauern hinweg relativ gering und steigt nur leicht für langen Betrachtungsdauern. Demgegenüber steigt die Rate der Antworten für die Lokalisationsaufgabe über die drei Betrachtungsdauern hinweg stetig an und erreicht in der langen Betrachtungsdauer den höchsten Wert. Zusammenfassend lässt sich feststellen, dass auch die nach Betrachtungsdauer und Aufgabe aufgeschlüsselten Werte für die drei abhängigen Variablen betonen, dass sich Lokalisation von den beiden anderen Aufgaben wesentlich unterscheidet, was besonders für nächstes (Abbildung 4-26) sehr deutlich wird.
Der auffälligste Befund bei der Betrachtung der Reaktionszeiten ist der deutliche Unterschied zwischen Kategorisierung und den beiden anderen Aufgaben. Der Befund aus Eperiment 2, dass die Reaktionszeiten für Identifikation höher liegen als für Lokalisation wurde im Trend gefunden, wies allerdings keine Signifikanz auf. Ebenfalls von Interesse ist die Tatsache, dass zwischen der blockweisen und zufälligen Darbietung der Aufgaben keine Unterschiede gefunden wurden. Es erhärret sich damit die Vermutung, dass die Differenzen in den Antwortraten zwischen den Aufgaben nicht auf unterschiedliche Strategien zurückgeführt werden können.

In Experiment 3 wurden gegenüber dem vorhergehenden Experiment zwei Neuerungen eingeführt: Einerseits wurde Kategorisierung als zusätzliche Aufgabe verwendet und andererseits wurde zusätzlich geprüft, ob das Wissen um die folgende Aufgabe Unterschiede in den Antworten und den Reaktionszeiten hervorruft. Die Antwortraten, die in diesem Experiment erhoben wurden, stellen vor allem die Gemeinsamkeiten zwischen Identifikation und Kategorisierung gegenüber der Lokalisationsaufgabe heraus. Bei den letzteren wurden die höchsten Raten für die Angabe des vorhergehenden Piktogramms gemessen. Die Lokalisationsaufgabe hingegen provozierte die meisten Angaben des nachfolgenden Piktogramms, mit einer stetig wachsenden Häufigkeit über die Betrachtungsdauern hinweg.

5 Allgemeine Diskussion

5.1 Zusammenfassung der vorliegenden Ergebnisse

In Experiment 1 wurde geprüft, in welchem Zusammenhang Blickbewegungen und der subjektive Fokus der Aufmerksamkeit stehen, wenn nacheinander subjektiver Blickort und letzter betrachteter Inhalt angegeben werden sollen. Darüber hinaus wurde die semantische Beziehung der Piktogramme zueinander untersucht. Die Ergebnisse zeigen, dass sowohl für die Lokalisations- wie auch für die Identifikationsaufgabe die Zugehörigkeit der Piktogramme zur gleichen oder zu verschiedenen semantischen Kategorien keinen Einfluss auf die Antwortwahrscheinlichkeiten hatte. Die Daten wurden dann aufgrund der Betrachtungsdauern auf dem letzten Piktogramm in drei Quantilen eingeteilt; auf dieser Basis wurde untersucht, ob sich Unterschiede in den Antwortwahrscheinlichkeiten zwischen den beiden Aufgaben ergeben. Es konnte gezeigt werden, dass beide Aufgaben stark miteinander verknüpft waren: In nur etwa 2% der Fälle wurden Unterschiede gefunden. Die Betrachtungsdauer hatte einen sehr starken Einfluss auf die Ergebnisse: Bei kurzen Betrachtungsdauern war die Wahrscheinlichkeit für die Angabe des vorhergehenden Piktogramms deutlich größer als bei mittleren oder langen Betrachtungsdauern. In Experiment 1 konnten keine Hinweise gefunden werden, dass der subjektive Fokus der Aufmerksamkeit den Augenbewegungen vorausgeht.

In Experiment 2 wurden die Aufgaben voneinander getrennt, so dass in jedem Durchgang nur identifiziert oder lokalisiert werden musste. Zusätzlich wurde eine weitere Aufgabe eingeführt, bei der es den Probanden überlassen war, aufgrund welcher Informationen (Position oder Identität) die Entscheidung getroffen wurde (Kombination). Im Vergleich zu Experiment 1 wurden deutliche Unterschiede zwischen Lokalisation und Identifikation gefunden. Für ersteres zeigten sich die höchsten Wahrscheinlichkeiten, dass das nachfolgende Piktogramm angegeben wurde bei langen Betrachtungsdauern, wohingegen kurze Betrachtungsdauern und Identifikation zur höchsten Wahrscheinlichkeit für die Angabe des vorhergehenden Piktogramms führte. Die Ergebnisse der Kombination lagen bzgl. der Antwortwahrscheinlichkeiten zwischen Lokalisation und Identifikation. In Experiment 2 wurden außerdem deskriptiv Fälle untersucht, in denen die Abschaltung des Präsentationsbildschirmes zufällig während einer Sakkade stattfand. Auch bei diesen Fällen zeigte sich wiederum eine deutliche Abhängigkeit der Antwort von der vorliegenden Aufgabe: Bei Identifikation wurde mit größerer Wahrscheinlichkeit das Piktogramm am Sakkadenstart angegeben, hingegen bei Lokalisation das Objekt am Sakkadenziel. Die Kombination zeigte wiederaum Ergebnisse, die zwischen den beiden singulären Aufgaben liegen. Die
Untersuchung der Reaktionszeiten ergab deutliche Unterschiede zwischen den Aufgaben, woraus geschlossen wurde, dass bei der Identifikation weitere kognitive Prozesse eine Rolle spielen, um die Antwort zu generieren.

