Modellierung und Simulation der Beanspruchung von Zugsträngen aus Stahllitze für Zahnriemen

Robert Witt

der Fakultät Elektrotechnik und Informationstechnik
der Technischen Universität Dresden
zur Erlangung des akademischen Grades eines

Doktoringenieurs
(Dr.-Ing.)
genehmigte Dissertation

Vorsitzender: apl. Prof. Dr.-Ing.habil. G. Pfeifer
Gutachter: Prof. Dr.-Ing.habil.Dr.h.c. W. Krause Tag der Einreichung: 18.04.2007
 Prof. Dr.-Ing.habil. H. Linke Tag der Verteidigung: 16.11.2007
 Dr.-Ing. J. Vollbarth
Vorwort

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit in der Forschungsgruppe Zahnriemengetriebe am Institut für Feinwerktechnik und Elektronik-Design der Technischen Universität Dresden. Die Komplexität der Belastungsvorgänge in den Zugsträngen, verbunden mit ihrem äußerst bedeutsamen Einfluss auf das Verhalten des Zahnriemens, war ausschlaggebend für meinen Entschluss, diesen Sachverhalt in einem eigenen Projekt zu untersuchen.

Meinem hochverehrten Lehrer Herrn Professor Dr.-Ing.habil.Dr.h.c. Werner Krause gilt mein besonderer Dank für sein stetiges Engagement und seine Motivation während der Niederschrift dieser Arbeit sowie Herrn Professor Dr.-Ing.habil. Heinz Linke und Herrn Dr.-Ing. Jürgen Vollbarth für die Übernahme der Gutachten.

Des Weiteren danke ich der Firma N.V. Bekaert S.A., namentlich hier Herrn Stijn Vancompernolle der Abteilung Steelcord, sowie der Firma BRECO Antriebstechnik Breher GmbH & Co. KG für die Beratung bei Fachfragen sowie die Bereitstellung von Werkstoffdaten, Testergebnissen und Versuchsmaterial.

Meinen Kollegen am Institut, allen voran PD Dr.-Ing. Thomas Nagel, danke ich für die fachliche Zusammenarbeit und ihre Unterstützung, die wesentlich zum Gelingen dieser Dissertation beigetragen hat.

Ein besonders liebes Dankeschön gilt natürlich auch meiner Familie für ihr Verständnis und das leider viel zu oft von mir abverlangte geduldige abendliche Warten während der Anfertigung dieser Arbeit.
Inhaltsverzeichnis

1 Einleitung .. 1

2 Stand der Technik .. 2
 2.1 Experimentelle Untersuchungen .. 3
 2.2 Berechnungsansätze ... 4
 2.3 Modellierung mit der Methode der Finiten Elemente .. 6
 2.4 Zusammenfassung ... 7

3 Präzisierung der Aufgabenstellung ... 8

4 Verhalten eines gewickelten dünnen Stahlseils ... 10
 4.1 Aufbau und Einteilung gewickelter Stahlseile ... 10
 4.2 Simulation mit der Finite Elemente Methode .. 14
 4.3 Betrachtung einer Litze des Typs 1+6 ... 19
 4.3.1 Verhalten bei Zugbelastung ... 21
 4.3.2 Verhalten bei Zug- und zusätzlicher Biegebelastung .. 32
 4.3.3 Zusammenfassung .. 44
 4.4 Mehrlagige Rundlitzen .. 45
 4.4.1 Belastungsverhalten der Standardlitze ... 47
 4.4.2 Belastungsverhalten der Parallelschlaglitze .. 55
 4.4.3 Zusammenfassung .. 59
 4.5 Rundlitzeiseile für Zahnriemen .. 61
 4.5.1 Belastungsverhalten der Konstruktion 3x3 ... 62
 4.5.2 Belastungsverhalten der Konstruktion 7x3 .. 73
 4.5.3 Zusammenfassung .. 83
 4.6 Zugstränge in Zahnriemen ... 85
 4.6.1 Belastungsverhalten eingebetteter Zugstränge .. 86
4.6.2 Belastungsverhalten der Litze 1+6 im Zahnriemen mit AT10-Profil 93
4.6.3 Zusammenfassung .. 104

