Annual Report 2003

Institute of Bioinorganic and Radiopharmaceutical Chemistry

Editor: Dr. H. Spies
Editorial staff: Dr. S. Seifert
Cover Picture:

Distribution of 18F fluoride in the Wistar rat skeleton measured with a MicroPET camera (Concorde Microsystems Inc.) one hour after application.
FOREWORD

In 2003 the Institute of Bioinorganic and Radiopharmaceutical Chemistry, one of five institutes in the Forschungszentrum Rossendorf e.V., continued and further developed its basic and application-oriented research. Research was focused on radiotracers as molecular probes to make the human body biochemically transparent with regard to individual molecular reactions.

As illustrated by the majority of contributions in this report, the Institute is predominantly engaged in radiopharmaceutical chemistry of both radionenuclides and the PET nuclides. While the improvement of labelling methods for carbon-11 and fluorine-18 continued to remain an area of considerable endeavour, the completion of laboratories for production of PET-radio pharmaceuticals according to GMP regulations and investigations on computer-assisted movement corrections in PET are new and important issues.

The Institute's chemically and radiopharmacologically oriented activities were complemented by more clinically oriented activities in the Positron Emission Tomography (PET) Centre Rossendorf, which closely links the Institute with the Department of Nuclear Medicine of the Medical Faculty of the Technische Universität Dresden.

Our chemical, biological and medical activities in the PET Centre were further extended as well as our engagement in the coordination chemistry and radiopharmacology of technetium, rhenium and other metals. The studies on bioactive substances as they are present in food have been continued. This line of activity was set up one year ago. Bioactive substances may cause a health risk or may exert effects not yet fully understood. New biotechnological procedures in food processing also give rise to new questions that can be addressed by PET.

As for the radiometals, chemical and radiopharmaceutical studies meet more and more the radiotherapeutic aspect. This involves both the search for stable chelators for radionenuclides as well as attempts to better understand and adjust the in vivo behaviour of the molecule into which the chelate unit is integrated.

During the period under review cooperations with external partners, particularly from the pharmaceutical industry, could be substantially extended.

Because the former Director of the Institute, Prof. Johannsen, became the Scientific Director of the Research Centre, Dr.Spies has assumed the role of Acting Director since March 1, 2003.

The Institute would like to thank all partners from universities, industry and research institutes who supported its progress, as well as all members and guests of the Institute for their active contributions in 2003. The Institute wishes to acknowledge in particular the support and assistance received from the Executive Board of the Forschungszentrum Rossendorf, from the competent authorities and funding agencies.

Dr. habil. Hartmut Spies
Contents

I. RESEARCH REPORTS .. 1

RADIOTRACERS IN TUMOUR AND METABOLISM RESEARCH ... 3

Behavioural Disturbances and Regional Cerebral Metabolism in Probable Alzheimer’s Disease ... 5
V. Holthoff, K. Herholz, S. Lüdecke, S. Spirling, E. Kalbe, O. Lenz, G. Zündorf, B. Beuthien-Baumann

Monitoring Postradiotherapeutic Changes of Lung Tissue with PET and SPECT .. 7

Impact of FDG PET Imaging on the Therapy Decision in Patients with Early Stage Hodgkin’s Lymphoma ... 9

Concorde MicroPET P4 – a PET Scanner for Animal Studies ... 10
E. Will, P. Bühler

Improvement of the Tomographic Reconstruction at the MicroPET-Scanner .. 11
F. Pönisch, P. Bühler

Correction of Body Motion Artifacts in PET - Continued ... 12
P. Bühler, J. Langner, U. Just, E. Will, J. van den Hoff

Respiratory Gating for Improved Image Resolution and Tumour Detection in PET Thorax Investigations ... 13
U. Just, P. Bühler, E. Will, J. van den Hoff

Radiolabelling of an Oligonucleotide Aptamer by Conjugation with N-Succinimidyl-4-[18F]Fluorobenzoate ... 14
M. Grote, F. Wüst, B. Noll, A. Stephens, M. Friebe

Inhibition Studies with FMHBG as a New Pattern for Monitoring Gene Expression 15
M. Grote, St. Noll, B. Noll

18F-Labelling of Cytosine at the 2-Position .. 16
B. Noll, St. Noll

The Microwave-Assisted Synthesis of 5-Hydroxymethylcytosine .. 17
B. Noll, B. Grosse, St. Noll

Z/E-Isomerism of N4-(p-Toluenesulphonyloxy)cytosine Derivatives .. 18
St. Noll, B. Noll, H. Stephan, W. Kraus, M. Findeisen, L. Hennig, K. Yoshizuka

Syntheses of Novel Acyclic Pyrimidine Nucleosides as Precursors for 18F-Labelling 19
B. Noll, St. Noll

Syntheses of Novel Acyclic Pyrimidine Nucleosides as Potential Substrates of the HSV1-TK 20
St. Noll, B. Noll

Neurotensin(8-13) Labelled with 99mTc Using the ‘4+1’ Mixed-Ligand Chelate System –
Part 1: Chemistry ... 21

Neurotensin(8-13) Labelled with 99mTc Using the ‘4+1’ Mixed-Ligand Chelate System –
Part 2: Basic Stability Considerations ... 22

99mTc-Cytecrene Complexes – Chemical Structure and Biobehaviour
Part 1: Chemical Characterisation of Tc and Re Complexes .. 23
M. Saidi, S. Seifert, M. Kretzschmar, R. Bergmann, H.-J. Pietzsch

99mTc-Cytecrene Complexes – Chemical Structure and Biobehaviour
Part 2: Biological Characterisation .. 24
M. Saidi, M. Kretzschmar, R. Bergmann, S. Seifert, H.-J. Pietzsch
Synthesis of 4-[18F]Fluoromethyl-2-Chloro-O-Succinimidyl-Benzoate as Novel Bifunctional 18F-Labelling Agent .. 25
F. Wüst, M. Müller, H. Kasper
Radiosynthesis and Biodistribution of a 18F-Labelled Corticosteroid for Mapping Brain Glucocorticoid Receptors (GR) ... 26
F. Wüst, T. Kniess, R. Bergmann
Synthesis of 18F-Labelled Nucleosides Using Stille Cross-Coupling Reactions with [4-[18F]Fluoroiodobenzene ... 27
F. Wüst, T. Kniess, H. Kasper
Radiolabelled Flavonoids and Polyphenols
I. Introduction and Radiolabelling Concept .. 28
S. Gester, F. Wüst, R. Bergmann, J. Pietzsch
Radiolabelled Flavonoids and Polyphenols
II. Synthesis Towards [18F]Fluorine Labelled Resveratrol .. 29
S. Gester, F. Wüst, R. Bergmann, J. Pietzsch
Synthesis of a 18F-Labelled COX-2 Inhibitor .. 30
A. Höhne, F. Wüst
18F-Labelling of a Potent Nonpeptide CCR1 Antagonist: Synthesis of [18F]ZK811460 in an Automated Module ... 31
11C-Labelling of a Taxane Derivative Using [1-11C]Acetyl Chloride 32
P. Mäding, J. Zessin, U. Pleiß, F. Wüst
Synthesis of Sodium [1-11C]Acetate for Clinical Applications 33
P. Mäding, J. Zessin, F. Füchtner, F. Wüst
Tissue Transglutaminase: a Minireview .. 35
J. Pietzsch, R. Bergmann
Synthesis of Fluorinated N-Benzoylpolyamines as Substrates of Tissue Transglutaminase 36
K. Knop, C. Hultsch, K. Rode, T. Kniess, F. Wüst, R. Bergmann, J. Pietzsch
Biological Evaluation of Fluorinated N-Benzoylpolyamines as Substrates of Tissue Transglutaminase Activity: Polyamination of N,N'-Dimethylcasein .. 37
J. Pietzsch, K. Knop, K. Rode, R. Bergmann
Biological Evaluation of Fluorinated N-Benzoylpolyamines as Substrates of Tissue Transglutaminase Activity: Insights from Animal PET Studies ... 38
J. Pietzsch, R. Bergmann, K. Knop, K. Rode, F. Wüst, J. van den Hoff
Measurement of 5-Hydroxy-2-Aminovaleric Acid as a Specific Marker of Iron-Mediated Oxidation of Proline and Arginine Residues of Low Density Lipo-protein Apolipoprotein B-100 in Human Atherosclerotic Lesions .. 39
J. Pietzsch, R. Bergmann
Increased Cholesteryl Ester Transfer Protein (CETP) Activity in Impaired Glucose Tolerance:
Relationship to High Density Lipoprotein Metabolism .. 40
J. Pietzsch, S. Nitzsche, K. Fuecker

RADIOMETAL THERAPEUTICS .. 41
Novel Procedures for Preparing ‘4+1’ 188Re Complexes .. 43
S. Seifert, E. Schiller, H.-J. Pietzsch
Hydrophilic Rhenium-188 Complexes for Attaching the Metal to Biomolecules
1. General Considerations ... 44
E. Schiller, H.-J. Pietzsch, H. Spies
Hydrophilic Rhenium-188 Complexes for Attaching the Metal to Biomolecules
2. Synthesis and Characterisation of a Novel Hydrophilic Ligand 45
E. Schiller, W. Kraus, H.-J. Pietzsch, H. Spies
Hydrophilic Rhenium-188 Complexes for Attaching the Metal to Biomolecules
3. Physicochemical and Biological Evaluation of Model Complexes 46
E. Schiller, S. Seifert, R. Bergmann, H.-J. Pietzsch, H. Spies
Routes to Modification of Rhenium Cluster Core Ligand Environment with Organic Ligands........ 47
K. Brylev, H.-J. Pietzsch, H. Stephan, V. E. Fedorov, H. Spies

Characterization of Cu(II)-Cyclam Complexes by Laser-Induced Fluorescence Spectroscopy 48
D. Appelhans, D. Tabuani, B. Voit, G. Geipel, G. Bernhard, H. Spies, H. Stephan

Calorimetric and Potentiometric Study of PAMAM Dendrimers: Protonation and Interactions
with Human Serum Albumin ... 49
R. Kirchner, J. Seidel, H. Stephan, B. Johannsen

Hydrolytic Stability of Polyoxotungstates ... 50

PET IN DRUG AND FOOD RESEARCH ...51

Biodistribution and Catabolism of 18F-Labelled Isopeptide N^ϵ(γ-Glutamyl)-L-Lysine 53
C. Hultsch, R. Bergmann, B. Pawelke, F. Wüst, J. Pietzsch, T. Knieß, B. Johannsen, T. Henle

CYCLOTRON OPERATION ..55

Operation of the Rossendorf PET Cyclotron "CYCLONE 18/9" in 2003 .. 57
St. Preusche, F. Wüst

Ion Beam Tests on the Solid Target System of the Rossendorf CYCLONE 18/9 Cyclotron 59
St. Preusche, H. Roß

Factors Affecting the Specific Activity of $[^{18}F]$Fluoride from a Water Target 60
F. Füchtner, S. Preusche, J. Steinbach

II. PUBLICATIONS, LECTURES, PATENTS AND AWARDS OF
THE INSTITUTE AND THE PET-CENTRE ROSENDORF .. 61

III. SCIENTIFIC COOPERATION .. 75

IV. SEMINARS .. 81

V. ACKNOWLEDGEMENTS .. 85

VI. PERSONNEL ... 89
I. RESEARCH REPORTS
RADIOTRACERS IN TUMOUR AND METABOLISM RESEARCH
Behavioural Disturbances and Regional Cerebral Metabolism in Probable Alzheimer's Disease

V. Holthoff¹, K. Herholz², S. Lüdecke¹, S. Spirling¹, E. Kalbe², O. Lenz², G. Zündorf², B. Beuthien-Baumann³.

¹Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum der TU Dresden; ²Max-Planck Institut für Neurologische Forschung, Köln; ³Klinik und Poliklinik für Nuklearmedizin/PET-Zentrum Rossendorf, Universitätsklinikum der TU Dresden

The data were obtained by the European Network for Efficiency and Standardisation of Dementia Diagnosis (NEST-DD) with support from the European Commission Framework V.

Introduction

Alzheimer's disease (AD) is clinically characterized by cognitive impairment and behavioural disturbances, that significantly interfere with activities of daily living. The following study examines the association between regional changes in cerebral glucose metabolism and behavioural abnormalities in patients suffering from AD. The aim of the study was the identification of brain areas implicated in behavioural disturbances in AD. Behavioural assessment included the interview of the caregiver with the neuropsychiatric inventory (NPI) [1]. The NPI uses screening questions to ask whether a behavioural change is present or not. The domains assessed include depression, apathy, anxiety, agitation, abnormal motor behaviour, disinhibition, euphoria, delusion and hallucination. The behavioural domains are then rated using scales for frequency and severity.

Methods

• Patient and normal control group: 41 patients with probable AD according to NINCDS-ADRDA criteria. mean age: 68.1 years, SD: 8.3 MMSE score range 18-28, mean: 22.2; SD: 3.9

range Clinical Dementia score CDR: 0.5-2, mean:1, SD: 0.6
109 controls; mean age: 61.5 years, SD: 11.7
• Behavioural assessment: NPI
• FDG-PET: ECAT Exact HR+ (Siemens/CTI), 300 MBq ¹⁸F-FDG, measured attenuation correction, Acquisition: 40-60 min post injection
• Data analysis: SPM99 (Statistical Parametric Imaging) [2] using a one-way ANOVA comparing patients with and without the behavioural disturbance under study and an age-matched control group. We retained as significant those clusters with a corrected p 0.05.

Results and Discussion

Depressive symptoms are associated with bilateral prefrontal hypometabolism. Apathy is associated with bilateral prefrontal and orbitofrontal hypometabolism. Aberrant motor behaviour is associated with bilateral dorsolateral prefrontal hypometabolism.

Irritability is associated with bilateral orbitofrontal and left prefrontal hypometabolism. These findings support the hypothesis of a neuroanatomical brain circuit involving the prefrontal cortex that mediate behavioural abnormalities in AD [3].

AD group with depression (n=16: 70.8:9.2, MMSE=22.6:3.3)

<table>
<thead>
<tr>
<th>Group comparison</th>
<th>T</th>
<th>Z</th>
<th>x, y, z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression vs. control group</td>
<td>0.0001</td>
<td>6.04</td>
<td>50, 50, 50</td>
</tr>
<tr>
<td>147</td>
<td>0.0001</td>
<td>4.97</td>
<td>48, 48, 48</td>
</tr>
<tr>
<td>129</td>
<td>0.0001</td>
<td>4.97</td>
<td>48, 48, 48</td>
</tr>
<tr>
<td>866</td>
<td>0.0005</td>
<td>4.46</td>
<td>48, 48, 48</td>
</tr>
<tr>
<td>961</td>
<td>0.0001</td>
<td>4.33</td>
<td>48, 48, 48</td>
</tr>
<tr>
<td>806</td>
<td>0.0005</td>
<td>4.15</td>
<td>48, 48, 48</td>
</tr>
<tr>
<td>Depression-free control group</td>
<td>0.0001</td>
<td>6.18</td>
<td>50, 50, 50</td>
</tr>
<tr>
<td>130</td>
<td>0.0001</td>
<td>4.51</td>
<td>50, 50, 50</td>
</tr>
<tr>
<td>1011</td>
<td>0.0001</td>
<td>4.60</td>
<td>48, 48, 48</td>
</tr>
<tr>
<td>85</td>
<td>0.0001</td>
<td>4.15</td>
<td>48, 48, 48</td>
</tr>
<tr>
<td>Depression-free group vs. control</td>
<td>0.022</td>
<td>2.91</td>
<td>48, 48, 48</td>
</tr>
<tr>
<td>3.92</td>
<td>2.91</td>
<td>48, 48, 48</td>
<td></td>
</tr>
<tr>
<td>Depression vs. control</td>
<td>0.0001</td>
<td>6.18</td>
<td>50, 50, 50</td>
</tr>
<tr>
<td>130</td>
<td>0.0001</td>
<td>4.51</td>
<td>50, 50, 50</td>
</tr>
<tr>
<td>1011</td>
<td>0.0001</td>
<td>4.60</td>
<td>48, 48, 48</td>
</tr>
<tr>
<td>85</td>
<td>0.0001</td>
<td>4.15</td>
<td>48, 48, 48</td>
</tr>
<tr>
<td>Depression-free group vs. control</td>
<td>0.022</td>
<td>2.91</td>
<td>48, 48, 48</td>
</tr>
<tr>
<td>3.92</td>
<td>2.91</td>
<td>48, 48, 48</td>
<td></td>
</tr>
</tbody>
</table>
AD group with aberrant motor behavior

(Alzheimer's; n=7; 69.7±9.2, MMSE=18.7±5.7)

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Size</th>
<th>P (corr.)</th>
<th>Z</th>
<th>x, y, z</th>
<th>Brodmann area(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal vs control</td>
<td>5021</td>
<td>0.0001</td>
<td>4.58</td>
<td>50, -54, 29</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>2748</td>
<td>0.001</td>
<td>3.12</td>
<td>-50, -22, 30</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>3192</td>
<td>0.0001</td>
<td>4.41</td>
<td>46, -56, 29</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>3154</td>
<td>0.0001</td>
<td>3.56</td>
<td>-56, -44, 44</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>1486</td>
<td>0.03</td>
<td>4.17</td>
<td>-53, -24, 29</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>6944</td>
<td>0.0001</td>
<td>5.69</td>
<td>-12, 12, 36</td>
<td>39 (pr. insp. temp)</td>
</tr>
</tbody>
</table>

AD group with apathy

(n=18; 67.4±10.5 years, MMSE=21.6±3.9)

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Size</th>
<th>P (corr.)</th>
<th>Z</th>
<th>x, y, z</th>
<th>Brodmann area(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apathy vs control</td>
<td>6442</td>
<td>0.0001</td>
<td>6.22</td>
<td>49, -56, 29</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>6731</td>
<td>0.0001</td>
<td>5.32</td>
<td>-40, -22, 30</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>5605</td>
<td>0.0001</td>
<td>5.02</td>
<td>50, -56, 29</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>2457</td>
<td>0.0001</td>
<td>5.03</td>
<td>-53, -22, 29</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>1731</td>
<td>0.09</td>
<td>4.70</td>
<td>-52, -54, 30</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>1773</td>
<td>0.09</td>
<td>4.70</td>
<td>-52, -54, 30</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td>Apathy-free vs control</td>
<td>4943</td>
<td>0.0001</td>
<td>5.25</td>
<td>49, -55, 30</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>5533</td>
<td>0.0001</td>
<td>5.12</td>
<td>-52, -32, 30</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>2089</td>
<td>0.0001</td>
<td>4.61</td>
<td>-4, 54, 30</td>
<td>39 (pr. insp. temp)</td>
</tr>
</tbody>
</table>

AD group with irritability

(n=10; 67.1±8.2, MMSE=23.3±2.0)

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Size</th>
<th>P (corr.)</th>
<th>Z</th>
<th>x, y, z</th>
<th>Brodmann area(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irritability vs control</td>
<td>1550</td>
<td>0.03</td>
<td>3.98</td>
<td>64, -52, 29</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>5585</td>
<td>0.0001</td>
<td>5.72</td>
<td>64, -32, 29</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>6648</td>
<td>0.0001</td>
<td>5.65</td>
<td>46, -24, 30</td>
<td>39 (pr. insp. temp)</td>
</tr>
<tr>
<td></td>
<td>2337</td>
<td>0.005</td>
<td>5.14</td>
<td>44, -24, 29</td>
<td>39 (pr. insp. temp)</td>
</tr>
</tbody>
</table>

References

Monitoring Postradiotherapeutic Changes of Lung Tissue with PET and SPECT

B. Beuthien-Baumann¹, M. Eckhardt², Th. Herrmann², R. Hliscs¹, L. Oehme¹, J. van den Hoff, R. Kumpf³, P. Geyer², H. Blank², M. Baumann², ³

¹Klinik und Poliklinik für Nuklearmedizin/PET-Zentrum Rossendorf, ²Klinik und Poliklinik für Strahlentherapie und Radioonkologie, ³Experimentelles Zentrum, Universitätsklinikum der TU Dresden

Introduction

Damage to surrounding lung is a substantial problem in radiation treatment (RT) of malignant disease in the thoracic region. Experimental data suggest, that certain regions of the lung show different vulnerability for the development of pneumonitis and fibrosis. Modern 3D-treatment planning systems in radiotherapy allow to spare normal lung tissue in especially vulnerable regions. As part of an ongoing study aimed to define the relative radiosensitivity of different regions of the lung, the present investigation explores the usefulness of different diagnostic procedures for qualitative and quantitative monitoring of the development of early and late radiation damage in the lung of minipigs.

Methods

The right lung of 6 minipigs (age 6 months) was irradiated with a single dose of 12 Gy. Before irradiation and at 2, 4, 8, 12 and 24 weeks after irradiation of the lung the animals were investigated with 1. HR-CT to follow morphologic changes of lung tissue 2. perfusion SPECT with ⁹⁹ᵐ₅-Tc-macroaggregated albumin (MAA) 3. ventilation SPECT with Xenon-133 (¹³³Xe) 4. [¹⁸F]Fluoro-deoxyglucose-PET (FDG) 5. [¹⁵O]H₂O-PET (H₂O). Data sets of all imaging modalities were matched using the HERMES² software (Nuclear Diagnostics, Sweden). Regions of interest were defined in different parts of the lung using CT and transferred to the functional imaging modalities.

Results and Discussion

Table 1. Radiographic changes in CT. Infiltrations post irradiation become visible as early as 2 weeks (w) post irradiation in half of the animals. After 4 weeks infiltrations are apparent in all animals.

<table>
<thead>
<tr>
<th></th>
<th>0 w</th>
<th>2 w</th>
<th>4 w</th>
<th>8 w</th>
<th>12 w</th>
<th>24 w</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0</td>
<td>0</td>
<td>(+)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#2</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>(+)</td>
<td>0</td>
<td>(+)</td>
</tr>
<tr>
<td>#3</td>
<td>0</td>
<td>(+)</td>
<td>(+)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#4</td>
<td>0</td>
<td>(+)</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>#5</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#6</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

(+) fine infiltrations
+ distinct infiltrations, partly spotted
++ spotted, partly confluent

Fig. 1. CT, ventilation- and perfusion-SPECT, and FDG- and H₂O-PET at different time points in pig No. 3. Although in CT no or only very subtle changes are seen at 4 weeks post irradiation, clear diminished perfusion of the irradiated lung is visible (MAA) with unchanged ventilation status (¹³³Xe). With H₂O-PET and FDG-PET a decline of the fractional blood volume is visible at 12 weeks post RT.

Fig. 2a-d. Quantitative changes in SPECT and PET.

a) In ventilation-SPECT no clear changes occur. The first two datapoints (pre- and 2w post RT) have to be interpreted with caution due to technical limitations.
b) Starting 4 weeks after RT perfusion of the irradiated lungs significantly decreases.
c) The FDG-signal is significantly lower in the irradiated lung at 12 w post RT.
d) The fractional blood volume of the irradiated lung is significantly lower in the irradiated lung at 12 w post RT. The curves of FDG-PET and H₂O-PET show a similar course.

• While the morphologic changes in CT are reversible in 4 of 6 animals, the functional parameter perfusion remains reduced over the time investigated.
• Ventilation was not significantly affected by irradiation. In animal investigations ¹³³Xe-SPECT is not the ideal tracer (no active inhalation, low breathing under anaesthesia and
accumulation of 133Xe in fat tissue during SPECT acquisition).

- Perfusion changes are clearly visible with MAA-SPECT as early as 4 w post RT.
- Absolute quantification of perfusion of the lung with H$_2$O-PET was not feasible because of identical shapes of the input functions from the right ventricle (blood curve) and the lung tissue curve. In contrast, the calculation of the fractional blood volume (fbv) is possible even on pixel by pixel basis, yielding parametric maps for this parameter. Similar to the perfusion evaluated with MAA-SPECT, a reduction of fbv is seen in the irradiated lung, but at a later timepoint.

- Lung itself shows very low glucose metabolism. In some animals subtle accumulation was seen in the pleura post irradiation, indicating inflammation (not shown). Because of identical shapes of the input function from the right ventricle (blood curve) and the lung tissue curve, the low glucose metabolism of lung tissue and the small percentage of lung tissue with respect to air, calculation of the absolute glucose metabolism according to the Patlak-plot did not show reasonable results. The FDG-data were therefore quantified according to the fractional blood volume model. The results show comparable to the H$_2$O-data a decline of the fbv of the irradiated lung.