Es liegt also eine Datenstruktur vor, in der die Anzahl der Fixationen auf einem Piktogramm unterschiedlich sein kann. Dies hat Implikationen für die Interpretation der Daten. Wenn die vorhergehende Fixation auf dem glei-
chen Piktogramm war wie die aktuelle, besteht nur eine sehr geringe Wahrscheinlichkeit, dass das (in der Betrachtungsreihenfolge) vorhergehende Piktogramm angegeben wird, da dieses identisch mit dem aktuellen ist. In der gleichen Weise werden auch die Wahrscheinlichkeiten für die Angabe des nachfolgenden Piktogramms beeinflusst. Wenn die nachfolgende Fixation wiederum auf dem aktuellen Piktogramm gelandet wäre, ist die Wahrscheinlichkeit für die Angabe des im Kreis nachfolgenden Piktogramms geringer. Zusammengenommen bedeutet dies allerdings, dass die hier gefundenen Effekte auf einem eher konservativen Kriterium beruhen. Es ist nicht ausgeschlossen, dass mit anderen Stimuli, einer anderen Instruktion oder eben dem Experiment vorangestellten Training deutlichere Dissoziationen zwischen subjektiven und objektiven Blickort gefunden werden können.

Um zu überprüfen, ob innerhalb der drei Experimente Unterschiede in den Blickbewegungsmustern auftraten, wurden drei Kriterien näher betrachtet: Die mittleren Fixationsdauern auf den Piktogrammen unabhängig davon, ob es sich dabei um eine initiale oder eine Refixation handelt, die mittleren Verweildauern auf den Piktogrammen (d.h. die Summe aller Einzelfixationen pro Piktogramm) sowie die Wahrscheinlichkeit eines Auftretens von Refixationen (gemessen als relative Häufigkeit von Refixationen). Tabelle 5-1 stellt die Ergebnisse für diese drei Maße dar. Für jedes Experiment wurde mit Hilfe von Varianzanalysen geprüft, ob zwischen den Bedingungen Unterschiede in den Mustern zu finden seien. Da keine dieser Berechnungen signifikante Ergebnisse auswies, wird auf die genaue Darstellung der statistischen Parameter verzichtet.

Tabelle 5-1: Blickbewegungsmuster in Experiment 1-3.

<table>
<thead>
<tr>
<th></th>
<th>Experiment 1</th>
<th>Experiment 2</th>
<th>Experiment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixationsdauer (ms)</td>
<td>265 – 285 ms</td>
<td>287 – 308 ms</td>
<td>190 – 220 ms</td>
</tr>
<tr>
<td>Verweildauer (ms)</td>
<td>478 – 490 ms</td>
<td>425 – 460 ms</td>
<td>255 – 283 ms</td>
</tr>
<tr>
<td>Refixationswkt.</td>
<td>0.29 – 0.31</td>
<td>0.26 – 0.27</td>
<td>0.19 – 0.22</td>
</tr>
</tbody>
</table>

Über die einzelnen Experimente hinweg ergibt sich ein relativ stabiles Bild, in welcher Weise die Antworten der Probanden von der gestellten Aufgabe und der aktuellen Betrachtungsdauer abhängen:
1. Die Aufgabe der **Lokalisation** allein bewirkt, dass die Probanden in der Lage sind, relativ spät in der aktuellen Fixation bereits den Ort des folgenden Piktogramms anzugeben.

2. Die **Identifikation** eines Piktogramms zeigt den umgekehrten Trend: relativ früh innerhalb der aktuellen Fixation wird mit relativ hoher Wahrscheinlichkeit noch der Inhalt des vorhergehenden Piktogramms angegeben.

3. Wenn **Lokalisation** und **Identifikation** innerhalb eines Durchgangs gemeinsam abgefragt werden, finden sich keine Unterschiede in den Antworten. Das Muster der Ergebnisse entspricht dem der Identifikation allein.

Im Folgenden sollen diese Hauptergebnisse der Experimente im Einzelnen zu theoretischen Konzepten und Modellen in Zusammenhang gebracht werden, die im Kapitel 2 vorgestellt wurden.

5.2 Lokalisation

Die Ergebnisse der Lokalisationsaufgabe aus Experiment 2 und 3 stehen im Einklang mit Vorhersagen aktueller Theorien zum Zusammenhang zwischen Blickbewegungen und der Ausrichtung der visuellen Aufmerksamkeit. So wohl das VAM (Schneider, 1995), das *sequential attention model* (Henderson, 1990, 1992; Henderson et al., 1989) als auch die *premotor theory of attention* (Rizzolatti et al., 1987; Rizzolatti et al., 1994; Sheliga et al., 1997) sagen voraus, dass zum Zeitpunkt der Sakkadenprogrammierung die visuelle Aufmerksamkeit bereits zum zukünftigen Fixationsort verlagert wird.

Obwohl das Paradigma in einer Weise angelegt wurde, dass die Probanden auf natürliche Weise relativ komplexe Stimuli betrachten sollten, nimmt die Lokalisationsaufgabe eine Sonderstellung ein. De facto bestand die Lokalisationsaufgabe für die Probanden darin, sich die Ausrichtung ihrer Augen zu einem bestimmten, unvorhersehbaren Zeitpunkt bewusst zu machen, und sich für eine bestimmte Position zu entscheiden. Im Unterschied zu früheren 'Fixieren-Springen‘ Experimenten (z.B. Jonides, 1981; Posner, 1980; Stelmach et al., 1997) ging es nicht darum, einen peripher auftauchenden Reiz zu entdecken, sondern eine Aussage über den aktuellen Ort der Blickausrichtung innerhalb einer ganzen Sequenz von Blickbewegungen zu treffen. Dar-

Im Sinne der Nomenklatur von Velichkovsky (2002) beschreibt Lokalisation eine Aufgabe der Ebene (C), also des Informationsabrufs über das umgebende räumliche visuelle Feld. Diese Ebene wurde in verschiedenen Untersuchungen auch mit ambienter Verarbeitung in Zusammenhang gebracht (z.B. Velichkovsky et al., 2000; Velichkovsky et al., 2005; Velichkovsky et al., 2002). In der Studie von Velichkovsky und Kollegen (2005) wurde gezeigt, dass kurze, ambiente Fixationen (eingebettet in relativ lange Sakkaden) nur in geringem Maße Informationen über Objekttidentitäten tragen. Dies wurde untersucht, indem nach einer Bildbetrachtung für 20 Fixationen betrachtete
Bildausschnitte präsentiert wurden, welche wiederverkannt werden sollten. Für kurze Fixationen in langen Sakkaden konnte gezeigt werden, dass die Erkennungsrate im Vergleich zu anderen Fixations- und Sakkadenkombinationen am schlechtesten war.