5 Validierung der Modelle ... 105

6 Richtlinien zur Auslegung von Zugsträngen aus Stahllitze für Zahnriemen 110

7 Gesamtzusammenfassung und weiterführende Aufgaben 118

Literaturverzeichnis .. 125
Nomenklatur

A_i Drahtquerschnittsfläche in i-ter Lage in mm2

A_m metallischer Querschnitt der Litze bzw. des Seils in mm2

B Berührungsfaktor in $\sqrt{N/mm^2}$

b_{Hertz} Abplattungsbreite für Hertzsche Pressung bei Linienberührung in mm

b_i seilspezifische Konstanten

D Seilkrümmungsdurchmesser in mm

D_E Ersatzdurchmesser für Hertzsche Pressung in mm

d, d_s Seildurchmesser in mm

d_i Durchmesser des Drahtes in i-ter Drahtlage in mm

E Elastizitätsmodul in N/mm2

F Zugkraft an Prüfscheibe in N

F_D Zugkraft im Draht in N

F_K Drahtkuppenkraft in N

G Schubmodul in N/mm2

g Streckenkraft in N

k Seilpressung in N/mm2

L Schlaglänge der Litzen im Seil in mm

l Schlaglänge der Drähte in der Litze in mm

M_d Drehmoment in N-mm

M_{dD} durch Einzeldraht erzeugtes Drehmoment in N-mm

N Biegewechselzahl

n_D Anzahl der Außendrahtlagen

n_L Anzahl der Litzenlagen

p_D Schnürdruck der Drähte, längenbezogene Radialkraft in N/mm

p_{Hertz} Hertzsche Pressung in N/mm2

p_K Druckspannung an den Kontaktbereichen der Drähte in N/mm

R Windungsradius der Litzen in mm

R_0 Drahtnennfestigkeit in N/mm2

R_1, R_2 Radien der sich berührenden Zylinder bei Hertzscher Pressung in mm

R_e Streckgrenze in N/mm2

R_K Krümmungsradius des Seils in mm

R_m Bruchgrenze in N/mm2
\(r \) Windungsradius der Drähte in mm
\(r_R \) Radius der Rundrille der Scheibe in mm
\(S \) Axialkraft im Seil in N
\(s \) Pfad in mm
\(s_D \) Sperrung (Lücke zwischen zwei benachbarten Außendrähten einer Drahtlage) in mm
\(s_L \) Länge einer Litze pro Seilschlaglänge in mm
\(t \) Zeit in s
\(x, y, z \) kartesische Koordinaten in mm
\(z_{ij} \) Anzahl der Drähte in Drahtlage \(i \) der Litzenlage \(j \)
\(z_j \) Anzahl der Litzen in Litzenlage \(j \)
\(\alpha \) Schlagwinkel der Drähte in °
\(\beta \) Schlagwinkel der Litzen in °
\(\gamma \) Rillenwinkel für Kontakt Seil-Scheibe in °
\(\delta \) Drahtdurchmesser in mm
\(\vartheta \) Drehwinkel der Litze um den Biegemittelpunkt in °
\(\nu \) Querkontraktionszahl
\(\sigma_a \) Axialspannung in N/mm²
\(\sigma_{a,\text{red}} \) reduzierte Axialspannung in N/mm²
\(\sigma_b \) Biegespannung in N/mm²
\(\sigma_{b,\text{Reul}} \) Biegespannung nach Reuleaux in N/mm²
\(\sigma_d \) Druckspannung in N/mm²
\(\sigma_{\text{vM}} \) Vergleichsspannung nach von Mises in N/mm²
\(\sigma_z \) Zugspannung in N/mm²
\(\tau \) Torsionsspannung in N/mm²
\(\varphi \) laufender Winkel der Drähte in °
\(\varphi_0 \) Winkeloffset der Drähte in der Litze in °
\(\varphi_L \) laufender Winkel der Litzen in °
\(F \) Knotenkraftvektor
\(K \) Gesamtsteifigkeitsmatrix
\(u \) Knotenverschiebungsvektor
PU Polyurethan
SEL Seil mit Stahleinlage
Abstract

This work examines the behaviour of steel cords under tensile loading and bending by the Method of Finite Elements (FEM). Beginning with a simple strand consisting of one centre and six outer wires a detailed analysis of the stress distribution is made for pure strain as well as for bending over a sheave. Based on this examination the model is extended step by step towards complex cord constructions. The investigation of cables embedded in an elastomer follows, especially the influence of a tooth profile of timing belts on the load inside the cable. Furthermore, a possible validation method for the model is presented. In conclusion directives are given for steel cord design in timing belts and suggestions are made to use the results in a wear model in the future.

Kurzfassung

1 Einleitung

Die vorliegende Arbeit soll deshalb dazu beitragen, diese inneren Belastungen des Zugstrangs im Zahnriemen aufzuklären und Möglichkeiten aufzeigen, die Lebensdauer der Zugstränge durch geeignete Maßnahmen zu erhöhen.
2 Stand der Technik

Der im Rahmen dieser Arbeit betrachtete Zugstrang aus Stahllitze ist ein sehr feines Drahtseil. Bei sogenannten „laufenden Seilen“, also solchen, die über Seilscheiben laufen, sind die Lastzyklen gleichbedeutend mit den Biegewechseln, bei der ein betrachteter Seilabschnitt beim Passieren der Scheibe vom gestreckten in den gebogenen und wieder zurück in den gestreckten Zustand versetzt wird. Die Lebensdauer eines solchen Seils definiert man folglich über die sogenannte Biegewechselzahl \([Fey1]\) [Ver]. Bei einigen Anwendungen dient als Kriterium auch die Gegenbiegewechselzahl, bei der das Seil abwechselnd zuerst in die eine und dann die andere Richtung gebogen wird.