=> Perfusion SPECT was the most robust imaging modality for functional changes of the lung post irradiation in this animal model.
Impact of FDG PET Imaging on the Therapy Decision in Patients with Early Stage Hodgkin’s Lymphoma

Introduction

Today, Hodgkin’s lymphoma (HL) is one of the malignant diseases with the highest rate of cure in adults based on improved chemotherapy and radiotherapy. The most important objective of staging is the exact detection of all nodal and extranodal lymphoma manifestations present to be able to administer the optimal therapy according to the stage and to the risk situation [1]. The criteria for detecting involvement are mainly based on the assessment of the size of the lymph nodes, mainly revealed with computed tomography (CT), regarding lymph nodes with a diameter of more than 1 cm as pathologic. This prospective study assessed the impact of \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F-FDG) positron emission tomography (PET) on staging and possible consequential changes of treatment regimen in patients with Hodgkin’s lymphoma (HL).

Patients and Methods

88 consecutive patients with histologically verified Hodgkin’s lymphoma underwent a PET scan in addition to conventional staging procedures (physical examination, chest X-ray, ultrasound, contrast-enhanced CT of the neck, chest, abdomen and pelvis, erythrocyte sedimentation rate, posterior iliac crest biopsy). The clinical stage of the patients was assessed according to the Ann Arbor classification [2]. Treatment was based on the conventional staging only, the results of the \(^{18}\)F-FDG-PET did not affect the treatment strategy. Evaluation focused on the suggested change in clinical stage according to the Ann Arbor classification and on the suggested change in treatment strategy rather than on a lesion-by-lesion analysis.

Results and Discussion

Using all the methods performed as the standard of reference, \(^{18}\)F-FDG-PET staging was concordant with conventional staging in 70/88 patients (80 %). \(^{18}\)F-FDG-PET suggested a change to a different clinical stage in 18 patients (20 %): eleven patients (13 %) would have been upstaged and 7 patients (8 %) would have been downstaged. The same treatment strategy would have been defined in 72/88 patients (82 %). Management would have been changed in 16 patients (18 %): intensification of treatment in 9 patients (10 %) and minimization of treatment in seven patients (8 %). In the 44 patients with early disease (stage IA-IIB), treatment would have been intensified in 9/44 patients (20 %).

In the literature the value of \(^{18}\)F-FDG-PET for the staging of lymphoma is well documented [3, 4], but only limited numbers of studies concentrate solely on HL or focus on the impact on change of treatment [5, 6]. The results of our study underline the value of \(^{18}\)F-FDG-PET for the staging of HL and indicate a substantial impact on the treatment strategy, particularly in patients in which conventional staging procedures indicate a limited stage of disease [7]. \(^{18}\)F-FDG-PET is a relevant noninvasive method that supplements conventional staging procedures and should therefore be used routinely to stage Hodgkin’s lymphoma.

References

Concorde MicroPET P4 – a PET Scanner for Animal Studies

E. Will, P. Bühler

Klinik und Poliklinik für Nuklearmedizin/PET-Zentrum Rossendorf

Introduction

A Concorde microPET P4 PET scanner [1] was installed in November 2002 at the PET Centre Rossendorf. It is a four-ring scanner with a ring diameter of 26 cm, and is equipped with LSO detectors. The detectors consist of arrays of 8 x 8 crystals of 2.2 x 2.2 x 10 mm³ and are arranged in 42 detector blocks per ring. The axial field of view is 7.8 cm and the transaxial field of view (FOV) is 19 cm. The resolution in the centre is about 1.8 mm. The system is operated in full 3D mode and data are acquired in list mode. Here we report on the measured performance of the microPET.

Results and Discussion

Two dedicated line phantoms were developed to evaluate the resolution and other camera parameters, one with a length of 50 mm and ∅100 mm, one with a length of 100 mm and ∅50 mm. The phantoms consist of segments with holes of 1, 1.5, 2, 2.5 and 3 mm diameter respectively. Each segment can be filled independently. The phantoms were manufactured by BS Industrielektronik & Medizintechnik - Herbert Schöppy (www.bsi-schoeppy.de).

The list mode data of the presented measurements were sorted in full 3D sinograms and reconstructed with Fourier rebinning (FORE) and the OSEM2D algorithm. For transmission measurements an 18 MBq ⁶⁸Ge point source was used. In Fig. 1 an image of the Line Phantom with 50 mm diameter is shown. Fig. 2 shows the activity profile along the horizontal line in Fig. 1. The distance between the 1.5 mm holes in this segment is 6 mm. The measured full width of the peaks at half maximum is ~1.9 mm near the centre and ~2.5 mm at the edge. The linearity of the scanner was measured with a mice “phantom” (60 cm³ syringe) filled with 500 MBq of a ¹¹C-solution. The time dependence is shown in Fig. 3. The scanner is linear up to 60 MBq = 1.2 MBq/cm³ for this phantom. The measured linearity over all planes is ~6 %.

Data volumes in animal PET studies

Acquisition in list mode results in large data volumes. Typical values are presented in Table 1 for a two-hour investigation with 35 MBq FDG. To store this amount of data a 6 TB raid system was installed.

![Fig. 1. Image of the ∅ 50mm Line Phantom.](image1)

![Fig. 2. Profile of a line in the 1.5 mm hole segment 3 cm off the centre.](image2)

![Fig. 3. Decay measurement for 500 MBq ¹¹C.](image3)

Table 1. Data volumes in animal PET studies

<table>
<thead>
<tr>
<th>Type of Data</th>
<th>Typical</th>
<th>Typical (30 Frames)</th>
</tr>
</thead>
<tbody>
<tr>
<td>List mode file</td>
<td><20 GByte</td>
<td>~10 GByte</td>
</tr>
<tr>
<td>FDG Rate</td>
<td>90.7 MB</td>
<td>2.7 MB</td>
</tr>
<tr>
<td>Dynamic sinogram</td>
<td>128x128</td>
<td>4.1 MB</td>
</tr>
<tr>
<td>Frame</td>
<td></td>
<td>124 MB</td>
</tr>
<tr>
<td>Transmission list mode file</td>
<td><15 GByte</td>
<td>~5 GByte</td>
</tr>
<tr>
<td>Attenuation file</td>
<td>90 MByte</td>
<td>90 MByte</td>
</tr>
<tr>
<td>Image file:</td>
<td>256x256</td>
<td>16.5 MB</td>
</tr>
<tr>
<td>Frame</td>
<td></td>
<td>495 MB</td>
</tr>
<tr>
<td>Volume/measurement:</td>
<td>~18 GByte</td>
<td></td>
</tr>
</tbody>
</table>

Reference

Improvement of the Tomographic Reconstruction at the MicroPET-Scanner

F. Pönisch, P. Bühler

The method for improving the tomographic reconstruction at the MicroPET scanner is described. The presented algorithm will result in a better quality of the reconstructed PET images.

Introduction

Since 2003 a microPET scanner of Concorde Microsystems Inc. (CMS) is used at the PET Centre of the FZR for rats and mice imaging. The dedicated positron emission tomograph (PET) operates in 3D mode, i.e. without using tungsten septa and a spatial resolution of less than 2 mm is achieved [1]. However, the resolution is deteriorated with increasing distance from the scanner axis. This results in a reduced practical usability of the tomograph. Furthermore, the existing reconstruction code supplied from CMS provides only 2D reconstruction algorithms: filtered back projection and 2D Ordered Subsets Expectation Maximization (OSEM). The restriction to 2D determines the fixed voxel size in axial direction which further limits the intrinsic resolution along this axis. The aim of the current work is to develop a 3D reconstruction code for this scanner.

Materials and Methods

The microPET scintillation crystals (block detector design) are half the size in comparison with a conventional PET scanner (e.g. CTI HR+). This on one hand improves the spatial resolution for small animal imaging but on the other hand enhances a wrong detector classification caused by Compton Scatter within the scintillator crystal. Unconsidered this results in a blurring of the detector response function and a reduced spatial resolution.

A feasible solution for this problem is to model all physical processes within the tomographic iterative reconstruction. The basis of the reconstruction algorithm is the transition matrix A. Its element a_{ij} denotes the probability for detecting a positron emission in voxel site j, $j = 1,...,J$ at coincidence channel i, $I = 1,...,I$. In order to reduce the size of A, the matrix can be divided into two factors:

$$A = A_{\text{geom}} \times A_{\text{cryst}}.$$

The geometrical component transition matrix A_{geom} is stored in a file with a sparse matrix format (ca. 2 GB). The crystal blurring component A_{cryst} will be calculated in dependence of the projection distance by means of GEANT4-simulations [2] and stored as blurring kernel according to [3]. The applied OSEM algorithm [4] is a modification of the Maximum Likelihood Expectation Maximization (MLEM) algorithm of Shepp and Vardi [5]. It starts with an initial image estimation. With OSEM, the projection data are grouped in ordered subsets. The standard MLEM algorithm, i.e. forward- and backward-projection, is then applied to each of the subsets in turn. The resulting reconstructed image becomes the starting value for use with the next subset.

Results

The matrix A_{geom} was calculated in dependence of the voxel size and the dimension of the image. The calculations considered the solid angle for each combination of detector pair and voxel and the intersection length of the coincidence line with the voxel. Fig. 1 shows the sinogram of the forward projection of a point source using the matrix A_{geom}.

![Fig. 1. Sinogram of the forward projection of a point source using the matrix A_{geom} after the first iteration step.](image)

First results of the GEANT4 simulation are obtained for the block detector geometry. This will allow the estimation of the factor A_{cryst} in the near future.

References

Correction for patient motion during PET investigations is a persistent issue. Common methods to correct head motion in PET are based on reorientation of multiple frame images to a common reference position. These methods allow the correction of movements between frames (time windows) but cannot account for motion occurring within frame boundaries. For this purpose a list mode-based method is needed [1]. The PET data are acquired in list mode (each single event is saved) and simultaneously the head motion is tracked with a suitable device. According to the motion data each detected event is corrected to a reference point in time. Potentially, this results in a fully corrected list mode stream and, after binning and reconstruction, in motion free images. Last year we reported on the development of the basic event based correction algorithm [2]. Here we report on the completion of the implementation and demonstrate the capabilities of the method.

For the measurement of movements of the head during PET acquisition, we use the infrared camera system ARTrack1, which is able to track a target of retroreflecting spheres. For PET measurements the target is mounted on the head of the patient using a glasses frame. With a maximum sampling rate of 60 Hz, the system delivers measures of the six degrees of freedom of the target. The data stream also contains time tags, which allows to synchronize the tracking data with the PET list mode stream. In order to apply the tracking information to the PET data the tracking information has to be converted from the tracking systems coordinate system to the coordinate system of the PET camera. The transformation is found by a dedicated crosscalibration measurement.

Results and Discussion

The accuracy of the entire setup including the tracking system, the crosscalibration procedure, and movement correction algorithm was validated with several test measurements. Here results of a test with a point like Ge-68 source are shown. During PET acquisition the source was displaced and the displacement was measured with the tracking system. The data were then movement corrected, reconstructed, and the resulting image was compared with the image of the source in the reference position. At displacements in transaxial direction of up to 5 cm (see Fig. 1) the difference between corrected and nominal central position of the point source as well as the broadening of the image (FWHM) is less than 0.2 mm. In axial direction the accuracy of the correction is limited by the finite extent of the PET crystals of 4.85 mm in axial direction.

The method was also tested under realistic conditions. A volunteer patient was asked to intentionally turn the head during a six-minute acquisition (250 MBq FDG). Analysis of the registered tracking data shows, that the movement was dominated by a rotation about the scanner z axis of approximately 20 degrees. Images of the uncorrected and corrected data sets are shown in Fig. 2. The uncorrected movement results in a strong blurring of the image. This is significantly improved after application of the movement correction.

The next step will be to introduce the method in routine operation.

References

Respiratory Gating for Improved Image Resolution and Tumour Detection in PET Thorax Investigations

U. Just, P. Bühler¹, E. Will, J. van den Hoff²
¹PET Zentrum Rossendorf and Klinik und Poliklinik für Nuklearmedizin

Respiratory gated patient studies of the thorax were acquired and evaluated by comparing the image data of non gated studies with data sets of selected respiration phases. Significant tumour motions up to 12-14 mm between inhaled and exhaled respiration state were found in 7 of 10 patient image datasets. The reduced motion in gated images provides a better image contrast improving the detection of small tumours.

Introduction

Based on the development of listmode software [1] for the ECAT HR+ scanner (Siemens/CTI) respiratory gated patient studies were acquired. Respiratory gating provides image datasets for defined respiratory phases reducing largely motion effects in thorax acquisitions. The gated image datasets were evaluated for possible improvements on thoracic tumour detection.

Methods

Thorax acquisitions of 10 patients were performed using listmode. The patients respiratory motion was measured with a respiratory belt. A PC equipped with an A/D converter card digitized and recorded the respiration sensors signal. The respiratory motion data was further processed with the listmode software. Taking advantage of variable acquisition parameters available in listmode, gated and static image datasets were created and compared for each measurement. The position and volume of each tumour lesion was determined. In cases were no tumour was available, the position of the heart apex was evaluated. The accumulated activity in tumour volumes was quantified to show possible improvements on the detection of small tumour lesions.

Results

Respiratory gating allows to locate thoracic tumours more precisely. Motions of tumour or heart apex larger than 5 mm caused by respiratory motion were found in 7 of the 10 patient image datasets. Large axial shifts up to 12-14 mm between the inhaled and exhaled respiration phase were detected in close approximation to the diaphragma (Fig. 1). Gated image datasets showed up to 40 % higher maximum values of the activity distribution in tumour volumes. Additionally the tumour volume derived from a threshold value for the activity concentration was reduced by 15 %-35 % (for typical tumour volumes of 2 - 4 cm³). Higher maximum activity concentrations and smaller lesion volumes result in increased image contrast as shown in Fig. 2. Especially smaller lesions are differentiated better relative to the surrounding background thus providing an improvement for tumour detection.

Reference

Radiolabelling of an Oligonucleotide Aptamer by Conjugation with N-Succinimidyl-4-[18F]Fluorobenzoate

M. Grote, F. Wüst, B. Noll, A. Stephens, M. Friebe
1 CRBA Diagnostics & Radiopharmaceuticals, Radiopharmaceutical Research, Schering AG, Berlin

The application of oligonucleotides as pharmaceutical agents is a rapidly growing process. In particular, the utilization of radiolabelled oligonucleotide probes for diagnostic imaging has attracted increasing interest [1, 2]. Oligonucleotides generated by the SELEX [3] technology, also referred to as aptamers, have advantageous binding properties for a variety of targets. Herein, a general labelling method is described for aptamers, functionalized by an amine group employing [18F]SFB.

Aptamers and monoclonal antibodies have comparable affinity and specificity for e.g. protein targets. Unlike antibodies, aptamers can be generated synthetically against any small molecule or protein target not involving any microbiological process. Aptamers could play a key role either in conjunction with, or in place of antibodies for imaging and radiotherapy. Several [18F]-labelled synths capable of being linked to oligonucleotides are known [4, 5]. We used [18F]SFB (N-succinimidyl-4-[18F]fluorobenzoate) [6] as a versatile prosthetic group to label the terminal 5’ position of an amino modifier bearing a 39-mer aptamer via acylation. [18F]SFB 1 was synthesized by fluorination of triflate 2, acidic cleavage of the tert. butyl ester group and activation of the carboxylic acid using O-(N-succinimidyl)-N,N,N',N'-tetramethyluronium tetrafluoroborate according to Wüst et al. [6] (Fig. 1).

The coupling reaction of the aptamer with [18F]SFB was performed in a mixture of DMF/borate buffer (pH-value and temperature as indicated in Table 1) (Fig. 2).

Aliquots were taken for radio-TLC analysis (EtOAc/hexane 4:1). The radiochemical yield was determined by monitoring the conversion of [18F]SFB into the aptamer conjugate. Therewith, we studied the dependency of aptamer concentration (Fig. 3), temperature and pH-value on the radiochemical yield (Table 1).

The yield of radiolabelled oligonucleotide is strongly affected by the amount of aptamer used in the synthesis. A minimum amount of at least 750 µg proved to be mandatory. Best results were obtained employing 750 µg aptamer at a pH of 9.2 and 60 °C. Purification was performed on a size exclusion cartridge.

References

![Fig. 1. [18F]SFB synthesis](image1)

![Fig. 2. Labelling reaction of NH2-functionalized aptamer.](image2)

Table 1. Aptamer labelling yield in dependence of temperature and pH, 20 min post labelling.

<table>
<thead>
<tr>
<th>Temp. [°C]</th>
<th>pH 8.4 A B</th>
<th>pH 8.8 A B</th>
<th>pH 9.2 A B</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>21.0 46.3</td>
<td>37.1 13.7</td>
<td>36.4 10.1</td>
</tr>
<tr>
<td>60</td>
<td>26.3 31.7</td>
<td>33.1 1.2</td>
<td>33.4 0.9</td>
</tr>
<tr>
<td>75</td>
<td>36.2 0</td>
<td>31.1 0</td>
<td>32.8 0</td>
</tr>
</tbody>
</table>

![Fig. 3. Dependency of aptamer concentration and radiochemical yield.](image3)
Inhibition Studies with FMHBG as a New Pattern for Monitoring Gene Expression

M. Grote, St. Noll, B. Noll

N1-Methyl-9-[(3-fluoro-1-hydroxy-2-propoxy)methyl]guanine (FMHBG), a substance which was originally synthesized together with a couple of compounds as potential substrate for Herpes Simplex Virus Thymidine Kinase (HSV-1 TK) [1] showed no characteristics of a substrate but of an inhibitor for HSV-1 TK in cell tests. Additional studies with the isolated enzyme were performed to affirm this preliminary result.

The herpes simplex virus type-1 thymidine kinase gene (HSV-1 tk) is a commonly studied suicide gene for cancer gene therapy. The expressed enzyme HSV-1 TK phosphorylates a broad spectrum of compounds in contrast to its mammalian counterpart. Combined with molecules labelled with positron-emitting isotopes monitoring of the expression of the suicide gene product and its location is possible [2]. One premise for successful monitoring is that the used tracer is a substrate of HSV-1 TK and the phosphorylating rate is proportional to the amount of expressed enzyme. Now, our intention is that an inhibitor of HSV-1 TK can also be used, and an eligible candidate for this purpose is FMHBG 1, the methylated analogue of FHBG 2.

A screening test of 1 with HSV-1 TK in presence of ATP and Mg2+ showed no monophosphorylated product. However, in transduced MC38 cells (murine mamma carcinoma) an uptake of [18F]FMHBG was noted whereas in the presence of thymidine the accumulation was decreased (Fig. 2). This led to the assumption that 1 may be an inhibitor of HSV-1 TK.

Competition experiments with thymidine (dT) and FMHBG 1 analyzed by ion-pair chromatography indicated a decrease of thymidine monophosphate (TMP) formulation when the concentration of 1 is raised.

To characterize the efficacy of the inhibitor, the K_i values were evaluated. In general, the lower the K_i value, the tighter the binding and hence the more effective is the inhibitor. Initial velocities (V_i) were measured using the DEAE paper method and various concentrations of tritium labelled thymidine in presence of compound 1 and the binding affinity calculated as K_i value using a double-reciprocal plot (Fig. 3) [3].

Reactions were carried out in a final volume of 30 µl containing 50 µM Tris buffer (pH 7.2), 0.25 mM FMHBG, 5 mM ATP, 5 mM MgCl_2 and 1.5 mg/ml BSA and 0.2 µg enzyme; the concentration of [3H]dT varied from 0.2 µM – 2.0 µM in consideration to Michaelis-Menten conditions for initial velocity measurements [4].

The binding affinity (K_i) of FMHBG was determined with 0.1 mM and this result implied that the inhibitory strength is comparable with structural related purine derivatives. Further investigations whether this compound in radiolabelled form is capable for monitoring gene expression are in progress.

The authors thank Prof. L. Scapozza, ETH Zurich, for providing the HSV-1 TK and helpful discussions.

References

18F-Labelling of Cytosine at the 2-Position

B. Noll, St. Noll

4-Amino-2-(p-toluenesulphonyloxy)-pyrimidine was radiolabelled with a K[18F]F/kryptofix 2.2.2™ complex in acetonitrile to obtain the 4-amino-2-[18F]fluoropyrimidine. The identity of the labelling product was proved by mass spectrometry.

For monitoring gene therapy with substrates of cytosine deaminase several methods to label cytosine with fluorine-18 have been described [1]. The labelling was carried out either from elemental [18F]F in glacial acetic acid or [18F]-acetylhypofluorite at the 5-position of cytosine [2, 3]. This labelling procedure starting from elemental [18F]F2 is accompanied by arising several by-products and lowering the radiochemical yield.

We found out an other method to label cytosine with a K[18F]F/kryptofix 2.2.2™ complex in acetonitrile. Studying the tosylation of cytosine with p-toluene sulphonyl chloride both in pyridine (r1) and acetonitrile/triethyl amine (r2) several tosylation products were obtained and are described following:

\[
\begin{align*}
\text{N} & \equiv \text{NH}_2 \\
\text{O} & \equiv \text{CH}_3 \\
\text{S} & \equiv \text{O} \\
\text{N} & \equiv \text{NH}_2
\end{align*}
\]

In dependence on the reaction conditions four products were obtained. According to the pathways r1 and r2 1-(p-toluene sulphonyl)-cytosine 2 is the main product (80 %) and N4-(p-toluene sulphonyl)-cytosine 3 (5-10 %) the by-product. Additional by-products are only formed according to r2 as 4-amino-2-(p-toluene sulphonyloxy)-pyrimidine 4 (10 %) and 1-(p-toluene sulphonyl)-N4-(p-toluene sulphonyl)-cytosine 5 (5 %). The products were purified by column chromatography on silica gel and dichloromethane/methanol as eluent. All synthesized substances were characterized by elemental analysis and 1H NMR spectroscopy. Compound 4 was used as precursor to label cytosine at the 2-position.

18F-Labelling

A [18F]KF/K2.2.2 complex was received after azeotropic distillation with acetonitrile, kryptofix 2.2.2 and potassium carbonate. This complex was allowed to react with the precursor 4 (5 mg) dissolved in acetonitrile for 25 min at 160 °C. Then, the whole reaction mixture was given over a silica Sep-Pak cartridge and eluted with dichloromethane/methanol (85/15 v/v). The cartridge held back K2CO3, kryptand and non-converted [18F]KF whereas the desired 18F-labelled tracer 6 was eluted.

\[
\begin{align*}
\text{NH}_2 & \equiv \text{N} \\
\text{O} & \equiv \text{CH}_3 \\
\text{S} & \equiv \text{O} \\
\text{N} & \equiv \text{NH}_2
\end{align*}
\]

Comparison of non-eluted to eluted radioactivity led to the labelling yield amounted to about 55 % (50 min reaction time). HPLC analysis (Phenomenex C-18, PBS/MeCN 80:20) of the reaction mixture after Si Sep-Pak elution yielded a radiochemical purity > 98 %. The “carrier-added” preparation carried out by adding 10 µl 0.1 M KF solution to the distillation vessel was also purified as described for the “nca”-preparation. The isolated fraction containing the expected 18F-tracer 6 was analyzed by mass spectrometry. The ESI+ spectrum showed one peak at m/z 114 (M+H) corresponding to the mol peak of component 6 with M = 113. The occurrence of this mol peak proves the existence of the 18F-labelled cytosine derivative at the 2-position. It is expected that this tracer will be accepted as substrate of the cytosine deaminase and is a potential tracer for monitoring gene therapy.

References

The Microwave-Assisted Synthesis of 5-Hydroxymethylcytosine
B. Noll, B. Grosse, St. Noll

A time-reduced one-step synthesis of 5-hydroxymethylcytosine using a microwave equipment and the following purification is described.

Suicide gene therapy tries to make use of the bacterial cytosine deaminase / 5-fluorocytosine system. Therefore Escherichia coli (CD) gene in transfected cancer cells expresses the cytosine deaminase. Our intention consists in developing new \(^{18}\text{F}\)-labelled tracers which are substrates of the CD for monitoring gene therapy and will be trapped in the cells. One approach is the labelling of 5-p-toluenesulphonyloxymethylcytosine \(1\) with a \(^{18}\text{F}\)KF/kryptofix complex yielding 5-\(^{18}\text{F}\)fluoromethylcytosine \(2\).

![Image 1]

The following enzymatic hydrolysis results in 5-\(^{18}\text{F}\)fluoromethyluracil and should be involved as thymine analogous in DNA synthesis. \(1\) can be prepared by tosylation of 5-hydroxymethylcytosine \(3\) available by a conventional four-step synthesis [1].