5.3 Identifikation

In ähnlicher Weise argumentiert auch die Coherence Theory von Rensink (2000). Auch hier stellt fokussierte visuelle Aufmerksamkeit die notwendige Bedingung dar, um aus einzelnen Merkmalen eine kohärente Repräsentation
eines Objekts zu schaffen. Es wird von einem dreistufigen Prozess ausgegan-
gen: (1) Flüchtige Proto-Objekte werden unabhängig von Aufmerksamkeits-
prozessen parallel über das gesamte visuelle Feld hinweg gebildet. (2) Fo-
kussierte visuelle Aufmerksamkeit als „metaphorische Hand“ kann einen
Teil dieser Proto-Objekte aus dem sich ständig erneuernden Strom heraus-
greifen, wodurch ein stabileres, kohärentes Objekt entsteht. (3) Das Abwen-
den von Aufmerksamkeit bewirkt einen Zerfall des kohärenten Objekts zu-
rück in Proto-Objekte.

Aufmerksamkeit ist also notwendig, um ein Objekt identifizieren zu können.
Die hier vorliegenden Ergebnisse zur Identifikation zeigen, dass relativ früh
innerhalb einer Fixation noch der Inhalt des vorangegangenen Piktogramms
angegeben wird. Tatler (2001) interpretierte seine Ergebnisse als Ausdruck
eines Auslesens von Informationen aus dem visuellen Puffer, wie er bereits
in den 1960er Jahren von Sperling beschrieben wurde (Sperling, 1960). Neu-
ere Arbeiten im Bezug zu Veränderungsblindheit haben die Idee des visuel-
len Puffers neu aufgegriffen und untersucht, welche Rolle ihm bei der Entde-
kung von Veränderungen in Szenen zukommt (z.B. Becker, Pashler, &
Erklärungen für Veränderungsblindheit, die im direkten Bezug zu Eigen-
schaften des visuellen Puffers stehen: „Überschreiben“, „erster Eindruck“,
„keine Speicherung“, „kein Vergleich“ und „Merkmalskombination“. Tatler
argumentiert, dass sich seine Daten im Sinne eines „Überschreibens“ des vi-
suellen Puffers erklären lassen. Tatler schließt, dass die Informationen von
Fixation zu Fixation neu überschrieben werden, wobei die Informationen der
vorhergehenden Fixation bis etwa 400 ms nach Beginn der aktuellen Fixation
erhalten bleiben, bevor sie überschrieben werden. In Bezug auf Arbeiten von
Deubel und Kollegen (Deubel et al., 1999; Deubel & Schneider, 1996) schliesst
Tatler (2001), dass es ausgeschlossen werden könne, dass seine Probanden
Orte berichteten, auf denen momentan die Aufmerksamkeit lag.

Wenn also Tatler (2001) für seine Ergebnisse ausschliesst, dass es sich dabei
um aufmerksamkeitsrelevante Effekte handelt, muss an dieser Stelle die
Frage nach den konzeptionellen Hintergründen für den Begriff der Auf-
merksamkeit aufgeworfen werden. Im Sinne von Cavanagh (2004) zeichnen
sich Aufmerksamkeitsroutinen dadurch aus, dass Anfangs- und Endzustand
berichtbar sind, während die dazwischen ablaufenden Prozesse nicht zu-
gänglich sind. Ausgehend von dieser Aussage würde auch das Auslesen aus
einem visuellen Zwischenspeicher als eine Aufmerksamkeitsroutine ver-
standen werden können. Funktional betrachtet stellt die Aussage, als Letztes
das vorhergehende Piktogramm gesehen zu haben, damit einen Ausgangs-
zustand dar, während die Auswahl des aktuellen Piktogramms der logisch
darauf folgende – und damit ein möglicher Endzustand – ist. Bezogen auf
das wesentlich enger gefasste Verständnis von räumlicher visueller Auf-
merksamkeit kann diese Argumentation allerdings nicht greifen.

5.4 Lokalisation und Identifikation

In Experiment 1 wurden Lokalisation und Identifikation gemeinsam innerhalb eines Durchganges abgefragt. Die Hypothese, dass die beiden Aufgaben zu unterschiedlichen Ergebnissen führen würden, hat sich nicht bestätigt. Wie in den beiden vorhergehenden Kapiteln dargelegt, führt jedoch die Darbietung einer einzelnen Aufgabe zu dieser Dissoziation. Daraus ergibt sich die Frage, worin der qualitative Unterschied zwischen der gemeinsamen und der getrennten Darbietung besteht.

trachtungsdauer fällt die Wahrscheinlichkeit für die Angabe des vorherigen Piktogramms von über 21% auf unter 1%.

5.5 Kategorisierung

Während also der Schritt von der Lokalisierung zur Identifikation mit einer Verschiebung des Zusammenhangs zwischen subjektivem und objektivem Blickort einherging, ist dies von Identifikation zu Kategorisierung nicht festzustellen. Es kann demnach davon ausgegangen werden, dass beide Ent-
scheidungen auf der gleichen perzeptuellen Basis getroffen werden, und der Vergleich von Perzept und übergeordneter Kategorie für den Anstieg der Reaktionszeit verantwortlich ist. Wenn, wie oben argumentiert, die anspruchsvollere Aufgabe bei simultaner Darbietung von zwei Aufgaben (Experiment 1) eine Führungsrolle übernimmt, könnte dies in zukünftigen Experimenten mit einer Kombination aus Kategorisierung und Lokalisation erneut geprüft werden. Auch hier sollte sich der oben beschriebene Zusammenhang zwischen Ort, Identität und kategorialer Zugehörigkeit nachweisen lassen.

5.6 Experimentelle Untersuchung zur praktischen Relevanz der empirischen Ergebnisse

Allerdings ist eine solche Steuerung des Computers nicht unproblematisch. Ein verbreiteter Ansatz zum blickgesteuerten Auslösen von Ereignissen besteht in der Nutzung von Schwelleiten. Dabei muss ein sensitiver Element auf dem Bildschirm solange angeschaut werden, bis die eingestellte Schwellzeit überschritten ist. Um mit einem solchen Systems nutzerfreundlich inter-

Darüber hinaus stellt die permanente Rückmeldung der eigenen Blickposition unter Umständen ein Problem für den Nutzer dar, wie die Untersuchung von Velichkovsky (1995) zeigte: Experten, die bei einer kommunikativ zu lösenden Puzzleaufgabe ihre eigenen Blickbewegungen zurückgemeldet bekamen, gaben an, dass sie Schwierigkeiten hatten, den Cursor zu steuern, da sie den Eindruck gewannen, dass er bereits am intendierten Ort war, bevor überhaupt die Entscheidung bewusst wurde, dass das Auge an diese Stelle bewegt werden sollte.

5.6.1 Hypothesen

H1 – Cursorsteuerung
Die Schreibleistung und subjektive Bewertung des Umgangs mit der Schreibumgebung sind für Glatt und Verzögert besser als für die reinen Rohdaten.

H2 – Auslösezeiten
Sowohl Schreibleistung als auch subjektive Bewertung sind besser für die langsameren Auslösezeiten, und am schlechtesten für die kurze Auslösezeit.

5.6.2 Methoden

Versuchspersonen
Am Experiment 4 nahmen 9 Personen teil, darunter drei Männer. Bei den Versuchspersonen handelte es sich um Studenten der Fachrichtung Psychologie der Technischen Universität Dresden; das Alter der Stichprobe betrug 24,7 Jahre im Durchschnitt (22-28 Jahre). Alle Probanden waren normalsichtig oder trugen eine Sehhilfe, die Normalsichtigkeit gewährleistete.

Versuchsaufbau

Die virtuelle Tastatur auf dem Bildschirm wurde durch Augenbewegungen gesteuert. Zu diesem Zwecke wurden drei verschiedene Algorithmen entwickelt, die die Verknüpfung von Cursor und Augenposition berechneten:

- Rohdaten (Roh): Jedes neue Signal des Eyetrackers wurde direkt auf die Mausposition übertragen.
- Geglättete Daten (Glatt): Die Signale vom Eyetracker wurden in einem Puffer zwischengespeichert. Über die 30 aktuellsten Signale wurde zu jedem Zeitpunkt ein gleitender Mittelwert jeweils für die X- und Y-Achse berechnet, welche dann als Koordinaten für die Mausposition dienten.
Allgemeine Diskussion

- Geglättete und verzögerte Daten (Verzögert): Wie in Bedingung 2 wurden die Signale vom Eyetracker gepuffert. Wiederum wurde ein dynamischer Mittelwert berechnet, in diesem Falle über 20 Signale. Im Gegensatz zu Bedingung 2 waren dies aber nicht die aktuellen Signale, sondern um 10 Werte verzögert.

Abbildung 5-1 illustriert die Wirkung der Algorithmen.

Abbildung 5-1: Gestaltung der Interaktion zwischen Augenbewegungsdaten und Cursor Position.

Stimulusmaterial

Abbildung 5-2: Aufbau der virtuellen Tastatur in Experiment 4.

Im Experiment wurde eine Wortdatenbank mit insgesamt 114 Wörtern verwendet, die aus einer Liste der 10.000 am häufigsten verwendeten deutschen Wörter ausgewählt wurden (http://wortschatz.uni-leipzig.de/Papers/top-10000de.txt). Es wurden Wörter mit einer Länge von 3, 5, 7, 9, 12 und 15 Zeichen ausgewählt, jeweils 19 von jeder Länge. Die Auslösezeiten der Tasten entsprach 700 ms, 500 ms und 350 ms.

Versuchsablauf

Die Probanden waren angewiesen, sich so wenig wie möglich zu bewegen und möglichst nicht zu sprechen. Alle Versuchspersonen wurden in allen neun experimentellen Stufungen getestet. Das Experiment wurde als 3 (Auslösezeit) x 3 (Cursorsteuerung) faktorielles Innersubjekt-Design angelegt. Ein Experiment bestand aus drei Blöcken, wobei jeder Block durch eine Auslösezeit definiert war. Innerhalb eines Blockes wurden die verschiedenen Cursorsteuerungen nacheinander als Sequenzen von zwölf Wörtern (entspricht 102 Buchstaben) dargeboten, wobei die Reihenfolge der Sequenzen mit Hilfe eines lateinischen Quadrates festgelegt wurde.

Die Reihenfolge der Blöcke wurde so festgelegt, dass jede Versuchsperson mit der längsten Auslösezeit begann, gefolgt von mittlerer und kürzerer Auslösezeit. Die Idee, auch diese Reihenfolge zu randomisieren wurde aufgrund von Erfahrungen bei Vorexperimenten verworfen: Es fiel Probanden sehr schwer, sich nach einem Block mit kürzerer Auslösezeit wieder auf längere Auslösezeiten einzustellen (Tabelle 5-2).
Tabelle 5-2: Ausbalancierung der Reihenfolge der Cursorsteuerung (die Ziffern entsprechen den drei verschiedenen Algorithmen *roh*, *glatt* und *verzögert*).

<table>
<thead>
<tr>
<th>Auslösezeit</th>
<th>Gruppe 1</th>
<th>Gruppe 2</th>
<th>Gruppe 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>lang</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>unter</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>kurz</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

5.6.3 Ergebnisse

Subjektive Einschätzungen

In einem ersten Schritt wurden die subjektiven Bewertungen aller Kombinationen aus Auslösezeiten und Cursorsteuerung berechnet. Für jede abhängige Variable wurde jeweils eine 3 (Auslösezeiten) x 3 (Cursorsteuerung) ANOVA mit Messwiederholung berechnet. Bezüglich der Angemessenheit der Auslösezeit wurde sowohl für Auslösezeit, $F(2,16) = 21.214, p < .001$, als auch für Cursorsteuerung, $F(2,16) = 3.684, p = .048$, signifikante Unterschiede beobachtet, wobei die Interaktion zwischen den beiden Faktoren nicht signifikant wurde, $F < 1$. Bei der Güte der Cursorsteuerung wurden ebenfalls signifikante Unterschiede bezogen auf die Cursorsteuerung, $F(2,16) = 7.638, p = .005$, nicht aber bezogen auf die Auslösezeit, $F < 1$, gemessen. Auch die Interaktion zwischen beiden Faktoren war nicht signifikant, $F < 1$ (vgl. Abbildung 5-3).
Abbildung 5-3: Ergebnisse der subjektiven Einschätzungen. Die obere Zeile stellt die Bewertungen hinsichtlich der Angemessenheit der Auslösezeit in Abhängigkeit von (A) der Auslösezeit und (B) der Cursorsteuerung dar. In der unteren Zeile sind die Ergebnisse hinsichtlich der Güte der Cursorsteuerung bezogen auf (C) die Auslöszeiten und (D) die Cursorsteuerung abgebildet.