![Image 2]

In order to reduce the time exposure of the synthesis we used a less time-consuming approach assisted by a microwave oven. Microwave enhanced reactions becomes more and more commonly used in the synthesis of complicated organic compounds and are often more time-serving than the conventional multi-level syntheses. They are uncomplicated and their realization is very simple. We adapted a method for the synthesis of 5-hydroxymethylcytosine \(3\) starting from cytosine \(4\) and paraformaldehyde in an one-step reaction described by Adel et al. [2] to our microwave equipment MLS (µChemist).

The synthesis was optimized by variation of the amounts of cytosine \(4\) and paraformaldehyde, the amount of potassium hydroxide and the irradiation time and energy. Our optimized synthesis was carried out by heating an aqueous solution of 555 mg (5 mmole) cytosine \(4\), 200 mg paraformaldehyde and 5.0 ml of a 0.1 M potassium hydroxide solution in a microwave oven. The solution was irradiated in a special bottle for 3 min at 1000 Watt.

![Image 3]

After irradiation the solution was neutralized and then analyzed by HPLC on a C-18 column (Phenomenex aqua 250 x 4 mm, flow rate 1.0 ml/min) and 0.07 M PBS (pH 7.0) as eluent. The yield of 5-hydroxymethylcytosine \(3\) amounts to 40 %. Besides \(3\) unreacted cytosine (about 50 %), uracil and 5-hydroxymethyluracil were detected as by-products in different ratios. Cytosine \(4\) and its 5-hydroxymethyl derivative \(3\) were separated by treatment of the crude solution with a cation exchange resin in the H\(^+\)-form (DOWEX W50X8). Both compounds remained on the resin and were eluted with 2.5 % ammonia and subsequently separated by column chromatography on Sephadex G10 and water as eluent. The final product 5-hydroxymethylcytosine \(3\) was identified by \(^1\text{H} \) NMR and elemental analysis.

\(^1\text{H} \) NMR (DMSO-d\(_6\) 400 MHz): \(\delta = 4.13-4.14\) (d, 2H, CH\(_2\)), 4.90-4.93 (t, 1H, OH), 6.44-7.14 (2H, NH\(_2\)), 7.24 (s, 1H, H\(_6\)), 10.36 (s, 1H, NH).

Our described optimized synthesis in the microwave field yields an efficient and easy method for the synthesis of 5-hydroxymethylcytosine \(3\).

References
Z/E-Isomerism of N^4-(p-Toluenesulphonyloxy)cytosine Derivatives

St. Noll, B. Noll, H. Stephan, W. Kraus^1, M. Findeisen^2, L. Hennig^2, K. Yoshizuka^3

^1BAM Berlin, ^2Universität Leipzig, ^3University of Kitakyushu, Japan

Tosylation of N^4-hydroxycytosine results in dependence on the reaction conditions both in the formation of the N^4-(p-toluenesulphonyloxy)cytosine and the two-fold tosylated 1-(p-toluenesulphonyl)-N^4-(p-toluenesulphonyloxy)cytosine. The N^4-(p-toluenesulphonyloxy)cytosine crystallizes as a dimeric Z-isomer. Both NMR studies and DFT calculations point to the formation of Z/E-isomers.

Monitoring cytosine deamination expression should be possible by using ^18F-labelled cytosine derivatives [1]. As part of an ongoing development of a ^18F-labelled cytosine derivative systematic investigations were carried out to introduce leaving groups preferably the tosyl group. N^4-hydroxycytosine was tosylated and the reaction products were analyzed.

The introduction of the p-toluenesulphonyl group into N^4-hydroxycytosine 1 was carried out with p-toluenesulphonyl chloride in a fivefold molar excess both in pyridine (route 1, r1) and acetonitrile/triethyl amine (route 2, r2).

Both approaches resulted in N^4-(p-toluenesulphonyloxy)cytosine 2 and 1-(p-toluenesulphonyl)-N^4-(p-toluenesulphonyloxy)cytosine 3 but in different quantities.

By using approach 2 N^4-hydroxy-1-(p-toluenesulphonyl)cytosine was additionally formed. N^4-(p-toluenesulphonyloxy)cytosine 2 was chromatographically purified on silica gel with dichloromethane / methanol 50:1 as eluent. 2 crystallized from ethanol as colourless plates. The X-ray structure shows a dimer of 2 forming intermolecular hydrogen bonds between N^1 and C^2=O (2.054 Å) of each molecule. Additionally an intramolecular hydrogen bond is formed between N^3 and the N^4-oxy group (2.193 Å) resulting in the Z configuration of this derivative.

NMR measurements in d6-DMSO point to the formation of two isomeric structures having a molecular ratio of about 2:3. A dynamic hydrogen exchange between both structures was proven by 2D-NOESY measurements. In contradiction to other crosspeaks, those of the olefinic protons at 7.1/7.0 ppm and 5.8/5.4 ppm show the same phase like the diagonal peaks. These could be interpreted as cross peaks due to chemical exchange by the formation of Z/E-isomers. This finding is also corroborated by DFT calculations (Gaussian 98, BLYP, 6-31G). Both isomers calculated have almost the same energy making the simultaneous formation plausible.

Comparing the NMR-spectra of the different tosylation products of N^4-hydroxycytosine with the corresponding cytosine derivatives results also in the conclusion: Only the tosylation products of N^4-hydroxycytosine show the typical pattern caused by the Z/E-isomers.

Reference

The synthesis of three new uracil-based acyclic nucleoside precursors for monitoring gene expression of herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) is described.

Three new precursors for 18F-labelling have been synthesized to get new potential substrates 1, 2 and 3 for monitoring gene expression of herpes simplex virus type 1 thymidine kinase gene (HSV1-tk).

Our strategy to label the nucleosides at the acyclic chain with 18F requires the protection of the opposite hydroxyl group. Therefore 1-[(1,3-dihydroxy-2-propoxy)methyl]uracil (Acyclur 4), 5-ido-1-[(1,3-dihydroxy-2-propoxy)methyl]uracil (iodacyclur 5) and 5-ido-6-methyl-1-[(1,3-dihydroxy-2-propoxy)methyl]uracil (iodometacyclur 6) were treated with p-ansylchloro-diphenylmethane in dimethylformamide. Triethylamine and traces of dimethylamino pyridine were added and the mixture was allowed to react for 2 hours at room temperature. Thus 1-[(1-(p-anisyldiphenylmethoxy)-3-hydroxy-2-propoxy)methyl]uracil 7, 5-ido-1-[(1-(p-anisyldiphenylmethoxy)-3-hydroxy-2-propoxy)methyl]uracil 8 and 5-ido-6-methyl-1-[(1-(p-anisyldiphenylmethoxy)-3-hydroxy)-2-propoxy]methyl]uracil 9 were formed in a yield of about 65%.

The ditritylated compounds being occurred as by-products in the syntheses were separated by column chromatography on silica gel and dichloromethane/methanol 25:1 as eluent. The precursors 1-[(1-(p-anisyldiphenylmethoxy)-3-(p-toluenesulphonyloxy)-2-propoxy]methyl]uracil 10, 5-ido-1-[(1-(p-anisyldiphenylmethoxy)-3-(p-toluenesulphonyloxy)-2-propoxy]-methyl]uracil 11 and 5-ido-6-methyl-1-[(1-(p-anisyldiphenylmethoxy)-3-(p-toluenesulphonyloxy)-2-propoxy]methyl]uracil 12 were obtained with 53% from 7, 8 and 9 by introduction of an eligible leaving group for the subsequent fluorination. Tosyl chloride in anhydrous pyridine reacted with the methoxytrityl protected acyclic nucleosides for 2 hours at room temperature.

The tosylation reaction is accompanied by the partial splitting off the trityl protecting group forming the by-products 1-[(1-hydroxy-3-(p-toluenesulphonyloxy)-2-propoxy]methyl]uracil 13, 5-ido-1-[(1-hydroxy-3-(p-toluenesulphonyloxy)-2-propoxy]methyl]uracil 14 and 5-ido-6-methyl-1-[(1-hydroxy-3-(p-toluenesulphonyloxy)-2-propoxy]methyl]uracil 15.

We did not succeed in the reprotection of the tosylated by-products because of an unrequested chlorination reaction. The precursors were separated from the by-products and purified by column chromatography on silica gel and dichloromethane/methanol 20:1 as eluent. Orientating tests were carried out to label the precursors with a $[^{18}\text{F}]\text{KF/Kryptofix}$ complex. 1, 2 and 3 were obtained in a radiochemical yield of about 12%. Fluorination of the unprotected precursors 13, 14 and 15 resulted also in 1, 2 and 3, but with diminished yield (about 7%) [1].

All synthesized substances were identified by elemental analysis and 1H NMR spectroscopy. Fluorine-19 reference compounds were also determined by 19F NMR.

Reference

Syntheses of Novel Acyclic Pyrimidine Nucleosides as Potential Substrates of the HSV1-TK

St. Noll, B. Noll

Syntheses of three novel acyclic nucleosides as potential substrates of HSV1-TK are described which are derived from the cyclic 5-iodo-1-β-D-arabinofuranosyluracil.

Substrates that have been studied to date as reporter probes for HSV1-TK can be classified into two main classes of compounds: pyrimidine nucleoside derivatives and acyclo-guanosine derivatives. The former category of reporter probes includes 5-iodo-1-β-D-arabinofuranosyluracil and its 2’-fluorine derivative FIAU as most established 125I-labelled PET-tracer for monitoring gene expression [1]. Our aim was to prepare corresponding acyclic derivatives as potential substrates of HSV1-TK in conformance with the acyclic guanosine derivatives FHPG or FHBG.

![Chemical structures](image)

We used 1,3-dichloro-2-propanol, sodium hydride and benzyl alcohol to produce 1,3-dibenzyloxy-2-propanol, which was added to 1,2-dichloroethane followed by paraformaldehyde and hydrogen chloride to obtain 1,3-dibenzylxoxy-2-chloro-methoxypropane. Then the bases uracil and 6-methyluracil were coupled to 1 in dichloromethane with tetrabutylammonium iodide to produce 1-[(1,3-dibenzyloxy-2-propoxy)methyl]uracil and 6-methyl-1-[(1,3-dibenzyloxy-2-propoxy)methyl]uracil. Treatment of 1 with palladium oxide and cyclohexene split off the benzyl protection groups yielding 1-[(1,3-dihydroxy-2-propoxy)methyl]-uracil (Acyclur).

Subsequently the protection groups at 9 and 10 were split off by potassium carbonate yielding 5-iodo-1-[(1,3-dihydroxy-2-propoxy) methyl]uracil (Iodacyclur) and 5-iodo-6-methyl-1-[(1,3-dihydroxy-2-propoxy)methyl]uracil (Iodmetacyclur).

In the following steps the acyclic pyrimidine nucleosides will be labelled with fluorine-18 and tested concerning their uptake into HSV1-TK expressing cell cultures. The preparation of the corresponding precursors is described in [2].

References
Neurotensin(8-13) Labelled with 99mTc Using the ‘4+1’ Mixed-Ligand Chelate System – Part 1: Chemistry

The isocyanide group and a rhenium complex of the ‘4+1’ mixed-ligand type were linked to the neurotensin derivative NT(8-13) as well as to Arg-Arg and Arg using active esters. 99mTc complexes of isocyanide-functionalized NT(8-13), Arg-Arg and Arg were obtained in yields of about 80%.

Introduction

Radiolabelled neurotensin (NT) analogues are of interest for targeting neuro-endocrine tumours. 99mTc-labelling of stabilised NT analogues via the tricarbonyl concept were already studied extensively [1]. Here we describe the synthesis and characterisation of 99mTc and 185,187Re labelled NT(8-13), Arg-Arg and Arg using the ‘4+1’ mixed-ligand chelate system, where technetium(III) and rhenium(III) are coordinated by the tripodal ligand chelate system, where technetium(III) and rhenium complexes of the ‘4+1’ mixed-ligand type were linked to the neurotensin derivative NT(8-13), Arg-Arg and Arg using active esters.

Results and Discussion

Fig. 1. Compounds prepared in this study.

NT(8-13) was reacted with the tetrafluoro-phenyl esters 1 and Re 1 in DMF/EtO\textsubscript{2}N to give 2 and Re 2. Arg-Arg and Arg were reacted with 1 and Re 1 in DMF/H\textsubscript{2}O/EtO\textsubscript{2}N to get 3, 4, Re 3 and Re 4 (Fig. 1). The coupling had to be performed in organic or organic/aqueous media because of the lipophilicity of the active esters. The crude products were purified by RP-HPLC using MeCN/H\textsubscript{2}O/0.1%TFA as eluent and than lyophilised (yield: 40 – 50%). Immediately after semipreparative HPLC of 2, 3 and 4 the fractions were neutralised. In acidic media the free isocyanide group is unstable and forms the N-formyl derivative. The derivative was also detected in samples 2, 3, 4 by ESI-MS but its content was found to be small.

The obtained compounds were characterised by RP-HPLC and ESI-MS: HPLC (Jupiter (250 x 4.6 mm), 1 ml/min, 20 % to 80 % A in 20 min; A = MeCN/0.1% THF, B = H\textsubscript{2}O/0.1 % TFA; R\textsubscript{t} [min]: 10.1 (2), 14.9 (Re 2), 4.9 (3), 12.5 (Re 3), 5.6 (4), 13.8 (Re 4); MS: m/z calc. (found): 961 (961) for [2$^{\text{Tc}}$]; 1341, 1343 (1341, 1343) for [Re 2$^{\text{Re}}$]; 474 (474) for [3$^{\text{Tc}}$]; 854, 856 (854, 856) for [Re 3$^{\text{Re}}$]; 318 (318) for [4$^{\text{Re}}$ + H$^{\text{Tc}}$]; 698, 700 (698, 700) for [Re 4 + H$^{\text{Tc}}$]; two peaks according to 186Re or 187Re, respectively.

99mTc-labelling was performed in a two-step procedure according to [3]. 99mTc-EDTA (100 to 500 MBq) was formed with a yield of about 95%. For the following ligand exchange 0.5 mg 2, 2',2''-nitrotilotris(ethanethiol) and 50 µg 2, 3 or 4 were added. The exchange reaction was completed within 30 min at 50 °C or 2 h at RT (yield: about 80%). 99mTc 2, 99mTc 3 and 99mTc 4 were obtained after semipreparative RP-HPLC. Radiochemical purity exceeded 95% as determined by HPLC (after co-injection of the analogous 99mTc and Re 2 compounds, practically identical R\textsubscript{t} values were observed) and TLC (RP-18 Merck, MeCN/H\textsubscript{2}O/TFA (4/1/0.01, v/v/v), R\textsubscript{f} ≈ 0.8; Silufol/acetone, R\textsubscript{f} ≈ 0 - 0.1).

Basic stability studies of 99mTc 2 are described in [4]. 99mTc 3 and 99mTc 4 were synthesized to get reference compounds for catabolism studies.

Experiments show that the ‘4+1’ mixed-ligand system is suitable for binding technetium and rhenium to peptides.

References

Neurotensin(8-13) Labelled with 99mTc Using the ‘4+1’ Mixed-Ligand Chelate System – Part 2: Basic Stability Considerations

99mTc-NT(8-13) labelled via the ‘4+1’ mixed-ligand concept $[^{99m}$Tc(NS$_3$)CN-NT(8-13)] was quickly catabolised after injection in rats. $[^{99m}$Tc(NS$_3$)CN-Arg] was the main catabolite. However, the chelate unit and the bond between the complex and the peptide exhibited high catabolic stability. The affinity of the labelled NT(8-13) towards the neurotensin receptor was decreased by the factor of about 15 compared with native NT(8-13).

Introduction

In this report, we present stability and receptor affinity studies of 99mTc 2. The compounds 99mTc 2[99mTc(NS$_3$)CN-NT(8-13)], 99mTc 3[99mTc(NS$_3$)CN-Arg-Arg], 99mTc 4[99mTc(NS$_3$)CN-Arg] and Re 4[Re(NS$_3$)CN-NT(8-13)] were prepared according to [1]. 99mTc 3, 99mTc 4 served as references for catabolism studies of 99mTc 2. The neurotensin receptor affinity was determined using Re 4.

Results and Discussion

99mTc 2 was very quickly catabolised after injection in rats as well as after in vitro incubation in blood or plasma. Only two catabolites were observed. The main catabolite could be identified as 99mTc 4 (Figs. 1, 2; Table 1). The catabolites were formed by proteolysis of the monodentate ligand.

![Fig. 1. Main catabolite 99mTc 4.](image1)

![Fig. 2. Radiochromatograms (HPLC, RP-18, MeCN/H$_2$O/TFA) of catabolism studies of 99mTc 2: plasma samples (PS) at various times after i.v. injection in rats.](image2)

The ‘4+1’ chelate unit and the amide bond between the complex and the peptide or amino acid exhibited high catabolic stability. Subsequent studies had to be performed using stabilised peptides. The results are consistent with early stability studies showing that no transchelating reactions of the used complex type occurs [2]. Since 99mTc 4 exhibited a high catabolic stability, its biodistribution in rats was determined. The radioactivity was selectively taken up by the liver and than excreted into the intestine (Table 2).

![Table 1. In vitro stability of 99mTc 2 in rat blood and plasma analysed by HPLC (RP-18, MeCN/H$_2$O/TFA).](table1)

<table>
<thead>
<tr>
<th>Catabolite</th>
<th>Blood, 120 min</th>
<th>Plasma, 120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catabolite 1</td>
<td>85 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Catabolite 2</td>
<td>13 %</td>
<td>8 %</td>
</tr>
</tbody>
</table>

The affinity of Re 4 towards the neurotensin receptor of HT29 cells (colorectal carcinoma cell line) was determined. The obtained IC$_{50}$ value of 23 ± 8 nM indicates an approximately 15 times lowered affinity of Re 4 compared to native NT(8-13).

Since the amide bond between the chelate moiety and the peptide is catabolically stable, the ‘4+1’ mixed-ligand complexes are suitable for 99mTc-labelling of peptides.

References

Technetium and rhenium tricarbonyl complexes with a derivatised cyclopentadienyl ligand were prepared starting from pertechnetate and a ferrocene ligand as well as the tricarbonyl precursor complexes \([^{99m}\text{Tc}(\text{CO})_3(\text{H}_2\text{O})_3]^+\) and \([\text{Re}(\text{CO})_3\text{Br}_3]^2-\). Their chemical identity was confirmed by chromatographic methods and electron spray mass spectrometry.

Introduction

A high receptor-affine \(^{99m}\text{Tc}\) complex (cytectrene II) prepared from the ferrocene complex N-(isopropyl)-piperidino-4[bispentahaptocyclopentadienyl]iron-carboxylate was described in the Annual Report 2002 of our institute [1]. The labelling method involved reaction of the ferrocene ligand with pertechnetate in the presence of Mn(CO)\(_5\)Br in dimethyl formamide at 150 °C for 1 h in an oil bath [2]. The proposed structure of the \(^{99m}\text{Tc}\) cytectrene complexes is given in Fig. 1.

The goal of this work was to elucidate the structure of such kinds of complexes. For that reason, carrier added (c.a.) technetium preparations following the above mentioned preparation route and non carrier added (n.c.a.) preparations as well as cold rhenium preparations using the IsoLink carbonyl kit and the precursor complex \((\text{NEt}_4)_2[\text{Re}(\text{CO})_3\text{Br}_3]\) were performed with the methyl derivative of the ferrocene ligand. The chromatographic behaviour of preparation products was compared and electron spray mass spectrometry (ESI-MS) analyses were carried out to determine the composition of final products.

Results and Discussion

The preparation of the cytectrene I complex following the method of Wenzel [2] leads to yields between 70 and 80 % determined by TLC [Silufol/ether/triethylamine (95/5), \(R_t \approx 0.5\)]. In HPLC, the complex is eluted at about 9 min (PRP-1 column (250 x 4.1 mm), acetonitrile/0.1 %TFA (A)/water/0.1 % TFA (B); gradient elution in 5 min from 20 % A to 50 % A, flow rate: 1.0 ml/min). It is possible to prepare the c.a. \(^{99m}\text{Tc}\) complex in similar yields adding \(10^{-7}\) mol \(^{99}\text{TcO}_4^-\) to the reaction mixture. That allows to perform ESI-MS analyses of such a preparation. The spectrum shows the expected molecular mass of 390 (Fig. 2).

If the tricarbonyl complex is really formed under this reaction conditions, the same result should be observed, when the complex is prepared from the precursor complex \([^{99m}\text{Tc}(\text{CO})_3(\text{H}_2\text{O})_3]^+\) using a tricarbonyl kit. In fact, a comparable preparation is obtained following the reaction of the precursor complex in acidic solution with 1.0 mg of the ferrocene ligand dissolved in DMF for 1 h at 150 °C. In accordance with this result, the reaction of the rhenium tricarbonyl complex with the ferrocene ligand also leads to the tricarbonyl cyclopentadienyl complex as demonstrated by the mass spectrum in Fig. 3 (m/z = 476/478).

References

The biodistribution of cytectrene I and II in Wistar rats was studied. Both compounds show high uptake in the brain and fast blood clearance. The pattern of regional distribution in the brain demonstrated in autoradiographic studies indicates binding to the 5-HT$_{1A}$ and α_1 adrenergic receptors.

Introduction

The wide interest in the 5-HT$_{1A}$ receptor at present is due to its implicated role in several major neuropsychiatric disorders such as depression, eating disorders or anxiety. For the diagnosis of these pathophysiological processes it is important to develop radioligands for the binding on the 5-HT$_{1A}$ receptor in order to allow brain imaging. After confirmation of the composition of the cytectrene complexes described in [1] their biodistribution in Wistar rats was studied. Additionally, the brain uptake of cytectrene I was investigated autoradiographically and compared with that of cytectrene II which was studied in the past [2].

Results and Discussion

The 99mTc cytectrene complexes penetrate the blood-brain barrier and accumulate strongly in the brain with fast blood clearance.

<table>
<thead>
<tr>
<th>Time p.i. [min]</th>
<th>5</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>0.30±0.04</td>
<td>0.17±0.72</td>
</tr>
<tr>
<td>front. Cortex</td>
<td>6.15±1.20</td>
<td>1.46±0.34</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>4.38±1.08</td>
<td>1.61±0.37</td>
</tr>
<tr>
<td>Striatum</td>
<td>5.28±1.08</td>
<td>1.33±0.37</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>5.41±1.49</td>
<td>1.63±0.53</td>
</tr>
<tr>
<td>Brown fat</td>
<td>3.25±0.17</td>
<td>0.80±0.21</td>
</tr>
<tr>
<td>Skin & hair</td>
<td>1.05±0.20</td>
<td>0.72±0.49</td>
</tr>
<tr>
<td>Brain</td>
<td>5.22±1.17</td>
<td>1.51±1.26</td>
</tr>
<tr>
<td>Pancreas</td>
<td>4.89±1.01</td>
<td>3.75±1.34</td>
</tr>
<tr>
<td>Spleen</td>
<td>1.35±0.28</td>
<td>1.34±0.26</td>
</tr>
<tr>
<td>Adrenals</td>
<td>5.27±0.94</td>
<td>1.27±4.48</td>
</tr>
<tr>
<td>Kidneys</td>
<td>8.26±1.38</td>
<td>9.53±4.78</td>
</tr>
<tr>
<td>Fat</td>
<td>1.87±1.21</td>
<td>0.71±0.17</td>
</tr>
<tr>
<td>Muscle</td>
<td>1.02±0.14</td>
<td>0.48±0.10</td>
</tr>
<tr>
<td>Heart</td>
<td>1.71±0.28</td>
<td>0.44±1.12</td>
</tr>
<tr>
<td>Lungs</td>
<td>7.73±1.29</td>
<td>2.29±0.80</td>
</tr>
<tr>
<td>Thymus</td>
<td>2.29±0.32</td>
<td>1.20±0.26</td>
</tr>
<tr>
<td>Harderian glands</td>
<td>3.58±0.87</td>
<td>3.90±2.92</td>
</tr>
<tr>
<td>Liver</td>
<td>4.26±1.19</td>
<td>9.27±4.61</td>
</tr>
<tr>
<td>Femur</td>
<td>1.13±0.03</td>
<td>0.66±0.26</td>
</tr>
<tr>
<td>Testes</td>
<td>1.03±0.12</td>
<td>1.08±0.59</td>
</tr>
</tbody>
</table>

Cytectrene I is eliminated through the liver and kidneys (Fig. 1).

Fig. 1. Biodistribution and elimination of cytectrene I in the rat (mean ± SD; n = 4).

The autoradiograms of rat brain (Fig. 2) show an enrichment of activity in brain areas which are rich in 5-HT$_{1A}$ receptors, such as hippocampus and entorhinal cortex as well as in regions for α_1 adrenergic receptors, such as thalamus, cortex and cerebellum. The 99mTc cytectrene I complex exhibits a higher nonspecific binding than cytectrene II. Receptor binding assays in rat brain homogenates and blocking studies are necessary to determine further data concerning affinity, specificity, selectivity and non-specific binding of the compounds.