Schreibleistung

Ersteres wurde als relative Häufigkeit falscher Wörter bezogen auf alle geschriebenen Wörter berechnet. Eine ANOVA für Messwiederholungen mit Auslösezeit und Cursorsteuerung als unabhängige Variable wurde berechnet. Weder Auslösezeit, $F(2,16) = 3.484$, $p = .055$, noch Cursorsteuerung, $F(2,16) = 2.415$, $p = .121$, zeigten einen signifikanten Einfluss auf die Frequenz falsch geschriebener Wörter. Die Interaktion beider Faktoren war ebenfalls nicht signifikant, $F < 1$. Insgesamt war die relative Häufigkeit richtig ge-
schriebener Wörter sehr hoch, im Mittel über 98%, bei einer Standardabweichung von 4%.

Das letztere Maß, KSPC, wurde wie folgt berechnet: Die Länge eines gegebenen Wortes wurde als erwartete Anzahl von Tastenanschlägen für dieses Wort definiert; für ein Wort mit 10 Buchstaben werden also minimal 10 Tastendrucke benötigt. Jede Korrektur, die vorgenommen wird, wie z.B. das Lösen eines falschen Buchstaben und das Tippen des richtigen Buchstaben, führt zu einem höherem KSPC für dieses Wort. Der Mittelwert des KSPC Indexes über alle geschriebenen Wörter wurde in einer ANOVA mit Messwiederholung mit Auslösezeiten und Cursorsteuerung als unabhängigen Variablen analysiert. Für die Cursorsteuerung wurde kein signifikanter Einfluss festgestellt, \(F(2,16) = 0.038, p = .963 \). Die Auslösezeiten hingegen unterschieden sich signifikant, \(F(2,16) = 11.854, p = .001 \). Bonferroni-korrigierte post-hoc Tests zeigten, dass kurze Auslösezeiten signifikant höhere KSPC Indizes bewirkten als die beiden anderen, \(p = .05 \). Lange und mittlere Auslösezeiten unterschieden sich nicht (Abbildung 5-4).

![Abbildung 5-4: Tastendrücke pro Buchstaben als Funktion von (A) der Cursorsteuerung und (B) der Auslösezeiten.](image)

Die Schreibgeschwindigkeit wurde als Tastendrücke pro Minute berechnet. Dabei gingen nur Wörter ein, die richtig geschrieben worden waren. Eine ANOVA mit Messwiederholung wurde berechnet. Sowohl die Auslösezeiten, \(F(2,16) = 74.706, p < .001 \), als auch die Cursorsteuerung, \(F(2,16) = 17.228, p < .001 \), hatten einen signifikanten Einfluß auf die Schreibgeschwindigkeit. Die Interaktion der beiden Faktoren war nicht bedeutsam, \(F(4,32) = .317, p = .85 \). Bonferroni-korrigierte post-hoc Tests zeigten zwischen allen Auslösezeiten signifikante Unterschiede, alle \(p's < .004 \). Bezogen auf die Cursorsteuerung war die Bedingung Roh besser als die beiden anderen, \(p's < .01 \), wohingegen Glatt und Verzögert keine Unterschiede aufwiesen (Abbildung 5-5).
5.6.4 Diskussion

Stützt man die Beurteilung der Auslösezeiten ausschließlich auf die Schreibgeschwindigkeit, wäre die kürzeste Auslösezeit als die beste anzusehen. Die Daten dieser Studie zeigen, dass mit einer Auslösezeit von 350 ms die Schreibgeschwindigkeit etwa anderthalb mal schneller war als mit 700 ms. Dieses Bild wird aber durch Einbeziehung aller anderen erhobenen Maße relativiert und geändert. Mit sinkender Auslösezeit steigt die Fehlerrate (gemessen als KSPC) deutlich an. Hinzu kommt, dass die Angemessenheit der Auslösezeiten in der kürzesten Bedingung auch als zu schnell eingeschätzt wurde, was als Indikator für eine schlechte Benutzerfreundlichkeit gewertet werden kann. Wägt man die subjektiven Beurteilungen und die objektiven Maße gegeneinander ab, kann die mittlere Auslösezeit von 500 ms als der beste Kompromiss angesehen werden: Auf der subjektiven Ebene wird diese Auslösezeit als optimal (nicht zu schnell und nicht zu langsam) bewertet, die Schreibgeschwindigkeit liegt im mittleren Bereich und die Fehlerrate ist deutlich geringer als in der kürzesten Bedingung.

Dieses Ergebnis deckt sich mit Befunden von Velichkovsky und Kollegen (1997), der gezeigt hat, dass semantische Verarbeitung im Sinne des Levels-of-Processing Ansatzes (Craik & Lockhart, 1972) durch Fixationsdauern zwischen 400 und 500 ms charakterisiert ist. Beim blickgestützten Schreiben entsteht in der Tat eine Notwendigkeit zur semantischen Verarbeitung des Buchstabens, bevor die Entscheidung getroffen wird, ob der aktuelle Buchstabe ausgewählt, also „gedrückt“, werden soll. Schlussendlich zeigen die subjektiven Bewertungen der Auslösezeiten auch, dass die längste verwendete Zeit (750 ms) bereits als zu langsam empfunden wird.

Im Moment wird eine Studie durchgeführt, bei der Experten im Schreibmaschineschreiben mit Novizen beim Schreiben mit den Augen verglichen werden. Erste, vorläufige Auswertungen zeigen Ergebnisse, die diese Hypothese unterstützen: (1) Experten wählen nach kurzer Eingewöhnungszeit relativ kurze Schwellzeiten im Vergleich zu den Novizen. (2) Experten nutzen weniger als die Novizen die Möglichkeit, Einstellungen für die Rückmeldung des Cursors vorzunehmen. Letzteres deutet darauf hin, dass die Bewegungen des Auges zur Auswahl eines Buchstabens weniger auf der Rückmeldung durch den Cursor, als auf memorierten Pfaden und relativen Abständen zwischen den Buchstaben beruhen, die aus der Expertise beim (blindem) Schreiben auf einer Tastatur auf das Schreiben mit den Augen übertragen werden.

Abbildung 5-6: Interaktion zwischen Auslösezeiten und Cursorsteuerung bei der Bewertung der Cursorsteuerung.

Die hier beschriebene Untersuchung zeigt, dass Auslösezeiten und die Cursorsteuerung eine wichtige Rolle bei der Bewertung der Benutzerfreundlich-
keit eines augengestützten Schreibsystems haben. Aus den vorliegenden Daten lässt sich schließen, dass eine Auslösezeit von 500 ms einen guten Ausgangswert darstellt, wobei wahrscheinlich ist, dass zunehmende Übung diesen Wert reduzieren wird. Die Glättung und Verzögerung der Rückmeldung der Augendaten auf den Cursor stellt eine weitere wichtige Technik dar, die Interaktion mit dem Cursor durch die Augen zu verbessern.

5.7 Multi-Ebenenansatz zur Erklärung der Ergebnisse

Abbildung 5-7: Schematische Zusammenfassung zur Interpretation der experimentellen Ergebnisse.

„On one view, while the attentional spotlight may be required for acquiring letter identity information, acquiring space information may be preattentive and therefore immune to the effects of foveal processing difficulty. In a sense, we have been assuming that word location is acquired preattentively; otherwise, it is not clear how attention could be directed to the appropriate parafoveal location prior to the eye movement.“ (Henderson & Ferreira, 1990, S. 428).

Die vorliegenden Befunde zeigen, dass die momentan gestellte Aufgabe einen deutlichen Einfluss darauf hat, ob Personen in der Lage sind, das aktuelle, das vorhergehende oder das nachfolgende Piktogramm anzugeben. Dies wurde dahingehend gedeutet, dass die einfache Annahme, dass visuelle Aufmerksamkeit den Augenbewegungen vorausgeht, nicht ohne Weiteres auf natürliche Sequenzen von Blickbewegungen übertragen werden kann. Frühere Studien, die ebenfalls Bewegungssequenzen untersuchten (Baldauf & Deubel, 2008; Baldauf et al., 2006; Gersch et al., 2008, in press), instruierten die Versuchspersonen vor allem in Hinblick auf die Ausführung der motorischen Bewegung, nicht aber der Verarbeitung am Fixationsort. Insofern stellt das vorliegende Paradigma eine Entwicklung hin zu einer natürlicheren Aufgabe dar. Lokalisation, Identifikation und Kategorisierung von Objekten gehören zu den zentralen Themen der visuellen Informationsverarbeitung bei der Betrachtung von Szenen. Im Sinne des *levels-of-processing* Ansatzes (z.B. Craik & Lockhart, 1972; Velichkovsky, 2002) lassen sich diese Aufgaben...

Tabelle 5-3: Einordnung verschiedener visueller Aufgaben in die Nomenklatur nach Velichkovsky (2002).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Verdeckte Aufmerksamkeitsverlagerung</td>
<td>Kontrolle der Augenbewegung (Fixation halten)</td>
<td>B/C</td>
</tr>
<tr>
<td>Lokalisation</td>
<td>Kontrolle der Augenbewegungen und bewusste Erfahrung der aktuellen Position</td>
<td>C</td>
</tr>
<tr>
<td>Identifikation</td>
<td>Kontrolle der Augenbewegungen und semantische Prozesse zur Objekterkennung</td>
<td>D</td>
</tr>
<tr>
<td>Kategorisierung</td>
<td>Kontrolle der Augenbewegungen, semantische Prozesse der Objekterkennung und verbale Kategorisierung</td>
<td>D/ E</td>
</tr>
<tr>
<td>Intentionale Blickbewegungen</td>
<td>Variabel, unterschiedlich auf der Grundlage der aktuellen Aufgabe (siehe Text)</td>
<td></td>
</tr>
</tbody>
</table>

Bei Verdeckter Aufmerksamkeitsverlagerung, wie sie in vielen ‚Fixieren und Springen‘-Experimenten untersucht wurde, besteht die Aufgabe für die Probanden vor allem in der Kontrolle der aktuellen Blickposition und der

Bei der Lokalisation in den Experimenten 2 und 3 bestand die Aufgabe der Probanden darin, den subjektiven aktuellen Fixationsort anzugeben. Als führende Ebene wird dafür Ebene C (Räumliches Feld) angenommen, also die Orientierung im Raum. Spätestens innerhalb der aktuellen Fixation (also statistisch nahe an der Programmierung der nächsten Sakkade) kann deshalb wie in klassischen ‚Fixieren und Springen‘ Experimenten bereits das nachfolgende Piktogramm angegeben werden. Für Experiment 1 konnte dieser Befund nicht gefunden werden, was der Konklusion Raum gibt, dass die zusätzliche Identifikationsaufgabe die führende Rolle übernommen hat, und damit bewirkte, dass die Ergebnisse deutlicher mit der der Identifikationsaufgabe in Experiment 2 und 3 übereinstimmt.

Identifikation als Aufgabe beinhaltet neben der impliziten Kontrolle der Augenbewegungen vor allem semantische Prozesse der Objekterkennung am Fixationsort. Als führende Ebene wird deshalb D (Objektaktionen) angenommen. Die damit einhergehende größere Tiefe der Verarbeitung spiegelt

Bei der *Kategorisierung* im vorliegenden Experiment 3 kommen zu den Prozessen, die für die Identifikation von Objekten eine Rolle spielen, zusätzlich noch verbale Prozesse hinzu. Als führende Ebene wird E (konzeptuelle Strukturen) angenommen. In Experiment 3 wurde beim Vergleich von Identifikation und Kategorisierung keine Hinweise dafür gefunden, dass Kategorisierung mit einer Verstärkung des Unterschieds zwischen objektivem und

Diese Überlegungen lassen sich auch auf intentionale Fixationen übertragen, wie sie beispielsweise beim Schreiben mit den Augen wie in Experiment 4 notwendig sind. In Bezug auf die hier vorgestellte Studie hat sich gezeigt, dass eine Verzögerung der Rückmeldung der aktuellen eigenen Augenposition eine positive Auswirkung auf die Benutzerfreundlichkeit des Schreibsystems hatte. Es wurde argumentiert, dass das Schreiben mit den Augen eine Identifikationskomponente enthält, weshalb als führende Ebene D (Objektaktionen) angenommen wird. Erst wenn ein Buchstabe identifiziert ist, kann eine Entscheidung darüber getroffen werden, ob der Buchstabe geschrieben werden soll oder nicht.