Fig. 2. Ex vivo autoradiograms of rat brain in horizontal section levels and radioactivity standard 20 min after i.v. application of the 99mTc cytectrene I complex. Hipp= hippocampus, cx= frontal cortex, th= thalamus, ecx= entorhinal cortex, cpu= caudate-putamen, cb= cerebellum.

References

Synthesis of 4-[^18]FFluoromethyl-2-Chloro-O-Succinimidyl-Benzoate as Novel Bifunctional ^18^F-Labelling Agent

F. Wüst, M. Müller, H. Kasper

In this report we describe the radiosynthesis of 4-[^18]F-fluoromethyl-2-chloro-O-succinimidyl-benzoate as a novel bifunctional ^18^F-labelling agent via nucleophilic displacement of the corresponding nosylate precursor with[^18]F-fluoride.

Introduction

The incorporation of ^18^F with high specific radioactivity into biologically active peptides, proteins, oligonucleotides or antibodies represents a special challenge. Recently we have reported the one-step synthesis of a ^18^F-labelled benzylfluoride containing an isothiocyanate group as novel prosthetic group [1]. Now we describe the single-step synthesis of ^18^F-labelled 3-chloro-benzyl-fluoride 8 containing an N-hydroxysuccinimide (NHS) active ester functional group for conjugation with primary amines usually found in peptides, proteins and antibodies.

Results and Discussion

In a previous work we have shown that the nosylate group is an excellent leaving group for the one-step incorporation of[^18]F-fluoride into the benzylic positions under mild conditions [1]. Thus, labelling precursor 7 was synthesized in six steps starting from 2-amino-dimethylterephthalate 1. The synthesis is depicted in Fig. 1.

Cleavage of the ester group in 4 was performed under acidic conditions to give carboxylic acid 5 in 39 % yield. The carboxyl group in 5 was converted into succinimidyl active ester 6 by means of O-(N-succinimidyl)-N,N',N'-tetramethyluronium tetrafluoroborate (TSTU) in 88 % yield. Benzyl bromide 6 was finally treated with AgONs to give nosylate precursor 7 in 64 % yield. The radiosynthesis of 8 was performed in a remotely-controlled synthesis module according to [1] with nosylate precursor 7 (Fig. 2).

When acetonitrile was used as the solvent, only low radiochemical yields of 5 - 10 % could be obtained at room temperature and 45 °C. Changing the solvent from acetonitrile to acetone gave slightly better but still low radiochemical yields of up to 15 % at 45 °C. The radiochemical yields could not be improved by further variation of the reaction temperature to 0 °C and 80 °C. The found low radiochemical yield and the fact that acetone is a better solvent compared to acetonitrile are consistent with reports on the synthesis of other NHS-substituted[^18]F-benzylfluorides [2, 3]. In these reports Eckelman et al. discussed the formation of a corresponding acid fluoride like 9 as competitive reaction of[^18]F-fluoride with the NHS active ester group.

References

Radiosynthesis and Biodistribution of a 18F-Labelled Corticosteroid for Mapping Brain Glucocorticoid Receptors (GR)

F. Wüst, T. Kniess, R. Bergmann

The radiosynthesis and biological evaluation of pyrazolo steroid 2'-[4-fluorophenyl]-21-[18F]fluoro-20-oxo-11β,17α-dihydroxy-pregn-4-eno[3,2-c]pyrazole is described. The radiolabelling was accomplished in 4-5 % decay-corrected radiochemical yield within 80 min at an effective specific radioactivity of 40-75 Ci/mmol. Biodistribution studies in male Wistar rats showed an initial brain uptake of 0.43±0.12 % ID/g after 5 min and selective uptake in the pituitary which could be blocked by corticosterone pre-treatment.

Introduction

Corticosteroids are implicated in neuro-psychiatric disorders such as severe depression and anxiety. The development of corticosteroids appropriately labelled with 18F would allow the non-invasive in vivo imaging and mapping of brain GRs by means of PET. Recently we have prepared a series of novel fluorophenyl pyrazolo corticosteroids which showed relative binding affinities (RBA) to the GR of up to 56 % in comparison to dexamethasone (100 %) [1]. In this report we present the radiosynthesis of 2'-[4-fluorophenyl]-21-[18F]fluoro-20-oxo-11β,17α-di-hydroxy-pregn-4-eno[3,2-c]pyrazole 2 and its preliminary radiopharmacological evaluation by means of biodistribution studies in rats.

Results and Discussion

The radiolabelling was accomplished by $[^{18}F]$fluoride ion displacement on the corresponding α-keto iodide 1 to give 21-$[^{18}F]$fluoro compound 2 in 4-5 % decay-corrected radiochemical yield after HPLC purification at an effective specific radioactivity of 40-70 Ci/mmol (Fig. 1). The synthesis including HPLC separation was accomplished within 80 min after EOB, and the radiochemical purity exceeded 98 %. The found low effective specific radioactivity stems from the co-eluting oxetanone 3 which was formed inevitably during the radiolabelling process.

![Fig. 1. Radiosynthesis of GR-ligand 2](image)

Biodistribution in male Wistar rats showed an initial brain uptake of 0.43±0.12 % ID/g after 5 min which slightly decreased to 0.37±0.06 % ID/g after 60 min. Brain to blood ratios at 5 min and 60 min p. i. were 4.3 and 2.8, respectively. The low accumulation of radioactivity in the bone (0.55±0.08 % ID/g after 5 min and 0.41±0.09 % ID/g after 60 min, respectively) is indicative of a low in vivo radiodefluorination of corticosteroid 2 in comparison to similar compounds reported in the literature [2, 3]. The pituitary and thymus as major targets of corticosteroid hormones showed uptakes of 1.64±0.41 % ID/g and 0.55±0.11 % ID/g after 5 min, and 1.95±0.15 % ID/g and 0.68±0.10 % ID/g after 60 min, respectively. The pituitary uptake of the radiotracer seems to be receptor-mediated since the uptake could be blocked by the co-injection of 2 mg of corticosterone per animal, being 0.87±0.05 ID/g after 5 min and 1.39±0.29 ID/g after 60 min (Table 1).

Table 1. Biodistribution (% ID/g) of 2 in male Wistar rats (*Pre-treatment with 2 mg of corticosterone)

<table>
<thead>
<tr>
<th>Time p.i.</th>
<th>5 min</th>
<th>60 min</th>
<th>5 min (blocked)*</th>
<th>60 min (blocked)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>0.10±0.04</td>
<td>0.13±0.02</td>
<td>0.11±0.01</td>
<td>0.15±0.02</td>
</tr>
<tr>
<td>Pituitary</td>
<td>1.64±0.41</td>
<td>1.95±0.15</td>
<td>0.87±0.05</td>
<td>1.39±0.29</td>
</tr>
<tr>
<td>Brain</td>
<td>0.43±0.12</td>
<td>0.37±0.06</td>
<td>0.44±0.07</td>
<td>0.42±0.08</td>
</tr>
<tr>
<td>Pancreas</td>
<td>1.38±0.14</td>
<td>1.49±0.12</td>
<td>1.39±0.07</td>
<td>1.42±0.15</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.63±0.11</td>
<td>0.69±0.07</td>
<td>0.67±0.04</td>
<td>0.74±0.10</td>
</tr>
<tr>
<td>Adrenals</td>
<td>1.81±0.48</td>
<td>2.93±0.31</td>
<td>2.01±0.29</td>
<td>3.27±0.21</td>
</tr>
<tr>
<td>Kidneys</td>
<td>1.03±0.29</td>
<td>1.24±0.09</td>
<td>1.08±0.19</td>
<td>1.46±0.30</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.53±0.19</td>
<td>0.49±0.08</td>
<td>0.51±0.06</td>
<td>0.55±0.21</td>
</tr>
<tr>
<td>Heart</td>
<td>0.99±0.29</td>
<td>0.90±0.12</td>
<td>1.03±0.13</td>
<td>1.11±0.17</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.99±0.32</td>
<td>1.08±0.18</td>
<td>1.00±0.11</td>
<td>1.11±0.07</td>
</tr>
<tr>
<td>Thymus</td>
<td>0.55±0.11</td>
<td>0.68±0.10</td>
<td>0.62±0.02</td>
<td>0.67±0.20</td>
</tr>
<tr>
<td>Liver</td>
<td>2.02±0.63</td>
<td>3.19±0.29</td>
<td>2.13±0.42</td>
<td>3.59±0.37</td>
</tr>
<tr>
<td>Brown fat</td>
<td>1.10±0.19</td>
<td>1.44±0.38</td>
<td>1.31±0.17</td>
<td>1.53±0.30</td>
</tr>
<tr>
<td>Testes</td>
<td>0.26±0.03</td>
<td>0.11±0.06</td>
<td>0.30±0.04</td>
<td>0.13±0.02</td>
</tr>
<tr>
<td>Femur</td>
<td>0.53±0.06</td>
<td>0.41±0.09</td>
<td>0.56±0.05</td>
<td>0.38±0.04</td>
</tr>
</tbody>
</table>

In conclusion we have synthesized 18F-labelled corticosteroid 2 showing moderate brain uptake comparable with the best ligands reported in the literature. In association with the good in vivo stability in terms of in vivo radiodefluorination we are encouraged to continue the work by using other 18F-labelled corticosteroids to further improve brain uptake.

References

Synthesis of 18F-Labelled Nucleosides Using Stille Cross-Coupling Reactions with $[4^{-18}$F]Fluoroiodobenzene

F. Wüst, T. Kniess, H. Kasper

The radiosyntheses of 5-([4´-18F]fluorophenyl)-uridine 18F-11 and 5-([4´-18F]fluorophenyl)-2'-deoxy-uridine 18F-12 are described. The [4-18F]fluorophenyl-substituted nucleosides were prepared via a Stille cross-coupling reaction with [4-18F]fluoroiodobenzene followed by basic hydrolysis. The Stille cross-coupling was optimised by screening various palladium catalysts, additives and solvents. Optimised reaction conditions (Pd$_2$(dba)$_3$/CuI/AsPh$_3$ in DMF/dioxane 1:1, 20 min at 65 °C) provided the Stille cross-coupling products in radiochemical yields of up to 70 % related to [4-18F]fluoroiodobenzene.

Introduction
Recently we have described the synthesis of 5-([4´-18F]fluorophenyl)-2'-chloro-2'-deoxy-3',5'-diacetyl-uridine via a Stille cross-coupling reaction using [4-18F]fluoroiodobenzene [1]. Now we present the radiosynthesis of two new nucleosides bearing a [4-18F]fluorophenyl substituent at position 5 of the pyrimidine ring via a Stille cross-coupling with [4-18F]fluoro-iodobenzene. The reaction conditions were optimised by screening various palladium catalysts, additives and solvents.

Results and Discussion
The syntheses of labelling precursors 7 and 8 and reference compounds 11 and 12 are depicted in Fig. 1.

![Fig. 1. Synthesis of labelling precursors and reference compounds](image)

The radiosynthesis was performed using an one-pot procedure including the Stille cross-coupling reaction followed by basic hydrolysis of the acetyl protecting groups in 18F]-9 and 18F]-10 (Fig. 2.).

![Fig. 2. Stille reaction with [4-18F]fluoro-iodobenzene and subsequent basic hydrolysis](image)

By screening various palladium catalysts, additives and solvents the following reaction conditions were found to give the highest radiochemical yields of up to 70 % (related to [4-18F]fluoroiodobenzene, monitored by analytical radio-HPLC) for the Stille cross-coupling reaction: Heating a mixture of [4-18F]fluoro-iodobenzene/Pd$_2$(dba)$_3$/tin precursor/Cul/AsPh$_3$ in 1 ml of DMF/dioxane (1:1) for 20 min at 65 °C. In a typical large-scale experiment, 550 MBq of [4-18F]fluoroiodobenzene could be converted into 120 MBq (33%, decay-corrected) of 5-([4´-18F]fluorophenyl)-2'-deoxy-uridine 18F-12 within 40 min, including HPLC purification.

Reference
Radiolabelled Flavonoids and Polyphenols
I. Introduction and Radiolabelling Concept
S. Gester, F. Wüst, R. Bergmann, J. Pietzsch

The development of suitable concepts for the radiolabelling of flavonoids and polyphenols with 11C and 18F is described. Appropriately 11C- and 18F-labelled compounds will allow studies on some still unknown biological and biochemical pathways of specific flavonoid and polyphenolic substances by means of positron emission tomography (PET).

Introduction

Flavonoids are the most common occurring plant polyphenols and represent a group of phytochemicals exhibiting a wide range of biological activities arising mainly from their antioxidant properties and ability to modulate several enzymes or cell receptors [1]. Their wide occurrence, complex diversity and manifold functions have made flavonoids a very attractive target for chemical, biological and medical studies. In this context, flavonoids have been recognized to exert antibacterial and antiviral activity, anti-inflammatory, anti-angiogenic, analgesic, anti-allergic effects, hepatoprotective, cytostatic, apoptotic, estrogenic, and anti-estrogenic properties.

Flavonoids are chemically defined as substances composed of a common phenylchromanone structure with one or more hydroxyl substituents, including derivatives. Divided into several subclasses, the flavonoids include the anthocyanidins, responsible for the red and blue colors of fruits and flowers; the catechins, concentrated in tea; the flavanones and flavanone glycosides, found in citrus and honey, and the flavones, flavonols, and flavonol glycosides, found in tea, fruits, vegetables, and honey, as well as isoflavonoids found in soya food products (see Fig. 1).

Other flavonoid-like compounds, derived from caffeic acid or trans-2-hydroxycinnamic acid, comprise dihydrochalones, chlorogenic acid, and different stilbenes, especially resveratrol (3,5,4′-trihydroxy-trans-stilbene). This substance is found in red wine and was shown to reduce LDL-oxidation and act against arteriosclerotic processes.

Nevertheless, the biological pathways of many flavonoids in humans are still poorly understood. Understanding the potential link between the ingestion of individual flavonoids as dietary agents and the effect of health promotion or health risk requires the metabolic characterization of flavonoids in vivo. A solution could be the radiolabelling of flavonoids or flavonoid-like compounds with short-lived positron emitters (e.g. 11C or 18F) [2] and the subsequent radiopharmacological and physico-chemical evaluation (informations on biodistribution, metabolism, lipophilicity data, binding properties to liposomes, lipoproteins etc.) by means of positron emission tomography (PET). The synthesis of 11C-labelled flavonoids can be accomplished by using either standard methylation reactions with $[^{11}\text{C}]$methyl iodide or several 11C-C bond forming reactions. The potential advantage of this approach consists of the isotopic labelling of flavonoids resulting in radiotracers which do not interfere with the physiological steady state, and which allow the external detection and monitoring of their in vivo biochemical fate.

Another important radioisotope in PET imaging is 18F which can be used as an isosteric replacement for hydrogen or imitating a hydroxy group. The major advantage of 18F-labelled radiotracers compared to 11C-labelled compounds is the longer half-life of 110 min which allows the performance of more complex radiosyntheses and prolonged imaging protocols.

References

Radiolabelled Flavonoids and Polyphenols
II. Synthesis Towards $[^{18}\text{F}]$Fluorine Labelled Resveratrol
S. Gester, F. Wüst, R. Bergmann, J. Pietzsch

$4-[^{18}\text{F}]$fluorobenzaldehyde was coupled with diethyl-(3,5-dimethoxybenzyl)phosphonate under Wittig-Horner-Emmons conditions to form a $[^{18}\text{F}]$fluorine labelled resveratrol derivative in 76 % yield related to $4-[^{18}\text{F}]$fluorobenzaldehyde.

Introduction
Resveratrol is a phytoalexin found in grapes and certain other plants. It exhibits a variety of useful biological properties (antileukemic, antibacterial, antifungal, antiplatelet aggregation, antioxidative, anti-inflammatory, and coronary vasodilator activities) and has been suggested as a possible cancer chemo-preventive agent on the basis of inhibitory effects on tumour initiation, promotion and progression. In this context, the synthesis of $[^{18}\text{F}]$labelled resveratrol $[^{18}\text{F}]-1$ was initiated to evaluate radiopharmacological and physico-chemical properties (biodistribution, metabolism, binding properties etc.) by means of positron emission tomography (PET).

Results and Discussion
Diethyl-(3,5-dimethoxybenzyl)phosphonate 3, the precursor for the radiosynthesis was obtained by the Michaelis-Arbuzov reaction of 3,5-dimethoxybenzylbromide 2 with excess of triethyl phosphate at 160 °C in 84 % yield [1]. Coupling of the phosphonic acid diester 3 with 4-fluorobenzaldehyde 4 under Wittig-Horner-Emmons conditions leads to the formation of pure 3,5-dimethoxy-4'-fluoro-trans-stilbene 6 in 62 % yield [2]. Upon reaction with BBr$\text{\textsubscript{3}}$ in CH$_2$Cl$_2$ at –78 °C, compound 6 was demethylated and gave the resveratrol derivative 3,5-dihydroxy-4'-fluoro-trans-stilbene 1 in 57 % yield (see Fig. 1).

Compounds 6 and 1 serve as reference substances. Radiolabelling was performed using the readily available 4-$[^{18}\text{F}]$fluorobenzaldehyde $[^{18}\text{F}]-5$ as coupling partner for the phosphonic acid diester 3. 4-$[^{18}\text{F}]$fluorobenzaldehyde was synthesized according to Mäding et al. [3] starting from 4-trimethylammonium benzaldehyde triflate 4 as precursor and $[^{18}\text{F}]$fluoride / Kryptofix-222 in DMF. After cooling, a solution of the phosphonic acid diester 3 and potassium tert-butoxide in DMF was added to the crude reaction mixture containing 4-$[^{18}\text{F}]$fluorobenzaldehyde. The $[^{18}\text{F}]$fluorine labelled coupling product 3,5-dimethoxy-4'-$[^{18}\text{F}]$fluoro-trans-stilbene $[^{18}\text{F}]-6$ (Fig. 2) was identified by comparison of the retention time with that of the reference compound 6. The HPLC-determined yield was 76 % related to 4-$[^{18}\text{F}]$fluorobenzaldehyde.

![Fig. 2. Synthesis of the radiolabelled resveratrol derivatives $[^{18}\text{F}]-6$ and $[^{18}\text{F}]-1$](image_url)

The demethylation of compound $[^{18}\text{F}]-6$ to give the $[^{18}\text{F}]$-radiolabelled resveratrol derivative 3,5-dihydroxy-4'-$[^{18}\text{F}]$fluoro-trans-stilbene $[^{18}\text{F}]-1$ is currently under investigation.

References
Synthesis of a 18F-Labelled COX-2 Inhibitor

A. Höhne, F. Wüst

A 18F-labelled derivative of Rofecoxib was synthesized via a Stille cross-coupling reaction of 4-(4-methylsulfonylphenyl)-3-(tributylstannyl)-2(5H)-furanone with $[4-^{18}$F]fluoroiodobenzene. Conversion of $[4-^{18}$F]fluoroiodobenzene into the desired product proceeded in radiochemical yields of up to 76 % related to $[4-^{18}$F]fluoroiodobenzene.

Introduction

Cyclooxygenases control the complex conversion of arachidonic acid to prostaglandines and thromboxanes, which trigger as autocrine and paracrine chemical messengers many physiological and pathophysiological responses. Besides their association with inflammation and pain, the up-regulation of COX-2 expression has also been observed in Alzheimer’s disease and in a variety of tumours [1, 2]. The overexpression of COX-2 in several tumours opens an interesting approach for tumour targeting with appropriately radiolabelled ligands for COX-2. Herein we describe the radiosynthesis of a 18F-labelled derivative of Rofecoxib via a Stille reaction with $[4-^{18}$F]fluoroiodobenzene.

Results and Discussion

The synthesis of labelling precursor 5 and reference compound 6 is shown in Fig. 1.

Briefly, tetrahydro-2-(2-propynyloxy)-2H-pyran 1 was converted into tetrahydro-2-[methyl-2-butynyl-(oxy)-oat]-2H-pyran 2 in 56 % yield using methylmagnesium bromide and methylchloroformate. The introduction of the tributylstannyl groups was achieved by the reaction of 2 with hexabutyldistannane in the presence of PdCl$_2$(PPh$_3$)$_2$ to give the 2,3-bis(tributylstannyl)-propynoat 3 in 76 % yield. Formation of the γ-lactone 4 was accomplished in 72 % yield by the treatment of 3 with cation-exchange resin in MeOH. Regioselective introduction of the 4-methylsulfonylphenyl substituent was achieved by a Stille reaction to give 4-(4'-methylsulfonylphenyl)-3-(tributyl-stannyl)-2(5H)-furanone 5 in 27 % yield. Compound 5 was further converted into reference compound 3-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)-2(5H)-furanone 6 in 88 % yield by an additional Stille reaction of 5 with 4-fluoroiodobenzene. Radiolabelling was performed using $[4-^{18}$F]fluoroiodobenzene as the coupling partner in the Stille reaction (Fig. 2).

$[4-^{18}$F]fluoroiodobenzene was synthesized according to Wüst et al. using 4,4'-diiododiphenyliodonium triflate as precursor [3]. $[4-^{18}$F]fluoroiodobenzene (50-150 MBq) in DMF was added to a reaction vial containing labelling precursor 5 in toluene, Pd$_2$(dba)$_3$, AsPh$_3$ and Cu. After heating the vial at 65 °C for 20 minutes the reaction mixture was filtered and analysed by radio-HPLC. 18F-labelled COX-2 inhibitor $[^{18}$F]-6 was identified by comparison the retention time with that of the corresponding reference compound 6. The radiochemical yields were determined by radio-HPLC, being 54-76 % related to $[^{18}$F]fluoroiodobenzene.

References

The two-step one-pot synthesis of the potent nonpeptide CCR1 antagonist \[^{18}F\]ZK811460 was adapted to an automated module. The radiochemical yields of the purified and formulated \[^{18}F\]ZK811460 ranged between 5 and 15 % (not decay-corrected), the time of the entire manufacturing process was about 90 min.

Introduction

The synthesis of the potent nonpeptide CCR1 antagonist \[^{18}F\]ZK811460 is described in [1]. To produce this radiotracer for human studies and on high radioactivity levels, the two-steps one-pot procedure had to be adapted to an automated, remotely-controlled module which is installed in a hot cell.

Results and Discussion

The scheme of the automated module for the synthesis of \[^{18}F\]ZK811460 is demonstrated in Fig. 1. It is a commercially available module for nucleophilic fluorination (Nuclear Interface, Münster, Germany) which was modified in terms of program and hardware. The capability of the module includes the radiosynthesis of 4-\[^{18}F\]fluorobenzaldehyde and its reductive amination with the appropriate piperazine derivative (ZK258394) to give \[^{18}F\]ZK811460 according to ref. [1], the HPLC purification of the final product (see Fig. 2), and its solid phase extraction and formulation.

The isolated (not decay-corrected) radiochemical yields of the purified and formulated \[^{18}F\]ZK811460 ranged between 5 and 15 %, the time of the entire manufacturing process was about 90 min after EOB. The radiochemical purity of \[^{18}F\]ZK811460 was greater than 95 %, the chemical purity ≥ 80 % and the enantiomeric purity > 99.5 %. The specific radioactivity was greater than 37 GBq/µmol by using a starting radioactivity level of ≥ 25 GBq.

Fig. 2. A semipreparative HPLC chromatogram to purify \[^{18}F\]ZK811460 from the reaction mixture.

Reference

11C-Labelling of a Taxane Derivative Using [1-11C]Acetyl Chloride

P. Mäding, J. Zessin, U. Pleiß, F. Wüst

1 Bayer Health Care AG, Wuppertal

The 11C-labelling of the taxane derivative BAY 59-8862 (1), a new potent anticancer drug, was developed as a multi-step procedure using an automated module. [11C]1 was synthesized by reacting [1-11C]acetyl chloride with the secondary hydroxy group of precursor 2 followed by deprotection. The decay-corrected radiochemical yields of the purified and formulated [11C]1 ranged between 6-19 % (related to [11C]CO₂; n = 11) within 45-50 min after EOB.

Introduction

Taxanes are an important class of antitumor agents. These compounds bind to the microtubuli and inhibit their depolymerization into tubulin. Subsequently, the mitosis is disrupted and the cells are not able to divide into daughter cells [1]. Investigations with positron emission tomography (PET) are an important tool to determine the in vivo pharmacokinetics of such drugs when they are labelled with positron-emitting radionuclides. An example for such a labelling is given by the synthesis of [11C]paclitaxel by reacting [α-11C]-benzoyl chloride with a corresponding primary amine precursor [2]. Paclitaxel (Taxol) is an effective anticancer drug against solid tumours. This report describes the 11C-labelling of the taxane derivative BAY 59-8862 (1). Compound 1 was shown to be a new potent anticancer drug which is intended for the therapy of breast cancer metastases in the brain. A clinical PET study with female patients is scheduled in collaboration with Bayer Health Care AG using compound [11C]1.