Übertragen auf eine Anwendung mit Experten an der Schreibmaschine, die hohe Anschlagfrequenzen quasi blind erreichen, wären andere Ergebnisse zu erwarten. Vorläufige Ergebnisse einer Studie, in der Experten und Novizen im Schreibmaschineschreiben bei Texteingabe durch die Augen verglichen wurden, zeigen, dass Experten geringere oder keine Verzögerung der Rückmeldung im Vergleich zu den Novizen wählen, wenn sie diese selbst einstellen können. Dieses Ergebnis lässt sich aus den Überlegungen zur Führungsebene heraus vorhersagen: Wenn man eine Schreibmaschine blind bedienen kann, ist nicht mehr die Identifikation der Buchstaben relevant, son-
dern die räumlichen Beziehungen der Tasten zueinander, die beispielsweise auch durch haptisch erfassbare Hervorhebungen auf den Buchstaben F und J bei herkömmlichen Computertastaturen markiert werden. Daraus folgt, dass auch beim Schreiben mit den Augen Experten eher auf der Grundlage von Positionsinformationen (also Lokalisation) arbeiten sollten, und damit Ebene C die Führung übernimmt. Zusammengenommen zeigen diese Überlegungen, wie bei ein und derselben Aufgabe (z.B. Schreiben mit den Augen) durch kognitive Einflüsse wie Expertise führende und Hintergrundebeine die Rolle tauschen können.

6 Zusammenfassung und Ausblick

und der nachfolgenden Sakkadenamplitude (ambient: kurze Fixationen/lange Sakkadenamplitude, fokal: lange Fixationen in kurzen Sakkaden) unterscheiden (Pannasch, Helmert, Roth, Herbold, & Walthner, 2008; Unema, Pannasch, Joos, & Velichkovsky, 2005; Velichkovsky et al., 2005; Velichkovsky et al., 2002). Im Falle fokaler Fixationen führt die anschließende Sakkade zu einem Punkt, der sich innerhalb des parafovealen Bereichs (<4-5°) bezogen auf die aktuelle Fixationsposition befindet, möglicherweise sogar innerhalb des gleichen Objekts. Wie sich solche Unterschiede auf die Verteilung von Aufmerksamkeit und den temporalen Zusammenhang zur Sakkadenplanung auswirken, muss in weiteren Untersuchungen getestet werden.

Auffällig an vielen Untersuchungen, die sich mit dem Zusammenhang von Blickbewegungen und Aufmerksamkeitsverlagerungen beschäftigen, ist die starke Ausrichtung der Paradigmen auf die Bewegung der Augen (z.B. Deubel & Schneider, 1996; Gersch et al., in press). Beide Arbeiten sind insofern herausragend, als nicht die bloße Entdeckung eines Reizes untersucht wird, sondern Merkmale oder die Identität von Objekten abgefragt werden. Nichtsdestotrotz wird durch die Instruktionen der Fokus der Probanden auf die Ausführung arbitrarer Sakkaden gelenkt. Im Alltag hingegen spielt die Ausführung einer Augenbewegung eine unter die aktuelle Aufgabe untergeordnete, eher beiläufige Rolle. Geplante Untersuchungen werden Sakkadensequenzen untersuchen, bei denen die foveale Informationsverarbeitung den zurückzulegenden Weg erst vorgibt (Abbildung 6-1).

Abbildung 6-1: 5x5 Gitter für eine Sakkadensequenz auf der Basis visueller Informationen (links). Skizze des richtigen Blickpfads (roter Pfeil) durch das links dargestellte Muster (rechts).

Die Ausrichtung der schematischen Augen zeigt die Richtung für die nächste auszuführende Sakkade an. Damit steht weniger die motorische Komponente als vielmehr die Informationsverarbeitung direkt am Fixationsort im Vordergrund.
Literaturverzeichnis

Abbildungsverzeichnis

Abbildung 4-1: (A) Driftkorrekturpunkt vor der Darbietung des Inspektionsbildschirms (B). ... 30

Abbildung 4-2: Beispielstimuli aus Experiment 1. Von links nach rechts: Haushalt, Comic-Held, Essen & Trinken, Transport, Hinweise, Tiere, Dummy ... 33

Abbildung 4-3: Schematischer Ablauf in Experiment 1: Nach der Driftkorrektur (A) wurden die Piktogramme präsentiert (B). Die Reihenfolge der Testanordnungen (C und D) wurde experimentell kontrolliert. .. 34

Abbildung 4-4: Betrachtungsdauern auf dem letzten Piktogramm vor der generellen Fixationsdauerverteilung auf allen anderen Piktogrammen. .. 37

Abbildung 4-5: Antwortverteilung in Bezug auf die Betrachtungsdauer auf dem letzten Piktogramm. Zu beachten: Die Prozentwerte pro Betrachtungsdauer addieren sich jeweils zu 100%. ... 38

Abbildung 4-6: Prozentuale Verteilung der Fälle, in denen während der Sakkade zum nächsten Piktogramm abgeschaltet wurde: Bezogen auf die Dauer der letzten Fixation (A), und bezogen auf die Dauer der Sakkade (B); Dauer der Sakkade bis zum Abschalten (C). .. 39

Abbildung 4-7: Prozentuale Antworthäufigkeiten in den Sakkadenfällen: Unterteilung bezogen auf die Betrachtungsdauer auf dem letzten Piktogramm (A), die Dauer der anschliessenden Sakkade (B), sowie die Sakkadendauer bis zum Abschalten des Präsentationsbildschirms (C). .. 39