Results and Discussion

The acetyl group in compound 1 at position 10 was chosen to introduce carbon-11 by the reaction of 10-deacetyl precursor 2 with [1-11C]acetyl chloride (3). With respect to drug metabolism, experiments in human hepatocytes showed that this acetyl position is metabolically stable.

Scheme 1. Synthesis of [11C]1

[11C]1 was synthesized in a multi-step procedure according to Scheme 1 using an automated synthesis module. The remotely controlled synthesis includes: 1. radiosynthesis of 3; 2. reaction of 3 with the lithium salt of precursor 2; 3. deprotection and HPLC-purification of [11C]1, solid phase extraction, and formulation.

The used module was commercially available as a 11C-methylation module from GE Medical Systems Münster, Germany.

Scheme 2. Synthesis of 3

After evaporation of the solvent, 3 was transferred into a cooled THF solution containing 2 and lithium hexamethyldisilazide. The [11C]acetylation was performed at room temperature. The solvent was evaporated and the residue was treated with a solution of hydrochloric acid in MeOH/dioxane for cleavage of the triethylsilyl protecting groups. The crude product [11C]1 was purified by semi-preparative RP HPLC and subsequent solid phase extraction using a RP-18-cartridge. The resulting ethanolic solution of [11C]1 and a saline solution was transferred successively through a sterile filter to obtain the final formulation of [11C]1. The decay-corrected radiochemical yields were in the range of 6 to 19 % (related to [11C]CO₂; n = 11). The total synthesis time was 45-50 min. The radiochemical purity exceeded 96 %, and the chemical purity was in the range of 80-99 %. The specific radioactivity of the final product was up to 18 GBq/μmol at EOS starting from 26 GBq of [11C]CO₂.

References

Synthesis of Sodium [1-11C]Acetate for Clinical Applications

P. Mäding, J. Zessin, F. Füchtner, F. Wüst

The synthesis of sodium [1-11C]acetate, a useful radiopharmaceutical in nuclear cardiology, was developed in an automated module by the reaction of 11C carbon dioxide with methylmagnesium bromide in diethyl ether followed by quenching the reaction mixture with aqueous hydrochloric acid. The purification was carried out using a silver oxide cartridge and a cation exchange cartridge. After formulation and sterile filtration the decay-corrected radiochemical yields of sodium [1-11C]acetate were in the range of 45-54 \% (related to 11C\textsubscript{2}O) within a synthesis time of 20 min.

Introduction

Sodium [1-11C]acetate has ideal characteristics as a PET tracer of myocardial viability by measurement of the oxidative myocardial metabolism [1]. It is also a suitable marker for estimation of myocardial perfusion. Moreover, oncological studies suggest that the \textit{in vivo} behaviour of [1-11C]acetate is also favourable for clinical detection and evaluation of prostate cancer by PET [1]. Therefore we have developed a simple procedure for the production of sodium [1-11C]acetate for clinical applications based on a 11C synthesis module manufactured by GE Medical Systems.

Results and Discussion

Numerous automated and improved production systems of [1-11C]acetate are reported [1, 2, 3, 4 among others]. We have synthesized sodium [1-11C]acetate according to Scheme 1 using the commercially available 11C-methylation module from GE Medical Systems (former Nuclear Interface, Münster, Germany) which was modified in terms of program and hardware (see Fig. 1).

The preparation of sodium [1-11C]acetate was carried out as follows: carboxylation of methylmagnesium bromide in diethyl ether with 11C carbon dioxide, quenching the excess of Grignard reagent by ethanol addition, evaporation of the solvents and hydrolysis with diluted aqueous hydrochloric acid. The acidic solution containing [1-11C]acetic acid was purified using two cartridges: a silver oxide cartridge (IC-Ag, Alltech) to remove bromide ions from the reaction mixture and a cation exchange cartridge (SCX, Alltech) to remove magnesium ions. The purified solution was added to an isotonic sodium chloride solution and the mixture was subjected to sterile filtration.

The decay-corrected radiochemical yields of sodium [1-11C]acetate were in the range of 45-54 \% (related to 11C\textsubscript{2}O; \(n = 10\)) within a synthesis time of 20 min. Thus in a typical experiment, starting from 40 GBq 11C carbon dioxide, about 10 GBq of sodium [1-11C]acetate can be synthesized.

In this way a chemical and radiochemical pure product was obtained. The radiochemical and chemical purity was determined by HPLC using a CarboPac PA1 column (250 x 4 mm) and 0.1 M sodium hydroxide solution as the eluent. The radiochemical purity exceeds 99.5 \%, and the sodium acetate content is lower than 180 ppm. The purification by solid phase extraction works highly efficient. The final sodium 11Cacetate solution contains only 0.8-2.5 ppm bromide and 0.2-1.1 ppm magnesium as determined by ion chromatography.

The amounts of the solvents diethyl ether, ethanol, and acetone correspond to the limits outlined in the European Pharmacopeia. The pH of the solution varies from 4.6 to 8.5. The product was isotonic, sterile and pyrogen free.

Conclusions

An efficient procedure for the synthesis of sodium 11C acetate was developed based on the 11C-methylation module from GE Medical Systems. The described procedure is very simple and robust by the use of commercially available cartridges for purification. The final product is in compliance with the specifications for radiopharmaceuticals outlined in the European Pharmacopoeia.

References

Fig. 1. Scheme of the module for the synthesis of sodium [1-\(^{11}\)C]acetate
Tissue Transglutaminase: a Minireview

J. Pietzsch, R. Bergmann

Transglutaminases (TGs) are a family of Ca\(^{2+}\)-dependent enzymes that mediate the post-translational modification of proteins by catalyzing acyl-transfer reactions yielding to the formation of new amide bonds between \(\gamma\)-carboxamide groups of protein glutamine side chain residues and various primary amines. Glutamine residues serve as acyl-donors and the most common acyl-acceptors are \(\varepsilon\)-amino groups of protein lysine side chain residues or primary amino groups of some naturally occurring polyamines, like putrescine, spermidine, and spermine (Fig. 1) \cite{1, 2}.

The active site cysteine reacts first with the \(\gamma\)-carboxamide group of a glutamine residue forming a \(\gamma\)-glutamyl thioester and releasing ammonia. The transient acyl-enzyme intermediate then reacts with any nucleophilic primary amine, yielding either an isopeptide bond or a \((\gamma\)-glutamyl) polypeptide bond. TGs are ubiquitous, with each enzyme having a distinct set of substrates, giving them distinct physiological roles. Among the most recognized members of the TG family is tissue TG (tTG, also abbreviated TG2; EC 2.3.2.13.). tTG is a monomeric globular protein with a molecular mass of about 77 kDa and shows a high degree of sequence similarity to the \(\alpha\)-subunit of factor XIII. tTG is expressed in the majority of cells and tissues. Its subcellular localization is the cytosolic fraction and no interactions with other specific subcellular compartments are described \cite{2, 3}.

tTG activity has been demonstrated to play a crucial role in stabilization of the basement membrane and adhesion of cells and tissue mineralization, respectively, which are important processes in angiogenesis, wound healing, and bone remodelling. tTG has been shown to crosslink all major extracellular matrix (ECM) proteins, including fibronectin, laminin, vitronectin, and collagen, thus forming a stable ECM, because these crosslinks are resistant to proteolytic and mechanical damage. tTG also participates in normal protective cellular response contributing to tissues homeostasis. In this line, several in vitro and in vivo models demonstrate direct relationship between the expression and activity of tTG and apoptosis. Coupled with the potential importance of tTG in the organization of ECM and programmed cell death, respectively, the finding that tTG activity is increased, often markedly, in various inflammatory and fibrotic conditions (such as rheumatoid arthritis, atherosclerosis, liver, renal and pulmonary fibrosis, Huntington’s and Alzheimer’s disease, and coeliac disease), led to its implication in the pathogenesis of these disorders. It is also hypothesized that transglutaminase ECM-promoting abilities form an important part of the host response mechanism against tumour growth and tumour invasion \cite{3-5}.

Given the potential importance of tTG in such varied cellular and extracellular processes, it is of interest to understand perturbations in tTG activity through abnormal expression, genetic deficiencies, or autoimmune disorders in vivo. One promising approach is the use of fluorine-18 labelled polyamines as potential substrates of tTG for positron emission tomography (PET) imaging and quantitative characterization, respectively, of tTG activity and expression in animal models in vivo.

References

\cite{1} Lorand, L. et al., Nat. Rev. 4 (2003) 140-156.
\cite{3} Aeschlimann, D. et al., Connect Tissue Res. 41 (2000) 1-27.
\cite{4} Folk, J. E. et al., Adv. Protein Chem. 31 (1997) 1-133.
Synthesis of Fluorinated N-Benzyolpolyamines as Substrates of Tissue Transglutaminase

K. Knop, C. Hultsch, K. Rode, T. Kniess, F. Wüst, R. Bergmann, J. Pietzsch

Introduction

Tissue transglutaminase (tTG) catalyzes acyl-transfer reactions between protein glutamine side chain residues and primary amines, including naturally occurring polyamines, like putrescine, spermidine, and spermine. In this report we describe a method for labelling of polyamines putrescine and spermine, respectively, with 18F by means of $[^{18}$F]SFB.

Methods

Preparation of n.c.a. N-succinimidyl 4-$[^{18}$F]-fluorobenzoate ($[^{18}$F]SFB) was achieved within 40 min in decay-corrected radiochemical yields of 50±5 % and a radiochemical purity of >95 % [1]. For coupling, polyamines (100 µM to 100 mM in 800 µl borate buffer, pH 8.3) were incubated with 5-10 MBq $[^{18}$F]SFB (200 µl, in acetonitrile). The reaction mixture (various polyanine concentrations) was kept at different pH and temperatures, and aliquots were taken at different time points for analysis. The analysis was performed by radio-TLC. The synthesis of reference compounds was accomplished by using an excess of polyanine in the coupling reaction with $[^{19}$F]SFB. Reference compounds (N-$[^{19}$F]fluorobenzoylated polyamines) were analysed by HPLC and mass spectrometry.

Results and Discussion

The incorporation of 18F into polyamines requires the use of a prosthetic group. The acylation of primary amino groups with $[^{18}$F]SFB has been shown to be a suitable and versatile 18F-labelling method in terms of radiochemical yield and in vivo stability [1, 2]. In a series of labelling experiments at analytical scale the effects of time, temperature, polyanine concentration, and pH on the coupling reaction of polyamines with $[^{18}$F]SFB were studied. Our findings revealed the use of 20 mM polyanine at room temperature for 20 min at pH 8.5 to be the optimum condition for efficient coupling of both putrescine and spermine with $[^{18}$F]SFB. Figures 1 and 2 show the reaction schemes for the formation of $[^{18}$F]FB putrescine and $[^{18}$F]FB spermine, respectively. As expected, the coupling reaction of the symmetric molecules putrescine and spermine, respectively, with n.c.a. $[^{18}$F]SFB resulted in only one N-$[^{18}$F]fluorobenzoylated product. This result correlates well with the sub-stoichiometric amounts of $[^{18}$F]SFB in the course of the reactions with polyamines.

The formation of both $[^{18}$F]FB putrescine and $[^{18}$F]FB spermine was confirmed by comparison of the retention times with the corresponding reference compounds. Employing optimum reaction conditions, the radiochemical synthesis of N-$[^{18}$F]fluorobenzoylated polyamines can be accomplished within 85 min after EOB. The radiochemical yield amounted to 35±5 % and the radiochemical purity to 95±4 % (Fig. 3).

In conclusion, the use of the found optimum reaction conditions provided radiolabelled polyamines in radiochemical yields suitable for further biological evaluation as potential substrates of tTG in vitro and in vivo.

Acknowledgements

The authors wish to thank S. Preusche, M. Grote, and T. Krauss for expert technical assistance.

References

Introduction

Tissue transglutaminase (tTG) catalyzes acyl-transfer reactions between protein glutamine residues and primary amines. We report the identification of \(^{18}\text{F}\)fluorobenzoylated polyamines putrescine and spermine as substrates of tTG in vitro.

Preparation of \text{n.c.a.} N-succinimidyl 4-\(^{18}\text{F}\)fluorobenzoate (\(^{18}\text{F}\)SFB) was achieved within 40 min with radiochemical yields of 50±5 % and purity of >95 % [1]. Polyamine labelling with \(^{18}\text{F}\)SFB and purification of \(^{18}\text{F}\)fluorobenzoylated (\(^{18}\text{F}\)FB) polyamines resulted in radiochemical yields of 35±5 % and purity of >95 % [2]. tTG transamidation activity was evaluated by measuring the incorporation of \(^{18}\text{F}\)FB polyamines into \(N,N'\)-dimethylcasein and the recovery of \(^{18}\text{F}\)FB polyamine-protein conjugates, respectively, according to Rossi et al. with some modifications [3]. In brief, the reaction mixture contained 150 mM Tris-HCl buffer (pH 8.3), 90 mM NaCl, 10 mM DTT, 15 mM CaCl₂, 12.5 mg \(N,N'\)-dimethylcasein per mL, and 0.1, 0.2, 0.5, and 1.0 MBq purified \(^{18}\text{F}\)FB polyamines. 50 ng (0.25 U) of guinea pig liver tTG were incubated with the reaction mixture in a final volume of 200 µl for 20 min at 37°C. The reaction was stopped by spotting 60 µl aliquots onto 3MM filter paper. Unbound \(^{18}\text{F}\)FB polyamine was removed by washing with large volumes of ice-cold 30 %, 15 %, and 10 % trichloroacetic acid and absolute ethanol. Filters were dried and the amount of polyamine incorporation was measured by scintillation counting. In addition, 20 µl aliquots were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) as described previously [4]. Gels were analysed by radioillumography.

Results and Discussion

Evaluation of tTG activity is based on the incorporation of labelled polyamines into \(N,N'\)-dimethylcasein. The use of \(N,N'\)-dimethylcasein, where the lysine residues are blocked by methylation, instead of casein as the substrate protein prevents the intra-chain reaction between glutamine and lysine residues and favors the binding with amino groups of polyamines. As shown in Figs. 1 and 2, incorporation of the \(^{18}\text{F}\)FB spermine into \(N,N'\)-dimethylcasein was observed. Similar results could be observed for \(^{18}\text{F}\)FB putrescine (data not shown in detail).

In conclusion, we have shown that both \(^{18}\text{F}\)FB spermine and \(^{18}\text{F}\)FB putrescine are substrates for tTG catalyzed transamidation reaction in vitro.

References

Biological Evaluation of Fluorinated N-Benzoylpolyamines as Substrates of Tissue Transglutaminase Activity: Insights from Animal PET Studies

J. Pietzsch, R. Bergmann, K. Knop, K. Rode, F. Wüst, J. van den Hoff

Introduction

Given the potential importance of tissue transglutaminase (tTG) in various cellular and extracellular processes, it is of interest to understand perturbations in tTG activity under pathophysiological conditions in vivo. We report a first approach using [18F]fluoro-benzyolated ([18F]FB) polyaamines as potential tTG substrates for PET imaging and quantitative characterization of tTG activity and expression, respectively, in animal models in vivo.

Methods

Preparation of [18F]FB polyamines was accomplished within 85 min with radiochemical yields of 35±5 % and radiochemical purity of >95 % [1]. The metabolic fate of [18F]FB polyamines in male Wistar rats was delineated by both biodistribution studies ex vivo and dynamic PET studies using a dedicated small animal tomograph (microPET, spatial resolution of <2 mm) in vivo.

Results and Discussion

Fig. 1 shows the biodistribution of the [18F]FB polyamines putrescine and spermine in male Wistar rats 5 and 60 min p.i. Data revealed high in vivo stability of [18F]FB polyamines. High concentration of radioactivity was detected in kidneys, liver, adrenals, and lungs. The main excretory organs are the kidneys.

In conclusion, [18F]fluorobenzoylation of polyamines putrescine and spermine, respectively, and the use of high resolution animal PET are supposed to be a valuable approach to mapping sites of tTG activity and expression in animal models in vivo.

References

[1] Knop, K. et al., this report, p. 36.
γ-Glutamyl-semialdehyde (γGSA) is a major product of iron-mediated oxidation of apolipoprotein (apo) B-100 proline and arginine residues. By reduction γGSA forms 5-hydroxy-2-aminovaleric acid (HAVA). HAVA levels were markedly increased in LDL from early (10.25±3.49 mol/mol apoB-100; P<0.01), intermediate (11.18±2.37 mol/mol apoB-100; P<0.01), and advanced (9.91±2.15 mol/mol apoB-100; P<0.01) lesions, when compared with LDL from normal aortic tissue (0.05±0.01 mol/mol apoB-100). These findings support the hypothesis that pathways involving iron-mediated oxidation of LDL apoB-100 are of pathological significance for atherogenesis.

Introduction
Oxidative modification of LDL apoB-100 is regarded as a crucial event in atherogenesis. Direct oxidation of apoB-100 amino acid residues finally results in the formation of new epitopes that are specifically recognized by scavenger receptors [1]. There is effectual evidence supporting the hypothesis that among important mechanisms of apoB-100 oxidation are metal-catalyzed processes [3]. These processes involve binding of either free or, physiologically more relevant, complexed (porphyrin-bound) redox-active iron (Fe²⁺/Fe³⁺) to discrete binding sites of LDL and apoB-100, respectively, thus forming centers for redox cycling and repeated radical production. A major product of iron-mediated protein oxidation is γGSA, which by reduction forms HAVA [1]. In the present study we used specific GC-MS methodology to demonstrate that levels of HAVA are markedly elevated in LDL apoB-100 recovered from human aortic vascular lesions. Lesion LDL were isolated from the intima of normal and atherosclerotic specimen of human thoracic aortas obtained at necropsy within 10 h of sudden death (20 male accident victims, aged 26 to 45 years; no signs of severe acute diseases). Aortic intima was dissected from the medium and homogenized for 2 h at 4°C (30 mg wet tissue/mL phosphate buffered saline, pH 7.2). All buffers and solutions were degassed and stored under argon. Lesion LDL were then isolated by very fast ultracentrifugation [1]. Delipidation of LDL, formation of HAVA by reduction of γGSA with sodium borohydride, enzymatic hydrolysis of apoB-100, isolation and derivatisation of free amino acids, and GC-MS analysis were performed as described elsewhere [1]. HAVA content in all samples is expressed as mol/mol apoB-100.

Results and Discussion
Fig. 1 shows the HAVA content in aortic intima from various stages of lesion evolution. The HAVA content was significantly higher in LDL recovered from all types of lesion when compared with normal aortic tissue (paired Student’s t test). The overall yield of HAVA that has been found in lesion LDL is remarkably high and indicates that proline and arginine residues are good targets for iron-mediated oxidative attack in atherosclerotic tissue. HAVA content in both atherosclerotic and normal aortic tissue exceeded the physiological level of HAVA formerly found in native LDL obtained from healthy normolipidemic subjects (0.012±0.004 mol/mol apoB-100) [1]. The experiments support the hypothesis that a pathway involving iron-mediated oxidation of LDL apoB-100 may be of pathological significance for atherogenesis [2]. However, additional work is needed to understand the specific consequences of γGSA formation for the metabolic fate of apoB-containing lipoproteins in vivo.

References
Increased Cholesteryl Ester Transfer Protein (CETP) Activity in Impaired Glucose Tolerance: Relationship to High Density Lipoprotein Metabolism

J. Pietzsch, S. Nitzche¹, K. Fuecker²

¹Lipoprotein Laboratory, Department of Internal Medicine, Medical Faculty, University of Technology Dresden

Introduction

Impaired glucose tolerance (IGT) is characterized by insulin resistance and hyperinsulinemia and is associated with dyslipidemia (elevated plasma triglycerides, decreased high density lipoprotein (HDL) levels, and a preponderance of smaller, more dense low density lipoprotein (LDL) particles). Our previous studies focused on the regulation of HDL metabolism in subjects with IGT. By investigating the in vivo kinetics of HDL apolipoproteins (apo) A-I and A-II using a stable isotope approach, we demonstrated that increased catabolism of HDL apoA-I in IGT was related to the increased triglyceride content of HDL particles and accounted for lower HDL levels. In this context, increased fasting cholesteryl ester transfer protein (CETP) activity appeared to be directly associated with HDL apoA-I catabolism and with plasma and HDL triglycerides. CETP facilitates the exchange of neutral lipids among plasma lipoproteins. This results in net transfer of cholesteryl esters from HDL to triglyceride-rich lipoproteins in exchange for triglycerides. CETP activity modulates HDL metabolism and consequently for the HDL metabolism. Indeed, increased CETP activity in humans has been reported in several metabolic disorders with low HDL cholesterol, including type 1 diabetes, overt type 2 diabetes, obesity, nephrotic syndrome, and hypercholesterolemia. The present study was designed to further explore the mechanisms and dynamics of cholesteryl ester transfer and their specific link with low plasma HDL concentrations and an altered HDL composition under insulin resistant / hyperinsulinemic conditions [1].

The CETP activity in 44 non-obese, normo- or mildly hypertriglyceridemic IGT subjects (plasma triglycerides 1.56±0.64 mmol/l; HDL cholesterol 0.96±0.25 mmol/l; plasma insulin 78±8 pmol/l) and in 42 normoglycemic controls (0.88±0.41 mmol/l, p<0.05; 1.48±0.29 mmol/l, p<0.05; 38±14 pmol/l, p<0.01) was measured using a new fluorometric assay [1].

Results and Discussion

CETP activity was elevated in IGT subjects by 47 % (39.5±7.8 vs. 26.8±6.8 nmol/ml × h⁻¹, p<0.05). Linear regression analysis showed that CETP activity in IGT subjects is significantly correlated with the following parameters: plasma triglycerides (ρ = 0.614, p<0.05), HDL-triglycerides (ρ = 0.595, p<0.05), HDL-triglyceride % (ρ = 0.667, p<0.05), HDL cholesterol ester % (ρ = -0.751, p<0.01), HDL phospholipid % (ρ = 0.648, p<0.05), 2-h-insulin (ρ = 0.668, p<0.05), and 2-h-proinsulin (ρ = 0.658, p<0.01). In a subgroup of 13 IGT subjects, CETP activity correlated with HDL apoA-I fractional catabolic rate (ρ = 0.701, p<0.01). In normoglycemic controls significant correlations were only seen between CETP activity and HDL-triglyceride % (ρ = 0.541, p<0.05), HDL cholesterol ester % (ρ = -0.639, p<0.01), 2-h-proinsulin (ρ = 0.642, p<0.05), and HDL apoA-I fractional catabolic rate (n = 10, ρ = 0.587, p<0.05) [1]. This study showed that fasting CETP activity, measured by a new fluorescent spectrophotometric method, was significantly increased in normo- or mildly hypertriglyceridemic subjects with IGT. The assay used measured CETP activity as the specific cholesteryl linoleate transfer from HDL (donor) particles to VLDL (acceptor) particles. By using this method and VLDL- and LDL-depleted plasma as the CETP source, the influence of endogenous lipoproteins was avoided. The CETP activity therefore reflected more likely the CETP mass. CETP activity was directly associated with parameters highly indicative for an insulin resistant / hyperinsulinemic situation. Furthermore, we found CETP activity to be directly associated with parameters of HDL particle composition, particularly with the HDL triglyceride and cholesteryl ester content. In conclusion, our observations suggest that neutral lipid transfer mediated by CETP is crucial for the modification of HDL composition in subjects with IGT. Under insulin resistant/hyperinsulinemic conditions, increased CETP activity modulates HDL metabolism more drastically than in normoglycemic conditions. This modulation may be explained by the increased availability of triglyceride-rich lipoproteins for neutral lipid exchange in IGT. As a consequence, HDL cholesterol is decreased in IGT. Low HDL is an integral part of the atherogenic lipoprotein phenotype in diabetic and prediabetic states [1].

Reference

RADIOMETAL THERAPEUTICS
Novel Procedures for Preparing ‘4+1’ 188Re Complexes

S. Seifert, E. Schiller, H.-J. Pietzsch

Improved methods for the preparation of ‘4+1’ 188Re mixed ligand complexes are presented. The use of copper isocyanide complexes facilitates storage stability and allows kit formulations. Moreover, the formation of 188Re complexes in acidic solution becomes possible using that stabilised form of isocyanides.