Abbildung 4-8: Beispiele für Piktogramme aus Experiment 2. 44

Abbildung 4-9: Testanordnungen in Experiment 2. 44

Abbildung 4-10: Betrachtungsdauern auf dem letzten Piktogramm vor der generellen Fixationsdauerverteilung auf allen anderen Piktogrammen (senkrechte Linien entsprechen den Grenzen der Perzentile). ... 46

Abbildung 4-11: Antwortverteilung aufgrund der Aufgaben in Experiment 2. ... 47

Abbildung 4-12: Antwortverteilung aufgrund der Betrachtungsdauern in Experiment 2. ... 48
Abbildungsverzeichnis

Abbildung 4-13: Interaktion zwischen Betrachtungsdauer und Aufgabe. ... 49
Abbildung 4-14: Interaktion zwischen Betrachtungsdauer und Aufgabe. ... 50
Abbildung 4-15: Interaktion zwischen Betrachtungsdauer und Aufgabe. ... 51
Abbildung 4-16: Prozentuale Verteilung der Fälle, in denen während der Sakkade zum nächsten Piktogramm abgeschaltet wurde: Bezogen auf die Dauer der letzten Fixation (A), und bezogen auf die Dauer der Sakkade (B); Dauer der Sakkade bis zum Abschalten (C) .. 52
Abbildung 4-17: Prozentuale Antworthäufigkeiten in den Sakkadenfällen: Unterteilung bezogen auf die Betrachtungsdauer auf dem letzten Piktogramm (A), die Dauer der anschließenden Sakkade (B), sowie die Sakkadendauern bis zum Abschalten des Präsentationsbildschirms (C). .. 52
Abbildung 4-18: Antworthäufigkeiten in den Sakkadenfällen in Beziehung zur Aufgabe... 53
Abbildung 4-19: Reaktionszeiten anhand der Aufgaben in Experiment 2 .. 54
Abbildung 4-20: Beispiele aus den Stimuluskategorien (Essen und Trinken, Comic-Helden, Tiere, Kleidung, Verkehr, Werkzeug) ... 59
Abbildung 4-21: Betrachtungsdauern auf dem letzten Piktogramm vor der generellen Fixationsdauerverteilung auf allen anderen Piktogrammen .. 61
Abbildung 4-22: Antwortverhalten in Beziehung zu den Aufgaben... 62
Abbildung 4-23: Unterschiede im Antwortverhalten in Beziehung zur Betrachtungsdauer... 63
Abbildung 4-24: Relative Antworthäufigkeiten über Aufgabe und Betrachtungsdauer ... 64
Abbildung 4-25: Relative Antworthäufigkeiten über Aufgabe und Betrachtungsdauer ... 65
Abbildung 4-26: Relative Antworthäufigkeiten über Aufgabe und Betrachtungsdauer ... 66
Abbildung 4-27: Reaktionszeiten in Experiment 3 anhand der Aufgaben (links) und getrennt nach Darbietungsart (rechts) ... 67
Abbildung 5-1: Gestaltung der Interaktion zwischen Augenbewegungsdaten und Cursor Position ... 82
Abbildung 5-2: Aufbau der virtuellen Tastatur in Experiment 4. 83
Abbildung 5-3: Ergebnisse der subjektiven Einschätzungen. Die obere Zeile stellt die Bewertungen hinsichtlich der Angemessenheit der Auslösezeit in Abhängigkeit von (A) der Auslösezeit und (B) der Cursorsteuerung dar. In der unteren Zeile sind die Ergebnisse hinsichtlich der Güte der Cursorsteuerung bezogen auf (C) die Auslöszeiten und (D) die Cursorsteuerung abgebildet... 85
Abbildung 5-4: Tastendrücke pro Buchstaben als Funktion von (A) der Cursorsteuerung und (B) der Auslösezeiten. .. 86
Abbildung 5-5: Schreibgeschwindigkeit als Funktion (A) der Cursorsteuerung und (B) der Auslösezeiten. ... 87
Abbildung 5-6: Interaktion zwischen Auslöszeiten und Cursorsteuerung bei der Bewertung der Cursorsteuerung.................................. 89
Abbildung 5-7: Schematische Zusammenfassung zur Interpretation der experimentellen Ergebnisse... 91
Abbildung 6-1: 5x5 Gitter für eine Sakkadensequenz auf der Basis visueller Informationen (links). Skizze des richtigen Blickpfads (roter Pfeil) durch das links dargestellte Muster (rechts). 99
Tabellenverzeichnis

Tabelle 4-1: Übersicht über Gründe für den Ausschluß von Daten von der Auswertung. ... 35

Tabelle 4-2: Wahl des Piktogramms in Abhängigkeit von der thematischen Ähnlichkeit der Piktogramme. 36

Tabelle 4-3: Einteilung der Betrachtungsdauer auf dem Piktogramm zum Abschaltzeitpunkt aufgrund von Perzentilen (Angaben in ms). ... 37

Tabelle 4-4: Einfluss der Betrachtungsdauer auf dem letzten Piktogramm auf die abhängigen Variablen. 38

Tabelle 4-6: Übersicht über Gründe für den Ausschluß von Daten von der Auswertung. ... 45

Tabelle 4-7: Betrachtungsdauer auf dem Piktogramm zum Abschaltzeitpunkt aufgrund von Perzentilen (Angaben der Perzentilgrenzen in ms). ... 45

Tabelle 4-8: Ausgewertete Fälle. ... 60

Tabelle 4-9: Einteilung der Betrachtungsdauer auf dem Piktogramm zum Abschaltzeitpunkt aufgrund von Perzentilen. 60

Tabelle 5-1: Blickbewegungsmuster in Experiment 1-3. 72

Tabelle 5-2: Ausbalancierung der Reihenfolge der Cursorsteuerung (die Ziffern entsprechen den drei verschiedenen Algorithmen roh, glatt und verzögert). ... 84

Tabelle 5-3: Einordnung verschiedener visueller Aufgaben in die Nomenklatur nach Velichkovsky (2002). 93
Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die vorliegende Arbeit wurde am Institut für Arbeits-, Organisations- und Sozialpsychologie, an der Professur für Ingenieurpsychologie und Kognitive Ergonomie der Technischen Universität Dresden unter der wissenschaftlichen Betreuung von Prof. Dr. phil. habil. Boris M. Velichkovsky angefertigt.

Dresden, den

Jens R. Helmert