Introduction

‘4+1’ 99mTc complexes are prepared following a two-step procedure to prevent the formation of reduced hydrolysed species [1]. At first, the precursor complex 99mTc-EDTA is formed in neutral solution. In a second step it reacts with optimised ligand amounts to the desired ‘4+1’ complex. Attempts to prepare the corresponding 188Re complexes were only successful using phosphines as monodentate ligands. ‘4+1’ isocyanide complexes were not formed following this reaction route. They could be prepared in low yields only in neutral solutions from the phosphine complexes by ligand exchange reaction. The aim of this work was to establish suitable preparation conditions for both phosphine and isonitrile ‘4+1’ 188Re complexes.

Results and Discussion

The comparable tendency of 188Re to form reduced hydrolysed species requires the two-step procedure too. However the preparation of 188Re-EDTA failed in neutral solution, but it succeeds in acidic solution at room temperature using the following kit formulation:

A mixture of 3–5 ml perrhenate eluate and 0.5 ml of 0.1 N HCl is added to a vial containing 5 mg EDTA, 5 mg mannitol, and 1.0 mg SnCl$_2$ in freeze-dried form under nitrogen. After standing for 10 min yields of >95 % are obtained. Lower Sn$^{2+}$ concentrations or pH-values >3 lead to incomplete reduction of perrhenate. The addition of both ligands for the second step of reaction has to occur in the acidic solution. That was unproblematically in case of phosphines. However, isocyanides are not stable under acidic conditions, but react with water to give the corresponding formamide and finally the amine. The use of copper isocyanide complexes widely prevents the degradation of isocyanides and allows so the preparation of the corresponding ‘4+1’ 188Re complexes in a two-step procedure. Moreover it allows to prepare freeze-dried kit formulations as following:

The complex $[\text{Cu(TBI)}_3\text{Cl}]$ (TBI = tert. butyl isonitrile) was prepared and for optimum reaction conditions per vial 0.05 mg of the copper complex was lyophilized together with 0.1 mg of NS$_3$-oxalate. For reconstitution the 188Re-EDTA solution was added with a syringe to the kit vial and the ‘4+1’ 188Re complex was formed with yields of 85-90 % by incubation the reaction solution for 30 min at 90 °C or 60 min at 50 °C.

The preparation of the corresponding 99mTc complexes at room temperature for 30–45 minutes or by heating at 50 °C for 15 minutes leads to yields of 90-97 % determined by HPLC.

The novel two-step procedure allows “kit-like” preparations of ‘4+1’ 99mTc and 188Re complexes. Using oxalate salts of NS$_3$-ligands and copper isocyanide complexes or phosphonium salts as monodentate ligands, kit formulations can be prepared and reconstituted with pertechnetate or perrhenate in high yields. Only micromolar amounts of the monodentate ligand are needed and that results in high specific activity labelling of interesting molecules. The reduction of perrhenate has to be performed in acidic solutions and needs more quantities of EDTA and of the reducing agent stannous chloride, but not of the NS$_3$ ligand and the isocyanide or phosphine. Thus, high labelling yields are possible at low ligand concentration also with 188Re. Reactions were performed with both NS$_3$ and its carboxylic derivative, the latter allows to control lipophilicity [2]. Examples are shown in Table 1.

Table 1. Partition coefficients log P (octanol/0.1 M phosphate buffer pH 7.4) of ‘4+1’ 99mTc and 188Re complexes (n = 3)

<table>
<thead>
<tr>
<th>Ligands</th>
<th>Log P</th>
<th>99mTc</th>
<th>188Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>tetradeinate</td>
<td>monodentate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS$_3$</td>
<td>PPh$_3$</td>
<td>1.83</td>
<td>1.78</td>
</tr>
<tr>
<td>NS$_3$COOH</td>
<td>PPh$_3$</td>
<td>1.54</td>
<td>1.01</td>
</tr>
<tr>
<td>NS$_3$</td>
<td>PMe$_2$Ph</td>
<td>1.27</td>
<td>1.25</td>
</tr>
<tr>
<td>NS$_3$COOH</td>
<td>PMe$_2$Ph</td>
<td>1.10</td>
<td>0.96</td>
</tr>
<tr>
<td>NS$_3$</td>
<td>TBI</td>
<td>1.28</td>
<td>1.14</td>
</tr>
<tr>
<td>NS$_3$COOH</td>
<td>TBI</td>
<td>0.31</td>
<td>0.46</td>
</tr>
<tr>
<td>NS$_3$</td>
<td>MIBI</td>
<td>1.35</td>
<td>1.34</td>
</tr>
<tr>
<td>NS$_3$COOH</td>
<td>MIBI</td>
<td>-0.42</td>
<td>-0.27</td>
</tr>
</tbody>
</table>

References

[2] Schiller, E. et al., this report, p. 44.
Hydrophilic Rhenium-188 Complexes for Attaching the Metal to Biomolecules

1. General Considerations

E. Schiller, H.-J. Pietzsch, H. Spies

In efforts to find appropriate ligands forming rhenium-188 complexes with high in vitro and in vivo stability, the '4+1' mixed ligand approach is a suitable tool to achieve this goal.

Introduction

Rhenium-188 is an attractive candidate for therapeutic applications in oncology due to its nuclide properties ($E_{\text{fmax}} = 2.1$ MeV, $t_{1/2} = 16.9$ h) and its daily availability from a $^{188}\text{W}/^{188}\text{Re}$ generator [1, 2]. Target-specific radiotherapeutics must be developed to spare healthy tissue from irradiation. This can be achieved by linking the radionuclide to biomolecules. One approach for attaching rhenium-188 to biomolecules is the '4+1' mixed ligand concept [3]. Here the metal is coordinated at oxidation state +III by the tetradentate chelator tris-(2-mercaptoethyl)amine (NS_3) and a phosphine or isonitrile as monodentate ligand. This ligand also serves as a linker for coupling target-searching biomolecules such as peptides, antibodies and oligonucleotides (Fig. 1).

Fig. 1. The '4+1' mixed ligand approach.

To achieve a fast renal clearance of radioactive metabolites and to minimize exposure of radiation-sensitive organs we searched for hydrophilic complexes derived from hydrophilic NS_3-ligands and linkers for the '4+1' approach. Furthermore, ligands should bind to the rhenium central atom in a radiolytic and metabolic stable way and they must have an anchor group for attaching biomolecules.

Results

To meet these requirements we synthesized three novel ligands for the '4+1' approach:

- a carboxyl group-containing tripodal tetradentate ligand (1),
- a sulfohydroxysuccinimidyl active ester of carboxymethyl diphenylphosphine (2) and
- a hydroxymethylene-functionalized phosphine (3).

For description of the syntheses and further investigations see [4].

References

Hydrophilic Rhenium-188 Complexes for Attaching the Metal to Biomolecules
2. Synthesis and Characterisation of a Novel Hydrophilic Ligand

E. Schiller, W. Kraus, H.-J. Pietzsch, H. Spies
Bundesanstalt für Materialforschung und –prüfung, Berlin

A synthetic route for a novel carboxyl group-containing ligand derived from tris-(2-mercaptoethyl)amine was developed. A ’4+1’ model complex with the new ligand was synthesized and characterized by X-ray diffraction.

Introduction

Until now ’4+1’ complexes of technetium and rhenium with the tris-(2-mercaptoethyl)amine chelator (NS$_3$) and several isocyno or phosphine ligands are predominantly of lipophilic nature. Development of more hydrophilic ligands aims at fast renal excretion of radioactive metabolites as well as at radiolabelling of biomolecules like antibodies and peptides in aqueous solution [1].

Introduction of a carboxyl group into the NS$_3$ framework may lead firstly to an increase of hydrophilicity and gives secondly the opportunity to attach biomolecules via an amide bond.

Results and Discussion

The carboxyl group-containing ligand NS$_3$COOH was prepared by double alkylation of a cysteine derivative followed by hydrolysis of the ester bond and deprotection of the mercapto groups.

![Chemical structure of NS$_3$COOH](image)

The ligand was characterised as hydrochloride by 1H NMR, 13C NMR and mass spectrometry.

A rhenium model complex was synthesized by a similar method to that previously reported by Spies et al. [2]. Ammonium perrhenate, NS$_3$COOH and an excess of triphenylphosphine PPh$_3$ was refluxed in acetonitrile under argon for two hours. The complex was obtained as dark-green needles.

The X-ray crystal structure analysis shows a trigonal-bipyramidal geometry around the metal centre. S- and R-isomers were found. Obviously, racemization occurs despite starting from S-cysteine.

Fig. 2 shows the molecular structure of the S-isomer of [Re(NS$_3$COOH)PPh$_3$].

![Molecular structure of S-isomer of [Re(NS$_3$COOH)PPh$_3$]](image)

References

[1] Schiller, E. et al., this report, p. 44.
Hydrophilic Rhenium-188 Complexes for Attaching the Metal to Biomolecules
3. Physicochemical and Biological Evaluation of Model Complexes

E. Schiller, S. Seifert, R. Bergmann, H.-J. Pietzsch, H. Spies

Technetium-99m '4+1' complexes derived from the novel carboxyl group-containing ligand NS₃COOH and tris-(2-mercaptoethyl)amine NS₃, respectively, serving as surrogates for¹⁸⁸Re complexes, were compared concerning their lipophilicity and behaviour in vivo.

Introduction
The introduction of a carboxyl group into tris-(2-mercaptoethyl)amine (NS₃) aims at hydrophilic water-soluble rhenium-188 complexes with enhanced renal excretion.

Both technetium and rhenium complexes exhibit similar physicochemical and biological properties. The evaluation of '4+1' complexes derived from the novel ligand NS₃COOH in comparison with complexes derived from the NS₃ ligand was carried out with technetium-99m complexes because they are easier to prepare and to handle than their rhenium-188 analogues.

Results and Discussion

The preparation of the technetium complexes was described elsewhere [1]. At first the octanol/water partition coefficient at physiological pH was determined to study the influence of the carboxyl group on lipophilicity. Fig. 1 shows the log D values at pH 7.4 of the NS₃COOH complexes in comparison with their NS₃ analogues. As expected the carboxyl group highly controls the lipophilicity. Especially complexes with ether-derivatised monodentate ligands (TMPP, MIBI) or a small isonitrile (TBI) show increased hydrophilicity. The effect is less intensive using small phosphines as monodentate ligands (PMe₂Ph, PPh₃).

Biodistribution studies were done to evaluate the influence of introducing the COOH group into the tripodal ligand on excretion. Three technetium-99m complexes with NS₃COOH and different monodentate ligands (MIBI, TBI, PMe₂Ph) were compared with their NS₃ analogues. As an example the biodistribution of complexes with MIBI as monodentate ligand is shown in Fig. 2.

The biodistribution experiments in male Wistar rats showed the expected differences. The radioactivity level of carboxyl group-containing '4+1' complexes in the liver is decreased and a faster renal clearance is observed. The influence is weaker when PMe₂Ph and TBI are used as monodentate ligands. Considering these results our current work is focussed on the development of more hydrophilic monodentate ligands.

Reference
Routes to Modification of Rhenium Cluster Core Ligand Environment with Organic Ligands

K. Brylev1, H.-J. Pietzsch, H. Stephan, V. E. Fedorov, H. Spies
1Institute of Inorganic Chemistry, Russian Academy of Science, Novosibirsk, Russia

Main goal of this investigation is the synthesis of octahedral Re cluster core containing complexes with organic ligands which will be soluble in water and stable in vivo.

Introduction

The investigations for modification of octahedral cluster core ligand environment are intended to make available metal clusters that allow to deposit metals such as molybdenum or rhenium in high density in animal cells. Sufficient metal concentration is a prerequisite for a high efficacy of subsequent irradiation by monochromatic photons that will activate the metal to emit Auger electrons. These electrons lead to the damage of the targeted cells. This procedure is known as Photon Activation Therapy (PAT) [1].

In this context, polynuclear metal compounds may have considerable potential as metallic drugs. So, some types of polyoxometallates (derived from Mo, W, Re and others) are able to be transported into cells and mitochondria, in particular. Some of these representatives show antiviral and antitumor properties. Multinuclear metal compounds such as clusters may have also good properties to deposit the respective metal in high density in the target cells.

Discussion

Octahedral clusters of rhenium were intensively studied in last years [2]. The main goal of our further investigations is the modification of ligand environment of cluster core with organic ligand in chalcohalogenide anionic cluster complexes \([\text{Re}_6(\mu_3-Q)_8\text{Br}_6]^n-\) (\(Q = \text{S, Se}; n = 3\) or 4). In such complexes \(\text{Re}_8\) octahedron (Fig. 1a) is inscribed into a cube of eight \(\mu_3\)-\(Q\) atoms (inner ligands). Such “octahedron into cube” forms cluster core \([\text{Re}_6(\mu_3\text{-Q})_8]^3-\) (Fig. 1b). The six apical positions are fully occupied by \(\text{Br}\) atoms (Fig. 1c). The anticipated substitutional lability of these outer bromide ligands makes \([\text{Re}_6(\mu_3\text{-Q})_8\text{Br}_6]^n-\) clusters a reasonable point of departure for synthesis cluster complexes with organic apical ligands in which \(\text{Re}_8\) core is viewed as the fundamental building block.

From recent investigations it is known that nitrogen and phosphorous can prove themselves as donor atom of organic apical ligands [3]. For obtaining cluster complexes with organic ligands different approaches were used:

a) substitution apical halogen ligands by strong nucleophilic organic ligands in solution;
b) removal apical halogen ligands using \(\text{Ag}^+\) in presence of organic ligand which can coordinate to \(\text{Re}\);
c) substitution loosely ligated apical ligands in cluster complexes.

It is important to note that up to now all reactions of substitution apical halogen ligands in cluster core described in literature, were carried out in solution and as starting compounds the salts with oxidated cluster anions \([\text{Re}_6\text{Q}_3\text{L}_6]^4-\) (\(Q = \text{S, Se}; L = \text{Cl, Br, I}\)) were used (most part of investigations was applied to selenium halogenide cluster complexes of rhenium).

It is possible to suppose that in reactions of ligand substitution not oxidated cluster anions \([\text{Re}_6\text{Q}_3\text{L}_6]^4-\) can be involved. Very likely that special approach can be used for such reactions. One of the possible approaches is reaction with melted ligands. In this case it is necessary to use ligands which are stable in melt such as of 3,5-dimethylpyrazole (Fig. 2a) or 1H-benzotriazol (Fig. 2b).

Fig. 1. Structure of cluster anion \([\text{Re}_6\text{Q}_3\text{Br}_6]^3-\)

Fig. 2. Structure of 3,5-dimethylpyrazole (a) and 1H-benzotriazol (b).

References

Characterization of Cu(II)-Cyclam Complexes by Laser-Induced Fluorescence Spectroscopy

D. Appelhans¹, D. Tabuani¹, B. Voit³, G. Geipel², G. Bernhard², H. Spies, H. Stephan

¹Institut für Makromolekulare Chemie, IPF Dresden; ²Institut für Radiochemie

Time-resolved laser-induced fluorescence spectroscopy (TRFLS) has been used to study the interaction of copper(II) with different cyclam derivatives. The fluorescence emission and lifetime are strongly dependent on the structure of the complexes formed.

Introduction

Copper complexes with cyclam ¹ have applications in radiopharmaceutical chemistry [1-3]. We have chosen cyclam as core unit for the synthesis of novel dendritic molecules. Here, we want to report on the spectroscopic (TRFLS) properties of star-like cyclams ² and ³.

Results and Discussion

Cyclam ¹ was purchased from Aldrich. ² was prepared according to the known procedure [4]. The PEG (polyethylene glycol having an average molecular weight of 550) appended cyclam derivative ³ was obtained via hydroxy group activation of polyethylene glycol using 4-nitrophenylchloroformate. This intermediate was finally treated with the cyclam tetraamine ². To form the copper complexes, Cu(CF₃SO₃)₂ dissolved in acetonitrile was added to a acetonitrile solution of cyclam derivative (0.023 M) until Cu was equimolar. The complexation process was maintained overnight at room temperature. TRFLS experiments were performed as described recently [5]. The excitation wavelength was set to be 266 nm. As can be seen from Fig. 2 the intensity of the emitted fluorescence signal increases with changes of the ligand. Also a change of fluorescence decay times and a small change of the maximum of the fluorescence emission was found. This can be interpreted by a decrease of the quench effect of the metal ion on the fluorescence of the ligand due to increasing shielding of the metal ion.

Fig. 1. Cyclam derivatives investigated

Fig. 2. Time resolved fluorescence spectra of ¹ (a), ² (b) and ³ (c) with Cu(CF₃SO₃)₂ in acetonitrile.

References

Calorimetric and Potentiometric Study of PAMAM Dendrimers: Protonation and Interactions with Human Serum Albumin

R. Kirchner, J. Seidel, H. Stephan, B. Johannsen
Institut für Physikalische Chemie, TU Freiberg

The protonation of dendrimers and their interactions with HSA were studied by combined potentiometric and calorimetric titration experiments. The thermodynamic data of protonation were calculated and assigned to the different protonable sites. No significant interactions of the PAMAM dendrimers with HSA could be detected.

Introduction

The particular structural features of dendrimers cause a rapidly expanding scientific as well as practical interest for dendritic molecules [1, 2], e.g. drug and gene delivery systems, contrast agent carrier, tumour targeting etc., and motivate to comprehensive investigations of the underlying physico-chemical processes. It is known that the structure and consequently, the complexation behaviour and interactions of dendrimers in solution strongly depend on the pH (degree of protonation of functional groups) and ionic strength [3]. This work presents results of potentiometric and calorimetric pH-titration experiments with aqueous solutions of polyamidoamino-based dendrimers (PAMAM) carrying different terminal functional groups (-NH₂, -OH, -COONa) and calorimetric results of their interactions with HSA.

Results and Discussion

The potentiometric titration curves (Fig. 1) can be adequately described using minimal three simultaneous protonation equilibria (three characteristic pKₐ values). The results are consistent with the polyelectrolyte effect.

The calorimetric titration results (Fig. 2) reflect the complex nature of the underlying processes more clearly. Despite of distinct steps in the calorimetric titration curves that can be assigned to different protonation equilibria, endothermic effects could be observed which are not yet fully understood. Therefore, a complete quantitative thermodynamic description of the calorimetric results based on protonation equilibria (pKₐ values from potentiometric experiments and protonation enthalpies as additional parameters) failed.

ITC studies of dendrimer-HSA-interactions at different pH levels (Fig. 3) show very small caloric effects for all types of dendrimers investigated (PAMAM-16-NH₂, PAMAM-16-COONa, PAMAM-16-OH) indicating very weak interactions. This finding is confirmed for the interactions of dendrimers with BSA [4].

References

Hydrolytic Stability of Polyoxotungstates

H. Stephan, D. John, A. S. Raji, A.-K. Sawatzki, L. Jelinek\(^1\), P. Houserová\(^1\), Z. Matějka\(^1\)

\(^1\)Institute of Chemical Technology Prague

The hydrolytic stability of four different polyoxotungstates has been investigated by UV/vis spectroscopy. It was found that Na\(_6\)[W\(_{12}\)O\(_{39}\)] and K\(_3\)[Ti\(_2\)W\(_{10}\)PO\(_{40}\)] are stable at pH = 7.6. In contrast to this, H\(_3\)[PW\(_{12}\)O\(_{40}\)] and (NH\(_4\))\(_8\)[NaSb\(_9\)W\(_{12}\)O\(_{66}\)] are remarkably decomposed at physiologically relevant pH values.

Introduction

Polyoxometalates (POMs) show unique transport behaviour into living cells, and may act as antiviral and antitumoral agents [1]. Among a great variability of different metal clusters formed, Keggin type [XW\(_{12}\)O\(_{40}\)]\(^{12-}\), double-Keggin type \([\{A\text{-}\alpha\text{-SiO}_4W_9O_{39}(OH)_3M_3(\text{OH})_3\}\}]^{11-}\) and HPA-23 [2] seem to be the most important compounds for medical applications (Fig. 1). But there are only few information about the hydrolytic stability at physiologically relevant pH values.

![Fig. 1. X-ray structure of [PW\(_{12}\)O\(_{40}\)]\(^{12-}\) [3]](image)

Therefore, we want to report on the stability of different POMs in aqueous solution using UV/vis measurements.

Results and Discussion

We have chosen four different POMs: Na\(_6\)[W\(_{12}\)O\(_{39}\]) (Sigma-Aldrich), H\(_3\)[PW\(_{12}\)O\(_{40}\]) (Fluka), HPA-23 (prepared according to [4]), and K\(_3\)[Ti\(_2\)W\(_{10}\)PO\(_{40}\]) (prepared according to [5]). Owing to a characteristic O\(_6\)→W (O\(_6\) is bridging oxygen in W-O-W bond) charge transfer band (240...260 nm), UV/vis spectroscopy can be preferably applied to study the hydrolytic stability. This band disappears after degradation of the cluster structure to the WO\(_4\)^\(^{2-}\). First experiments were performed with aqueous solutions of POMs (10\(^{-5}\) M) at pH = 7.4 adjusted with 0.001 M NaOH. A remarkable pH drift into the acidic media was observed for H\(_3\)[PW\(_{12}\)O\(_{40}\)] and HPA-23 indicating the decomposition of the polyanionic structure. On the other hand the initial pH of Na\(_6\)[W\(_{12}\)O\(_{39}\)] and K\(_3\)[Ti\(_2\)W\(_{10}\)PO\(_{40}\)] solutions remain almost constant. In order to compare the POMs investigated, buffered solutions were used. At first HEPES-NaOH buffer was applied. But the absorbance of this buffer lies very near to the charge transfer band of the polyanion. The most reliable results were obtained with a HCl-borate buffer (pH = 7.6). Under these experimentally chosen conditions H\(_3\)[PW\(_{12}\)O\(_{40}\)] and HPA-23 are rather unstable (Fig. 2). So, H\(_3\)[PW\(_{12}\)O\(_{40}\)] is almost completely decomposed after 90 min. HPA-23 is stable for appr. 90 min. But a remarkable degradation was observed after 1 day.

![Fig. 2. UV/vis spectra of H\(_3\)[PW\(_{12}\)O\(_{40}\)] (a) and HPA-23 (b) at pH = 7.6 (0.05 M HCl-borate buffer) for different times.](image)

On the other hand, Na\(_6\)[W\(_{12}\)O\(_{39}\)] and K\(_3\)[Ti\(_2\)W\(_{10}\)PO\(_{40}\)] are very stable under these conditions. Thus, the absorbance of Na\(_6\)[W\(_{12}\)O\(_{39}\)] and K\(_3\)[Ti\(_2\)W\(_{10}\)PO\(_{40}\)] remains almost unchanged for three days pointing to a high hydrolytic stability.

References

[2] (NH\(_4\))\(_8\)[NaSb\(_9\)W\(_{12}\)O\(_{66}\)]; HPA-23 = heteropolyacid (23 represents sodium).
PET IN DRUG AND FOOD RESEARCH
Biodistribution and Catabolism of 18F-Labelled Isopeptide N$^{\varepsilon}$-(γ-Glutamyl)-L-Lysine

C. Hultsch, R. Bergmann, B. Pawelke, F. Wüst, J. Pietzsch, T. Knieß, B. Johannsen, T. Henle

Institute of Food Chemistry, TU Dresden

After synthesis of fluorine-18 labelled analogues of N$^{\varepsilon}$-(γ-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-$[^{18}$F]fluorobenzoate, biodistribution and catabolism of these labelled compounds were studied.

Introduction

A peptide bond between the ε-amino group of lysine and the γ-carboxamide group of glutamine is called an isopeptide bond. Such isopeptide bonds are formed during strong heating of pure proteins or, more important, by enzymatic reaction mediated by transglutaminases [1]. Therefore transglutaminases are used in food biotechnology to modify certain properties of food, such as milk, meat or fish products [2]. Up to now little is known about the metabolic fate of this bond. For this reason biodistribution, catabolism and elimination of radioactive labelled N$^{\varepsilon}$-(γ-glutamyl)-L-lysine was investigated.

Results and Discussion

N-succinimidyl-4-$[^{18}$F]fluorobenzoate was used to modify N$^{\varepsilon}$-(γ-glutamyl)-L-lysine at each of its two free α-amino groups. The coupling reaction resulted in the respective 4-$[^{18}$F]fluorobenzoylated derivatives (Fig. 1), which were separated by semipreparative HPLC [3].

![Fig. 1. Conjugation of isopeptide with $[^{18}$F]SFB.](image)

A quite different biochemical behaviour of the two labelled isopeptides was observed in Wistar rats. For compound 2 a strong accumulation in the kidneys was found while compound 1 was rapidly excreted through the kidneys into the urine (Figs. 2 and 3).

Furthermore catabolism of the isopeptide derivatives was investigated. After application of compound 1 formation of 4-$[^{18}$F]fluorobenzoylated lysine could be observed. Application of compound 2 also led to formation of metabolites but none of them was identified as the 4-$[^{18}$F]fluorobenzoylated glutamate. These results suggest that cleavage of the isopeptide bond is possible if the γ-glutamyl moiety is not substituted. The metabolic fate of isopeptide should therefore be dependent on how it is reabsorbed – free or peptide bound.

References

CYCLOTRON OPERATION
Routine operation

The routine operation of the CYCLONE 18/9 for the production of radiopharmaceuticals started at the beginning of June 2003 after finishing the rebuilding of the radiopharmaceutical production laboratories due to stronger GMP rules. The radionuclides produced in routine operation in 2003 were \(^{18}\)F, \(^{11}\)C, \(^{15}\)O available as \(^{18}\)F, \(^{18}\)F\(_2\), \(^{11}\)C\(\text{CO}_2\), and \(^{15}\)O\(\text{H}_2\text{O}\). Table 1 gives an overview of the 2003 radionuclide production. There were no demands for production of \(^{13}\)N.

The daily operating time of the CYCLONE 18/9 varied between two and four hours as ever. In March 2003 we received a new operating licence from our authority. Now we are able to

- increase the maximum target activity produced by the \((\text{N}_2 + 1\% \text{ O}_2\) target for the production of \(^{15}\)O\(\text{H}_2\text{O}\)
- use the solid target system [1] for the production of non-standard radionuclides
- produce \(^{86}\)Y, \(^{60}\)Cu, \(^{61}\)Cu and \(^{64}\)Cu with the solid target system.

First tests for the production of the radionuclide \(^{86}\)Y have started in summer 2003.

<table>
<thead>
<tr>
<th>Radionuclide production</th>
<th>Number of irradiations</th>
<th>SumA(_{\text{EOB}}) (GBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{18})F(_2)</td>
<td>253</td>
<td>7975</td>
</tr>
<tr>
<td>(^{18})F(_2)</td>
<td>133*</td>
<td>748</td>
</tr>
<tr>
<td>(^{11})C</td>
<td>120</td>
<td>2336</td>
</tr>
<tr>
<td>(^{15})O</td>
<td>53</td>
<td>1045</td>
</tr>
<tr>
<td>(^{86})Y</td>
<td>4</td>
<td>1.7</td>
</tr>
</tbody>
</table>

*including pre-irradiations

Fig. 1 shows the number of irradiations of our radionuclides and Fig. 2 the total amount of activity produced from 1997 to 2003. The decrease in the produced activities (see Fig. 2) is due to five months without routine operation to produce radiopharmaceuticals at least.

Investigations at the cyclotron

- **Beam tests on the solid target system**

 Comprehensive beam tests were carried out on the solid target system to find the optimum irradiation conditions for the production of \(^{86}\)Y [2].

Maintenance and service

The main reasons for opening the cyclotron were maintenance and service work at both ion sources and destroyed stripper foils. The annual check of the CYCLONE 18/9 facility by the TÜV Sachsen organization (TÜV = Association for Technical Inspection) under § 66 (2) of the Radiation Protection Regulation was carried out in the second half of September. There were no objections to the further operation of the cyclotron.
Radiation protection

- Emission of radionuclides with the exhaust air
The emission of radionuclides with the exhaust air is routinely monitored. As shown in Table 2, it is well below the limit of 2.0E11 Bq.

Table 2. Emission of radionuclides with the exhaust air in 2003 as a result of cyclotron operation

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Emission [Bq/a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>41Ar</td>
<td>1.6E10</td>
</tr>
<tr>
<td>18F</td>
<td>3.1E09</td>
</tr>
<tr>
<td>Sum</td>
<td>1.9E10</td>
</tr>
<tr>
<td>Percentage of the annual limit</td>
<td>9.7</td>
</tr>
</tbody>
</table>

- Exposure to radiation of the cyclotron staff
The cyclotron staff belong to category A of occupational exposed persons. The average exposure to radiation of the cyclotron staff over the years is shown in Table 3.

Table 3. Average exposure to radiation of the cyclotron staff

<table>
<thead>
<tr>
<th>Year</th>
<th>Exposure [mSv]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>1.8</td>
</tr>
<tr>
<td>1998</td>
<td>2.9</td>
</tr>
<tr>
<td>1999</td>
<td>3.5</td>
</tr>
<tr>
<td>2000</td>
<td>6.2</td>
</tr>
<tr>
<td>2001</td>
<td>4.6</td>
</tr>
<tr>
<td>2002</td>
<td>1.7</td>
</tr>
<tr>
<td>2003</td>
<td>1.1*)</td>
</tr>
</tbody>
</table>

*) 2003: (Jan. – Oct.)

References

[2] Preusche, St. et al., this report, p. 58.
Ion beam tests were carried out on the solid target system to find the optimum irradiation conditions for the production of the radionuclide 86Y.

Introduction
The Rossendorf solid target system (see Fig. 1) [1] consists of an irradiation chamber to irradiate targets with rectangular shape (rectangle targets) and a module connected to the chamber to irradiate targets with circular shape (disk targets).

After receiving the new licence for routine operation of the CYCLONE 18/9 in March 2003 ion beam tests on both target systems were carried out to find the optimum irradiation conditions for the production of non-standard PET radionuclides. The main topic was turned towards the disk target for the production of 86Y. All tests were done with proton beam.

Ion beam on the disk target
To irradiate the disk target the target holder of the rectangle target must be in the horizontal position. A disk target area of only 12 mm in diameter was chosen due to the expensive target material though the diameter of the proton beam is larger than 15 mm. Unavoidable beam losses were accepted. Ion beam currents were measured on the stripper foil (I_S), the collimator 1 (I_C1) and on the target (I_T).

Operating conditions
Accelerating parameters
- $I_{MAG} = 195.5$ A, $U_{DEE} = 30.8$ kV,
- $I_S = 200$ mA
Focusing conditions (quadrupole magnets of the external beam transport line)
- $I_{QM1} = 98.8$ A, $I_{QM2} = 86.0$ A

Results
Extraction ratio: $I_T / I_S \sim 20 \%$
$I_T = (10 – 13)$ µA are possible on the disk target. Fig. 2 shows the result of a test irradiation on the disk target with typical parameters monitored in the ‘real current display window’ of the control computer.

Fig. 1. Principle of the solid target system

Fig. 2. Plot of the ‘real current display window’
$I_S \sim 43$ µA, $I_T = 8$ µA

Ion beam on the rectangle target
The rectangle target was planned to irradiate sensitive target materials. The angle between the target and the ion beam is variable to enlarge the beam area on the target and thus reduce the beam density. The target holder plate has an area of (85×35) mm² with an usable target area of maximum (65×15) mm².

The accelerating and focusing conditions of the proton beam were similar to those during the irradiation of the disk target.

Results
Extraction ratio: $I_T / I_S \sim 40 \%$. There are less beam losses than for the disk target.
$I_T \sim 15$ µA are possible on the rectangle target.

Reference
Factors Affecting the Specific Activity of $[^{18}\text{F}]$Fluoride from a Water Target

F. Füchtner, S. Preusche, J. Steinbach

Introduction

The reaction $^{18}\text{O}(p,n)^{18}\text{F}$ is the method of choice for routine production of n.c.a. $[^{18}\text{F}]$fluoride to synthesize labelled compounds as well as on high activity level and with high specific activity (SA). For quite a few PET radiopharmaceuticals the SA has to be high in order to prevent physiological response at the studied system (e.g. agonistic and toxic effects). We found that the SA shows considerable variation, as also reported in the literature [1-3]. The SA of the radiopharmaceutical mainly depends on the SA of the $[^{18}\text{F}]$fluoride used for the syntheses. Initial investigations indicated that the main origin of ^{19}F is the $[^{18}\text{O}]$water dispensing and delivery system of the target (see Fig. 1) and is not originated from the starting $[^{18}\text{O}]$water.

Results and Discussion

• The starting $[^{18}\text{O}]$water is of good quality and contains not significant amounts of $[^{19}\text{F}]$fluoride. Also a considerable contribution of the target irradiation process to the $[^{19}\text{F}]$fluoride amount was not found.

• The Table 1 shows the partial contribution of the different parts of the target system to the $[^{19}\text{F}]$fluoride amount. The $[^{19}\text{F}]$fluoride amount depends mainly on the radiation dose, which the tube gets near the target/cyclotron, as well as on the water/tube contact time and the tube and valve material.

• The PTFE tube of the dispensing system (between A and D) is the main origin of $[^{19}\text{F}]$fluoride. Avoiding PTFE tubes and changing to PP tubes in the target dispensing system the limit for SA can be reliably ensured.

• If very high SA is required repeated rinsing of the whole system with ultra pure water becomes necessary.

References

<table>
<thead>
<tr>
<th>sample</th>
<th>$[^{18}\text{O}]$H$_2$O content [nmol]</th>
<th>in front of target</th>
<th>target</th>
<th>after transport</th>
<th>sum total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>reservoir</td>
<td>dispensing</td>
<td>target filling system</td>
<td>target</td>
<td>to pneumatic system</td>
</tr>
<tr>
<td>95% $[^{18}\text{O}]$H$_2$O</td>
<td>A</td>
<td>D</td>
<td>F</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>recycled $[^{18}\text{O}]$H$_2$O</td>
<td>B</td>
<td>E</td>
<td>F</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>0.53 ± 0.13</td>
<td>0.3 – 17.2</td>
<td>0.8 – 29.8</td>
<td>-</td>
<td>-</td>
<td>3 - 410</td>
</tr>
<tr>
<td>0.58 ± 0.34</td>
<td>0.5 – 6.5</td>
<td>0.9 – 28.5</td>
<td>-</td>
<td>-</td>
<td>3 - 34</td>
</tr>
<tr>
<td>ultra pure water</td>
<td>C</td>
<td>G</td>
<td>-</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>0.1 ± 0.1</td>
<td>0.1 – 0.8</td>
<td>0.1 – 6.4</td>
<td>2.2 – 20.5</td>
<td>5.3 – 10.6</td>
<td>2 - 27</td>
</tr>
</tbody>
</table>
II. PUBLICATIONS, LECTURES, PATENTS AND AWARDS OF THE INSTITUTE AND THE PET-CENTRE ROSSENDORF
PUBLICATIONS

Bauer, R.; Walter, B.; Brust, P.; Füchtner, F.; Zwiener, U.
Impact of asymmetric intrauterine growth restriction on organ function in newborn piglets.

Bernard, J.; Ortner, K.; Spingler, B.; Pietzsch, H.-J.; Alberto, R.
Aqueous synthesis of derivatized cyclopentadienyl complexes of technetium and rhenium directed
Towards radiopharmaceutical application.

Beuthien-Baumann, B.; Hahn, G.; Winkler, C.; Heubner, G.
Differentiation between recurrent tumor or radiation necrosis in a child with anaplastic ependymoma
After chemotherapy and radiation therapy.

Beuthien-Baumann, B.; Handrick, W.; Schmidt, T.; Burchert, W.; Oehme, L.; Schackert, G.; Schuewer,
U.; Kropp, J.; Franke, W.-G.
Brain perfusion and cerebral glucose metabolism in patients in persistent vegetative state.

Steinbach, J.; Sabri, O.
In vivo measurement of the serotonin transporter with (S)-(\([^{18}\text{F}]\text{fluoromethyl}\)-(+)\)-McN5652.

Stephan, H.; Town, R. M.; Wichmann, K.
Towards promising oxoanion extractants: azacages and open-chain counterparts.

Füchtner, F.; Steinbach, J.
Efficient synthesis of the \([^{18}\text{F}]\text{-labelled amino acid 3-O-methyl-6-[}^{18}\text{F}\text{]}\text{fluoro-L-DOPA.}

Gloe, K.; Stephan, H.; Grotjahn, M.
Where the anion extraction is going?
Johannsen, B.
Möglichkeiten und Trends in Diagnostik und Therapie.

Knieß, T.; Fernandes, C.; Santos, I.; Kraus, W.; Spies, H.
Silylated mixed-ligand rhenium complexes with the [PNS/S] donor atom set.

Knieß, T.; Grote, M.; Noll, B.; Johannsen, B.
Synthesis and enzymatic evaluation of nucleosides derived from 5-iodo-2'-halo-2'-deoxyuridines.

Kopprasch, S.; Pietzsch, J.; Kuhlisch, E.; Grässler, J.
Lack of association between serum paraoxonase (PON1) activities and increased oxidized LDL levels in impaired glucose tolerance and newly diagnosed diabetes mellitus.

Kopprasch, S.; Pietzsch, J.; Grässler, J.
Validation of different chemilumigenic substrates for detecting extracellular generation of reactive oxygen species by phagocytes and endothelial cells.

Kotzerke, J.; Volkmer, B. G.; Glatting, G.; van den Hoff, J.; Gschwend, J. E.; Messer, P.; Reske, S. N.; Neumaier, B.
Intraindividual comparison of $[^{11}C]$acetate and $[^{11}C]$choline PET for detection of metastases of prostate cancer.

Kretzschmar, M.; Brust, P.; Zessin, J.; Cumming, P.; Bergmann, R.; Johannsen, B.
Autoradiographic imaging of the serotonin transporter in the brain of rats and pigs using S-(F)/Fluoromethyl)-(+)-McN5652.

S-$[^{18}$F$]$fluoromethyl-(+)-McN5652, a PET tracer for the serotonin transporter: evaluation in rats.

Naumann, R.; Beuthien-Baumann, B.
What is evidence for positron emission tomography in the management of patients with indolent non-Hodgkin’s lymphoma? [Commentary]

Pietzsch, H.-J.; Seifert, S.; Syhre, R.; Tisato, F.; Refosco, F.; Leibnitz, P.; Spies, H.

Pietzsch, J.; Kopprasch, S.; Bergmann, R.
Analysis of 3-chlorotyrosine as a specific marker of protein oxidation: the use of N(O,S)-ethoxycarbonyl trifluoroethyl ester derivatives and gas chromatography/mass spectrometry.

Pietzsch, J.; Fuecker, K.
Increased cholesteryl ester transfer protein (CETP) activity in impaired glucose tolerance: relationship to high density lipoprotein metabolism.
Pietzsch, J.; Bergmann, R.; Wüst, F.
Flavonoide: Wirkmechanismen und neue Anwendungsmöglichkeiten (Teil 1).

Pietzsch, J. Bergmann, R.; Wüst, F.
Flavonoide: Wirkmechanismen und neue Anwendungsmöglichkeiten (Teil 2)

Pietzsch, J.; Bergmann, R.
Measurement of 5-hydroxy-2-aminovaleric acid as a specific marker of iron-mediated oxidation of proline and arginine residues of low density lipoprotein apolipoprotein B-100 in human atherosclerotic lesions

Pietzsch, J.
Fortschritte in der Aminosäureanalytik: N(O,S)-Ethoxycarbonyl-(trifluoro)ethylester-Derivate.

Roesky, C. E. O.; Weber, E.; Rambusch, T.; Stephan, H.; Gloe, K.; Czugler, M.
A new cryptophane receptor featuring three endo-carboxylic acid groups: synthesis, host behavior and structural study.

Schiller, L.; Jähkel, M.; Kretzschmar, M.; Brust, P.; Oehler, J.
Autoradiographic analyses of 5-HT1A and 5-HT2A receptors after social isolation in mice.

Seifert, S.; Syhre, R.; Spies, H.; Johannsen, B.
Novel tumourtropic ester derivatives of 99mTc(V)-mesoDMSA with low affinity for bone tissue.

Weigl, M.; Müllich, U.; Geist, A.; Gompper, K.; Zevaco, T.; Stephan H.
Alkyl-substituted 2,6-dioxadiazolopyridines as selective extractants for trivalent actinides.

Wiegrebe, W.; Johannsen, B.
Herausforderung und Chance für Apotheker.

Wiegrebe, W.; Johannsen, B.;
Therapie mit Radionukliden.

Wüst, F.; Zessin, J.; Johannsen, B.

Wüst, F.; Carlson, K. E.; Katzenellenbogen, J. A.
Synthesis of novel arylpyrazolo corticosteroids as potential ligands for imaging brain glucocorticiod receptors.

Wüst, F.; Hultsch, C.; Bergmann, R.; Johannsen, B.; Henle T.
Radiolabelling of isopeptide Nε-(γ-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[18F]fluorobenzoate.
Wüst, F.; Knieß, T.

Berührungslose Messung von Phasen- und Konzentrationsverteilungen in Blasensäulen mit positronenmittlernden Radionukliden.

PROCEEDINGS

Biodistribution and catabolism of [18F]fluorobenzoylated amino acids, peptides and proteins.

Jelínek, L.; Matejka, Z.; Novotná, M.; Burda, R.; Sawatzki, A.-K.; Stephan, H.
Interaction of polyoxyotungstates with aminosaccharides.

Julius, U.; Pietzsch, J.
Spezifische Glukoseverstärkung der Hämín-(FeIII)-katalysierten LDL-Oxidation in vitro und in vivo.

Julius, U.; Kirschner, E.; Pietzsch, J.
Intravasal lipid transfer in impaired glucose tolerance (IGT): role of the cholesterol ester transfer protein (CETP).

Kopprasch, S.; Pietzsch, J.; Kuhlisch, E.; Graessler, J.
Chemiluminescence as a tool to assess hyperglycemia-induced systemic oxidative stress in different insulin-resistant states.

Kopprasch, S.; Roch, B.; Pietzsch, J.; Kuhlisch, E.; Graessler, J.
Luminescence studies of blood phagocyte oxygenation activities in patients with antiphospholipid syndrome.

Pietzsch, J.
Analysis of non-protein amino acids as specific markers of protein oxidation: the use of N(O,S)-ethoxycarbonyl trifluoroethyl ester derivatives and GC-MS.

van den Hoff, J.
Principles of quantitative positron emission tomography in the lung.
ABSTRACTS

Monitoring postradiotherapeutic changes of lung tissue with PET and SPECT.

Regional cerebral metabolism in unipolar depression: the relationship with clinical characteristics.

Beuthien-Baumann, B.; Eckhardt, M.; Herrmann, Th.; Hliscs, R.; van den Hoff, J.; Kumpf, R.; Blank, H.; Baumann M.
Monitoring postradiotherapeutic changes of lung tissue with CT, PET and SPECT.

Bühler, P.; Just, U.; Will, E.; Kotzerke, J.; van den Hoff, J.
An accurate method for correction of head movement in PET.

Bühler, P.; Just, U.; Will, E.; Zühl, K.; Kotzerke, J.; van den Hoff, J.
Korrektur bewegungsbedingter Fehlortung individueller Koinzidenzereignisse in der PET.

Füchtner, F.; Preusche, S.; Steinbach, J.
Factors affecting the specific activity of [18F]fluoride from a water target.

Holthoff, V.A.; Lüdecke, S.; Beuthien-Baumann, B.; Zündorf, G.; Triemer, A.; Schellong, J.
Major-Depression im höheren Lebensalter: Regionale Hirnfunktion und kognitive Leistungsfähigkeit in Abhängigkeit vom Erkrankungsalter

Julius, U.; Kirschner, E.; Pietzsch J.
Intravasal lipid transfer in impaired glucose tolerance (IGT): role of the cholesterol ester transfer protein (CETP).

Just, U.; Will, E.; Beuthien-Baumann, B.; Bredow, J.; Bühler, P.; van den Hoff, J.
Nutzarmachung der List-Mode Akquisition an der PET-Kamera ECAT EXACT HR®.

Pawelke, B.; Bergmann, R.; Künstler, J.-U.; Kretzschmar, M.; Wittrisch, H.; Johannsen, B.
Untersuchung der Metabolisierung von Neurotensin (8-13) mit 99mTc- und 18F-Markierung.

Pietzsch, J.
Specific hemin catalyzed low density lipoprotein oxidation reactions: implications for metabolic and inflammatory diseases.

Pietzsch, J.; Bergmann, R.; Wüst, F.; Grote, M.; Hultsch, C.; Pawelke, B.; van den Hoff, J.
Assessment of metabolism of native and oxidized low density lipoprotein in vivo: insights from animal positron emission tomography (PET) studies.

Pötzsch, C.; Beuthien-Baumann, B.; van den Hoff, J.
Teilautomatisierte Segmentierung zur Quantifizierung von Metastasen bei der FDG-PET.
van den Hoff, J.; Fricke, H.; Wielepp, P.; Burchert, W.
Dynamische 15O-H$_2$O-PET zur Erzeugung quantitativer 3D-Polar-Maps der Myocarddperfusion.

van den Hoff, J.; Börner, A.; Behrens, G.; Meyer, G. J.; Knapp, W. H.
Untersuchung des Glukosestoffwechsels bei Patienten mit HIV-Infektion unter hochaktiver antiretroviral raler Therapie (HAART) mittels quantitativer dynamischer FDG-PET.

LECTURES AND POSTERS

Lectures

Antonioli, B.; Gloe, K.; Goretzki, G.; Glenny, M. W.; Schröder, M.; Herrmann, E.; Stephan, H.
Oxathiaaza-Makrocyclen: Potentielle Extraktionsmittel für Metallionen und Metallsalze.
DECHEMA-Sitzung „Das Neue geschieht an den Grenzflächen“, Würzburg, 05.-07.03.2003.

Bergmann, R.
Status and perspectives in neurotensin receptor PET imaging.

Bergmann, R.
Experience with neurotensin and bombesin labelled with fluorine-18.

Monitoring postradiotherapeutic changes of lung tissue with PET and SPECT.

Brust, P.; Zessin, J.; Solin, O.; Steinbach, J.
Comparison of $^{[11]}$C(+)-McN5652 and S-$(^{[18]}$F)fluoromethyl)-(+)McN5652 for PET imaging of the seroton transporter.
15th International Symposium on Radiopharmaceutical Chemistry, Sydney, Australia, 07.-18.08.2003.

Bühler, P.; Just, U.; Will, E.; Kotzerke, J.; van den Hoff, J.
An accurate method for correction of head movement in PET.

Korrektur bewegungsbedingter Fehlortung individueller Koinzidenzereignisse in der PET.
41. Jahrestagung der DGN, Essen, 02.-05.04.2003.

Towards promising oxoanion extractants: azacages and open-chain counterparts.

Füchtner, F.
Erfahrungen bei der Verwendung von kommerziellen Ausrüstungen für die PET-Radiopharmaka herstellung.
Heinrich, T.
Synthetische Arbeiten in der medizinischen Chemie und der Re/Tc-Chemie.

Holthoff, V.A.; Lüdecke, S.; Beuthien-Baumann, B.; Zündorf, G.; Triemer, A.; Schellong, J.
Major-Depression im höheren Lebensalter: Regionale Hirnfunktion und kognitive Leistungsfähigkeit in Abhängigkeit vom Erkrankungsalter.

Behavioral disturbances and regional cerebral metabolism in probable Alzheimer’s disease.
Brain and BrainPET 2003, 29.06.-03.07.2003, Calgary, Canada.

Hultsch, C.
Untersuchungen zur Bioverteilung und Elimination des Isopeptides N-\(\varepsilon\)-(\(\gamma\)-Glutamyl)-lysin mittels Positronen-Emissions-Tomographie.

Jelinek, L.; Matejka, Z.; Novotná, M.; Burda, R.; Sawatzki, A.-K.; Stephan, H.
Interaction of polyoxotungstates with aminosaccharides.
XVIII. International Symposium "Ars Separatoria 2003", Z. Potok, Poland, 02.-05.06.2003.

Johannsen, B.
Zur Zulassungsproblematik und spezifischen Anwendung von GMP bei PET-Radiopharmaka.

Johannsen, B.
Radiopharmazeutika – gestern, heute und morgen.
Bad Berkaer Gespräche Nuklearmedizin, Bad Berka, 12.11.2003.

Johannsen, B.
Biologische Funktionen – ihre Aufklärung mit Hilfe von Metallkomplexverbindungen.

Julius, U.; Kirschner, E.; Pietzsch, J.
Intravasal lipid transfer in impaired glucose tolerance (IGT): role of the cholesterol ester transfer protein (CETP).

Marjamäki, P.; Eskola, O.; Haaparanta, M.; Grönnroos, T.; Fagerholm, V.; Bergman, J.; Lehikoinen, P.; Savisto, N.; Zessin, J.; Solin, O.
Sex differences in the uptake of \([^{18}\text{F}]\text{FMe-McN}\) in rat brain.

Mäding, P.
\(^{18}\text{F}\)-Labelling of the CCR1 antagonist ZK811460 for the diagnosis of the Alzheimer’s disease.

Mäding, P.; Zessin, J.; Pleiß, U.; Wüst, F.
Synthesis of a \(^{11}\text{C}\)-labelled taxan derivative by \([1-^{11}\text{C}]\text{acetylation}\).
Pietzsch, H.-J.; Spies, H.
Radiometals for nuclear medicine.

Pietzsch, H.-J.; Spies, H.
Radiometals for nuclear medicine.
Korea Cancer Center Hospital Seoul, Dept. of Nuclear Medicine, 09.04.2003 (invited lecture).

Pietzsch, H.-J.
Mixed-ligand complexes of Tc(III) serving as flexible tools for binding the metal to small biomolecules.
IAEA-Tagung, Ferrara, Italy, 04.-09.05.2003 (invited lecture).

Pietzsch, H.-J.
Radiometalle in der nuklearmedizinischen Diagnostik und Therapie.
Kolloquium des GDCh-Ortsverbandes Lausitz, FH Zittau, 22.10.2003 (invited lecture).

Pietzsch, J.
Untersuchungen zur in vivo-Kinetik humaner Lipoproteine mittels stabilier Isotope: Störungen des Lipoproteinstoffwechsels bei Diabetesvorsstadien.
Lebensmittelchemisches Kolloquium, Universität Hohenheim, 30.01.2003 (invited lecture).

Pietzsch, J.
Analysis of non-protein amino acids as specific markers of protein oxidation: the use of N(O,S)-ethoxy-carbonylfluoroethyl ester derivatives and GC-MS.
2nd Int. Conference on Biomedical Spectroscopy, London, UK, 05.-08.06.2003 (invited lecture).

Pietzsch, J.
Analysis of non-protein amino acids as specific markers of protein oxidation: the use of N(O,S)-ethoxy-carbonylfluoroethyl ester derivatives and GC-MS.
London, UK, 05.-08.07.2003 (invited lecture).

Pietzsch, J.
Specific hemin catalyzed low density lipoprotein oxidation reactions: implications for metabolic and inflammatory diseases.

Pietzsch, J.; Bergmann, R.; Wüst, F.; Grote, M.; Hultsch, C.; Pawelke, B.; van den Hoff, J.
Assessment of metabolism of native and oxidized low density lipoprotein in vivo: insights from animal positron emission tomography (PET) studies.

Pietzsch, J.
Untersuchungen zum in vivo-Metabolismus nativer und oxidierter Lipoproteine am Tiermodell mittels PET.

Schiller, E.
Hydrophile 99mTc/188Re-Komplexe zur Kopplung an Biomoleküle.

Stephan, H.
Neue Rhenium- und Kupfer-Koordinationsverbindungen für die Radiotherapie.
Institutskolloquium, Universität Heidelberg, Institut für Anorganische Chemie, Heidelberg, 30.06.2003 (invited lecture).

Stephan, H.; Sawatzki, A.-K.
Preparation and characterization of polyoxotungstates.
Institutskolloquium, Institute of Chemical Technology Prague, Prague, Czech Republic, 20.08.2003.
Stephan, H.
Dendritic receptors for binding therapeutically relevant copper and rhenium radionuclides.

Stephan, H.
Development of rhenium complexes and metal clusters for therapy.
Kolloquium, Department of Chemical Processes and Environments, University Kitakyushu, Kitakyushu, Japan, 11.11.2003 (invited lecture).

Stephan, H.
Development of rhenium complexes and metal clusters for therapy.
Kolloquium, Department of Applied Chemistry, Saga University, Saga, Japan, 14.11.2003 (invited lecture).

Stephan, H.
Novel approaches for binding therapeutically relevant copper and rhenium radionuclides.
Kolloquium, Department of Chemistry, Tohoku University, Sendai, Japan, 19.11.2003 (invited lecture).

Stephan, H.
Solvent extraction as a helpful tool for the characterisation of supramolecular receptors.
Kolloquium, Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Tokyo, Japan, 25.11.2003 (invited lecture).

Stephan, H.
Dendritic carriers and cage compounds for radionuclides.
Kolloquium, Department of Materials Science, JAERI, Tokaimura, Japan, 26.11.2003 (invited lecture).

van den Hoff, J.
Linearisations in compartment modelling.
XV. Annual PET Pharmacokinetic Course, Montreal, Canada, 25.-30.06.2003 (invited lecture).

van den Hoff, J.
Principles of quantitative positron emission tomography in the lung.
IV. Postgraduate Course on Respiratory Intensive Care Medicine, 12.09.2003 (invited lecture).

Wüst, F.
Positron Emission Tomography (PET): Fundamentals and the potential role in drug research and development.
PET-Tagung der BAYER AG, Wuppertal, 16.06.2003 (invited lecture).

Wüst, F.; Füchtner, F.

Wüst, F.
Carbon-11 labelled compounds in the development of pharmaceuticals.

Wüst, F.
18F-markierte Corticosteroide als Liganden für die Darstellung von Glucocorticoidezeptoren (GR) im Gehirn mittels PET.

Zessin, J.
Radionuklide in der medizinischen Diagnostik.
Posters

Development of dendrons for binding rhenium radionuclides.

Biodistribution and catabolism of \(^{18}\)F-fluorobenzyolated amino acids, peptides and proteins.
16th International Meeting of the International Research Group in Immunoscintigraphy and Immunotherapy (IRIST), Capri, Italy, 08.-10.05.2003.

Monitoring postradiotherapeutic changes of lung tissue with PET and SPECT.
International Congress of Translation Research, Lugano, Switzerland, 16.-18.03.2003.

Síntese, Caracterização e Avaliação Biológica de Complexos Lipofílicos de \(^{99m}\)Tc.

Fernandes, C.; Bergmann, R.; Correia, J. D. G.; Gano, L.; Santos, I.; Spies, H.; Seifert, S.
Novel Re and \(^{99m}\)Tc ‘3+1’ oxocomplexes with high affinity for the 5-HT\(_{1A}\) receptor.
7th FIGIPS Meeting in Inorganic Chemistry, Lisbon, Portugal, 11.-15.06.2003.

Behavioral disturbances and regional cerebral metabolism in probable Alzheimer’s Disease.
Brain and BrainPET 2003, Calgary, Canada, 29.06.-03.07.2003.

Julius, U.; Kirchner, E.; Pietzsch J.
Intravasal lipid transfer in impaired glucose tolerance (IGT): role of the cholesterol ester transfer protein (CETP).
63rd Scientific Sessions of the American Diabetes Association (ADA), New Orleans, USA, 13.-17.06.2003.

Kirchner, R.; Seidel, J.; Gloe, K.; Stephan, H.
Kalorimetric and potentiometric Untersuchungen an Dendrimeren auf PAMAM Basis: Protonierung und Wechselwirkung mit HSA.

Kirchner, R.; Seidel, J.; Gloe, K.; Stephan, H.
Calorimetric and potentiometric study of PAMAM dendrimers: protonation and interactions with human serum albumin.

Impact of FDG positron emission tomography in addition to conventional staging procedures in patients with Hodgkin’s lymphoma.
Pawelke, B.; Bergmann, R.; Helling, R.; Wittrisch, H.; Wüst, F.; Johannsen, B.
Biodistribution and catabolism studies of 18F-labeled amino acid and peptid derivatives.

Pawelke, B.; Bergmann, R.; Künstler, J.-U.; Kretzschmar, M.; Wittrisch, H.; Johannsen, B.
Untersuchung der Metabolisierung von Neurotensin (8-13) mit 99mTc- und 18F-Markierung.

Pietzsch, J.
Analysis of non-protein amino acids as specific markers of protein oxidation: the use of N(O,S)-ethoxy-
carboxyltrifluoroethyl ester derivatives and GC-MS.

PATENTS

U.; Duda, S.; Tepe, G.; Noll, B.; Görner, H.
Stents with a radioactive surface coating, processes for producing the same and their use for resteno-
sis prevention.
EP0979108 A2

AWARDS

Dr. Christian Jung
FZR-Doktorandenpreis 2003
Synthese und Charakterisierung von fettsäuretragenden Technetiumkomplexen und deren Vorstufen.
DIPLOMA

Christian Pötzsch
Teilautomatisierte Abgrenzung dreidimensionaler Strukturen zur erweiterten quantitativen Analyse von dynamischen und statischen Datensätzen in der Positronen-Emissions-Tomographie.

Christina Hultsch
Untersuchungen zur Bioverteilung und Elimination des Isopeptides N-e-(g-Glutamyl)-lys in mittels Positronen-Emissions-Tomographie.

Jörg Stolzenburg
Aufbau und Validierung einer automatischen Injektionsapparatur für Patientenuntersuchungen in der Positronen-Emissions-Tomographie.

Denise Tiebel
Entwicklung und Anwendung eines Atmtriggersystems für Patientenuntersuchungen in der Positronen-Emissions-Tomographie.

PhD THESES

Christian Jung
Synthese und Charakterisierung von fettsäuretragenden Technetiumkomplexen und deren Vorstufen.

Aneta Jordanova
Investigations to electrophilic fluorination with n.c.a. 18F.
III. SCIENTIFIC COOPERATION
COOPERATIVE RELATIONS AND JOINT PROJECTS

In multidisciplinary research such as carried out by this Institute, collaboration, the sharing of advanced equipment and, above all, exchanges of ideas and information play an important role. Effective collaboration has been established with colleagues at universities, in research centres and hospitals.

The Technische Universität Dresden has been a major partner in our cooperative relations. Cooperation with various groups in the Department of Chemistry and the Faculty of Medicine was again significantly extended last year. Common objects of radiopharmacological and medical research link the Institute with the Dresden University Hospital, above all with its Department of Nuclear Medicine (Prof. Kotzerke). A joint team of staff members from both the Institute and the Clinic of Nuclear Medicine is currently working at the Rossendorf PET Centre. Cooperation with The Institute of Analytical Chemistry (Prof. Salzer) in tumour research has been continued. Application of the positron emission tomography modality has been successfully proceeded in collaboration with the Institute of Food Chemistry (Prof. Henle). Bioinorganic research activities are closely linked with the Department of Coordination Chemistry (Prof. Gloe).

Special thanks go to Schering AG Berlin (Dr. Dinckelborg) for the long-standing valuable collaboration in radiotracer development. Recently, cooperation with the pharmaceutical industry and regional enterprises has been intensified and extended. Joint projects exist with Bayer AG, ABX advances biochemical compounds, ROTOP Pharmaka GmbH, Wälischmiller GmbH, AEA Technology QSA GmbH, Nihon-Medi-Physics, Apogepha Arzneimittel GmbH and A.R.T. Hersching.

The identification of common objects in PET radiopharmacy has led to collaborative research with the Institut für Interdisziplinäre Isotopenforschung Leipzig (Prof. Steinbach). Both institutes constitute an alliance of research in radiopharmaceutical sciences.

Cooperation in PET tracer chemistry and radiopharmacology has been established with the Turku Medical PET Centre (Dr. Solin), Washington University (Prof. Welch), Harvard School of Medicine (Dr. Neumeyer), North-Eastern University Boston (Dr. Hanson), University of Illinois (Prof. Katzenellenbogen).

Cooperation in technetium and rhenium chemistry exists with the University of Ferrara (Prof. Duatti), CNR Padova (Dr. Tisato, Dr. Refosco), University of Tunis (Prof. Saidi) and, more recently, with the Korean Research Centre KAERI (Dr. Park), as well as with the University of Kitakyushu, Japan (Prof. Yoshizuka). The Institute works with the Humboldt University Berlin, Charité Hospital (Dr. Fischer) and with University Hospital Leipzig (Prof. Emmrich), on radioimmunoscintigraphy.

Very effective cooperation exists with the Federal Material Research Institute in Berlin (Dr. Reck, Mr. Kraus), whose staff members carried out X-ray crystal structure analysis of new technetium and rhenium complexes.

In the field of supramolecular chemistry, successful cooperation exists with the Kekulé Institute of Organic Chemistry and Biochemistry (Prof. Vögtle) of the University of Bonn.
LABORATORY VISITS

Dr. H.-J. Pietzsch
Korea Atomic Energy Research Institute (KAERI), HANARO, Div. of Radioisotope Production, Korea
07.-13.04.2003

Dr. M. Grote
Paul Scherrer Institut, Zürich, Switzerland
11.-18.05.2003

Dr. H.-J. Pietzsch,
Universität Ferrara, FZ Padua, Italy
09.-14.11.2003

Dr. H. Spies
Universität Ferrara, FZ Padua, Italy
09.-14.11.2003

Dr. H. Stephan
University of Kitakyushu, Japan
Tohoku University, Japan
Tokyo Institute of Technology, Japan
Japan Atomic Energy Research Institute, Japan
02.-18.11.2003
19.-21.11.2003
24.-25.11.2003
26.-27.11.2003

E. Schiller
Universität Ferrara, FZ Padua, Italy
23.11.-12.12.2003

GUESTS

Dr. Wu
Nihon Medi-Physics Co., Ltd., Japan
19.03.2003

Dr. L. Jelinek
Institute of Chemical Technology, Prague, Czech Republic
01.-31.07.2003
01.-05.12.2003

P. Houserova
Institute of Chemical Technology, Prague, Czech Republic
21.-25.07.2003
01.-05.12.2003

Dr. K. A. Brylev
Russian Academy of Science, Novosibirsk, Russia
01.09.–01.12.2003

S. Raji
Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
01.09.2003 – 28.02.2004

F. Aggrey
University of Cape Coast (U.C.C.), Ghana
01.09.2003 – 28.02.2004
Dr. S. H. Park
Korea Atomic Energy Research Institute, Korea
15.09.–31.10.2003

Dr. R. Lambrich
AEA Technology QSA, Braunschweig
29.09.2003

Dr. U. Schwarz
AEA Technology QSA, Braunschweig
29.09.2003

Dr. K. B. Park
Korea Atomic Energy Research Institute, Vice President HANARO, Korea
24.10.2003

Dr. M. Saidi
Centre National des Sciences et Technologie Nucléaires Tunis, Tunisia
08.09.-08.11.2003

E. Heselmann
AEA Technology, Braunschweig
27.11.2003

Dr. H. Parschova
Institute of Chemical Technology Prague, Czech Republic
01.-05.12.2003

P. Krotka
Institute of Chemical Technology Prague, Czech Republic
01.-05.12.2003

E. Mistova
Institute of Chemical Technology Prague, Czech Republic
01.-05.12.2003

Dr. L. Tellmann
Forschungszentrum Jülich
10.12.2003

Dr. R. Folton
University of Sydney and Royal Prince Alfred Hospital, Australia
10.12.2003

Prof. V. E. Fedorov
Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
11.-17.12.2003
TEACHING ACTIVITIES

Summer term 2003

B. Johannsen, H.-J. Pietzsch
One term course on Metals in Biosystems (Introduction into Bioinorganic Chemistry)

J. Pietzsch
Chemistry for medical students

Winter term 2003/2004

F. Wüst
One term course on Radiopharmaceutical Chemistry

J. Pietzsch
Chemistry for medical students

OTHER ACTIVITIES

B. Johannsen
Chairman of the DGN Working Group on Radiochemistry and Radiopharmacy

B. Johannsen
Co-editor of the Journal "Nuclear Medicine and Biology"
IV. SEMINARS
TALKS OF VISITORS

Prof. Dr. B. Voit, Institut für Polymerforschung Dresden
Design von biokompatiblen und bioaktiven Grenzflächen für die Anwendung in der Medizin
31.01.2003

Prof. Dr. J. L. Neumeyer, Harvard Medical School, Belmont, USA
Some recent developments in PET and SPECT ligands: phenyltropanes and morphinans
28.02.2003

Jeffrey Iqbal
Jugend forscht: Endos, Exos und mehr – Die Welt der Fullerene II
07.04.2003

Prof. Dr. P. Comba, Ruprecht-Karls-Universität Heidelberg
Vier-, fünf- und sechszähnige Bispidine: Mögliche neue Ligandensysteme für die Radiopharmazeutische Chemie
24.04.2003

Dr. W. von der Saal, Roche Diagnostics GmbH, Penzberg
Medizinische Chemie in der Krebsforschung
10.07.2003

Dr. M. Horn, Universität Göteborg,
Magnetresonanzverfahren als Fenster zur Physiologie in vivo
23.07.2003

Dr. Stanislaw Schastak, Klinik für Augenheilkunde, Universitätsklinikum Leipzig
Photodynamische Therapie von Tumoren mit neuartigem Photosensitizer
29.08.2003

Dr. A. Daubinet, Ruprecht-Karls-Universität Heidelberg
Molecular modelling of rhenium (V) complexes with DMSA
23.10.2003

Dr. St. Heymann, Institut für Informatik, Humboldt-Universität Berlin
Spleißformen eines Neurotensin-Rezeptors auf dem Prüfstand – Data Warehouse Strategien in der Bioinformatik
14.11.2003

Dr. R. Buchert, Abteilung für Nuklearmedizin, Universitätskrankenhaus Hamburg
McN5652-PET zum Nachweis von Veränderungen der Serotonintransporter-Verfügbarkeit
17.11.2003
INTERNAL SEMINARS

K. Rode
In vitro- und in vivo-Untersuchungen zur Stabilität eines Tc-.4+1-.Komplexes
29.01.2003

C. Heichert
Stand der Arbeit zu Substraten der HSV-1-Thymidinkinase und der entsprechenden Präkursoren für die 18F-Markierung
26.02.2003

F. Wüst
PET-Corticosteroide
09.04.2003
P. Bühler
Bewegungskorrektur bei PET-Untersuchungen
30.04.2003

E. Will
Performance-Messungen am neuen MicroPET-Scanner
21.05.2003

Ch. Pönisch
Rechnergestützte Verfahren zur Verbesserung der tomographischen Bildrekonstruktion am MicroPET-Scanner
11.06.2003

E. Schiller
Kopplungsfähige hydrophile „4+1“-Chelatsysteme zur Bindung von Metallen an Biomoleküle
25.06.2003

F. Füchtner
Spezifische Aktivität bei nukleophilen [18F]Fluorierungen
27.08.2003

T. Knieß
4-[18F]Fluoriodbenzen als Markerungsbaustein in der 18F-Chemie
17.09.2003

J. Pietzsch
Untersuchungen zum Metabolismus nativer und oxidierter Lipotroteine
08.10.2003

B. Beuthien-Baumann
PET in der Demenz-Diagnostik
05.11.2003

R. Bergmann
Bioverteilung und Metabolismus von Proteinen und Peptiden
18.12.2003
V. ACKNOWLEDGEMENTS
ACKNOWLEDGEMENTS FOR FINANCIAL SUPPORT

The Institute is part of the Research Center Rossendorf Inc., which is financed by the Federal Republic of Germany and the Free State of Saxony on a fifty-fifty basis.

The Institute participated in the following two projects supported by Commission of the European Communities:

Network for Efficiency and Standardization of Dementia Diagnosis
NEST-DD
in collaboration with Belgium, France, Italy

Radiotracers for \textit{in vivo} assessment of biological function
COST B12
in collaboration with Sweden, Italy and Switzerland

Three research projects concerning tracer design, biochemistry and PET radiochemistry were supported by the Deutsche Forschungsgemeinschaft (DFG):

18F labelled substrates of bacterial cytosindeaminase for monitoring gene expression of cancer cells
NO 418/1-1 (B. Noll), 06/2001 - 05/2003.

Molecular encapsulated 188Re complexes: Development of robust and tunable radioactive rhenium complexes on the basis of novel chelators derived from dimercaptosuccinic acid (DMSA)

F-18 labelled corticosteroides as ligands for imaging brain glucocorticoid-receptors by means of PET

The Sächsisches Staatsministerium für Wissenschaft und Kunst provided support for the following project:

Development and characterization of nanoscale metal-based drugs targeting tumors
SMWK-No. 4-7531.50-03-0370-01/4, 06/2001 – 12/2003.

and for the stay of scientists from Czech Republic and Russia.

The Bundesministerium für Bildung und Forschung supported cooperation with

Czech Republic: polyoxometallo compounds
WTZ, 08/2002 – 07/2005

Russia: Polynuclear metallo drugs
WTZ, 07/2003 – 09/2004

The Bundesministerium für Wirtschaft und Arbeit supported cooperation with AEA Technology QSA GmbH:

Y-86 for nuclear medical application
08/2003 – 01/2005
The following projects were supported by cooperations with the industry:

Cooperation in nuclear diagnostics
Schering AG Berlin

Cooperation in functional diagnostics
ABX advanced biomedical compounds GmbH Dresden
04/2001 - 11/2004

Synthesis of precursors for PET-radiopharmaceuticals
ABX advanced biomedical compounds GmbH Dresden
01/2003 – 12/2004

Cooperation in drug development
Bayer AG Leverkusen
05/2002 – 02/2004

Cooperation in movement tracking for PET
A.R.T. Hersching

Cooperation in pharmakokinetics and metabolism of propiverin
Apogepha Arzneimittel GmbH
07/2003 – 02/2004

Development and evaluation of technetium-99m-labelled fatty acids
Nihon-Medi-Physics (Japan/USA)
01/2003 – 12/2004

Several laboratory visits were supported by the “Deutscher Akademischer Austauschdienst” (DAAD).

VIGONI-Project with Padova (Italy):
Labelling Dithiol Ligands with a TcN-Synthon
01/2002 – 12/2003
VI. PERSONNEL
Director
Dr. Spies, H.

Administrative Staff

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forker, S.</td>
<td>Neubert, G.</td>
</tr>
</tbody>
</table>

Scientific Staff

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Bergmann, R.*</td>
<td>Dr. Noll, B.</td>
<td>Dr. Seifert, S.</td>
</tr>
<tr>
<td>Dr. Füchtner, F.*</td>
<td>Dr. Noll, S.</td>
<td>Dr. Stephan, H.*</td>
</tr>
<tr>
<td>Dr. Grote, M.*</td>
<td>Dr. Pietzsch, H.-J.</td>
<td>Prof. van den Hoff, J.</td>
</tr>
<tr>
<td>Dr. Knieß, T.</td>
<td>Dr. Pietzsch, J.</td>
<td>Dr. Walther, M.*</td>
</tr>
<tr>
<td>Kretzschmar, M.*</td>
<td>Dr. Pönisch, F.*</td>
<td>Dr. Will, E.</td>
</tr>
<tr>
<td>Künstler, J.-U.*</td>
<td>Preusche, S.</td>
<td>Dr. Wüst, F.</td>
</tr>
<tr>
<td>Lange, S.</td>
<td>Dr. Rother, A.*</td>
<td>Dr. Zessin, J.</td>
</tr>
<tr>
<td>Mäding, P.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical Staff

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barth, M.*</td>
<td>Jährig, P.*</td>
<td>Lehnert, S.</td>
</tr>
<tr>
<td>Dohn, N.</td>
<td>Kasper, H.</td>
<td>Lenkeit, U.**</td>
</tr>
<tr>
<td>Gläser, H.</td>
<td>Kolbe, U.</td>
<td>Lipps, B.</td>
</tr>
<tr>
<td>Görner, H.</td>
<td>Krauß, E.</td>
<td>Lücke, R.</td>
</tr>
<tr>
<td>Große, B.</td>
<td>Krauß, T.*</td>
<td>Rode, K.</td>
</tr>
<tr>
<td>Hentges, A.*</td>
<td>Kreisl, B.</td>
<td>Roß, H.</td>
</tr>
<tr>
<td>Herrlich, R.</td>
<td>Kunadt, E.</td>
<td>Sterzing, R.**</td>
</tr>
<tr>
<td>Herzog, W.</td>
<td>Landrock, K.</td>
<td>Suhr, A.**</td>
</tr>
</tbody>
</table>

Post Docs

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Müller, M.*</td>
<td>Dr. Pawelke, B.*</td>
</tr>
</tbody>
</table>

PhD Students

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gester, S.</td>
<td>Hultsch, C.</td>
<td>Pötztch, C.</td>
</tr>
<tr>
<td>Heinrich, T.</td>
<td>Just, U.</td>
<td>Schiller, E.</td>
</tr>
</tbody>
</table>

Former Personnel

(who left during the period covered by the report)

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director</td>
<td>Prof. Dr. Johannsen, B.</td>
</tr>
<tr>
<td>Administrative Staff</td>
<td>Kersten, M.</td>
</tr>
<tr>
<td>Scientific Staff</td>
<td>Dr. Heichert, C.*</td>
</tr>
<tr>
<td>Technical Staff</td>
<td>Kunadt, E.</td>
</tr>
<tr>
<td>PhD Students</td>
<td>Habala, L.</td>
</tr>
<tr>
<td></td>
<td>Jordanova, A.</td>
</tr>
<tr>
<td></td>
<td>Jung, Ch.</td>
</tr>
</tbody>
</table>

* term contract
** on maternity leave