2.1 Experimentelle Untersuchungen

![Diagramm der Dauerbiegemaschine](image)

Bild 2.1: Dauerbiegemaschine zum Ermitteln der Biegewechselzahl von Drahtseilen [Fey1]

Das Seil ist an der Seiltreibscheibe befestigt, welche im Reversierbetrieb den zu untersuchenden Seilabschnitt wiederholt über die Seilprüfscheibe laufen lässt. Dabei darf das betrachtete Seilstück jedoch die Treibscheibe nicht erreichen. Um einen vorzeitigen Ausfall des Seils durch Biegeermüdung an der Treibscheibe zu vermeiden, sollte diese deutlich größer als die Seilprüfscheibe ausgeführt sein.

Mit der in Bild 2.2 dargestellten Umlaufbiegemaschine kann man einfache Gegenbiegeversuche von einzelnen Drähten oder auch ganzen Zugsträngen durchführen. Das gebogene Seil ist beiderseitig in rotierenden Bohrfuttern eingespannt und wird dadurch um seine eigene Achse gedreht. Der Biegeradius lässt sich über entsprechende Führungen einstellen. Allerdings kann mit diesem Aufbau keine Axialkraft auf den Zugstrang
aufgebracht werden. Dafür sind Versuchsaufbauten mit mehreren Seilprüfscheiben, wie etwa in Bild 2.3 dargestellt, notwendig.

Mit diesen Versuchen lässt sich zwar die Lebensdauer eines bestimmten Zugstrangs unter den konkreten Messbedingungen ermitteln, auf seine tatsächliche Lebensdauer im Zahnriemengetriebe kann man daraus jedoch nur bedingt schließen. Durch das komplizierte Eingriffsverhalten des Riemens in die Scheibe sind weder die dabei am Zugstrang lokal auftretenden Biegeradien noch der genaue Axialkraftabbau hinreichend bekannt. Sind also verbindliche Lebensdaueraussagen für ein bestimmtes Zahnriemengetriebe erforderlich, muss auch dieses Getriebe wiederum aufwändigen Dauerversuchen unterzogen werden.

\[\log N = b_0 + \left(b_1 + b_4 \log \frac{D}{d} \right) \left(\log \frac{S d_0^2}{d^{2} S_0} - 0,4 \log \frac{R_0}{1770 \frac{N}{\text{mm}^2}} \right) + b_2 \log \frac{D}{d_0} + b_3 \log \frac{d}{d_0} + \frac{1}{b_5 + \log \frac{d}{d_0}} \], (2.1)

Bild 2.2: Umlaufbiegemaschine für Gegenbiegewechseluntersuchungen [Fey1]

2.2 Berechnungsansätze

Aus einer Vielzahl der oben beschriebenen Biegeversuche an Drahtseilen hat Feyrer [Fey2] die in der Seilforschung weitgehend anerkannte Lebensdauerformel abgeleitet:
mit \(N \) Biegewechselzahl, \(d \) Seildurchmesser, \(D \) Seilkrümmungsdurchmesser, \(S \) Seilzugkraft, \(R_0 \) Drahtnennfestigkeit sowie \(S_0 = 1 \) N und \(d_0 = 1 \) mm.

Allerdings sind hierbei die Konstanten \(b_0 \) bis \(b_5 \) vom jeweiligen Seiltyp abhängig. Das bedeutet, dass für eine Zugstrangneuentwicklung diese Konstanten zunächst in aufwändigen Dauertests ermittelt werden müssen. Für die Vorhersage der Lebensdauer neuer Produkte und damit für eine zielgerichtete Optimierung der Zugstränge kann man diese Formel somit nicht verwenden.

Weiterhin wurden verschiedene Ansätze entwickelt, die Vorgänge in einem belasteten Seil ausschließlich mathematisch zu erfassen ([Fey1] [Cos] u.a.). Die Lage eines Filaments in der Litze beschreibt eine geometrische Raumkurve, aus deren Änderung man bei Zug- und
Biegebelastung des Seils Aussagen über die inneren mechanischen Spannungen ableiten kann. Allerdings sind dabei keine ausreichenden Angaben über die reibungsbehafteten Kontaktvorgänge zwischen den Einzelfasern möglich, welche durch ihren sehr großen Einfluss auf die resultierenden Spannungen jedoch maßgeblich den Verschleiß des Zugstrangs bestimmen.

2.3 Modellierung mit der Methode der Finiten Elemente

Am Institut für Feinwerktechnik und Elektronik-Design der TU Dresden werden schon seit einigen Jahren FE-Simulationen von Zahnriemenge triebe durchgeführt. Dabei kann das Verhalten des Zahnriemens bereits sehr gut abgebildet werden. Auch das Systemverhalten der Zugstränge und damit ihr Einfluss auf das Getriebeverhalten ist implementiert [Fra]. Eine Analyse der inneren Vorgänge im Zugstrang, also das Verhalten der einzelnen Filamente, und damit eine Betrachtung der Biegewechselselfestigkeit der Zugstränge im Zahnriemen kann mit diesen Arbeiten jedoch noch nicht erfolgen.
2.4 Zusammenfassung

3 Präzisierung der Aufgabenstellung

Im Rahmen dieser Arbeit sollen deshalb diese inneren Belastungsvorgänge mit Hilfe der Methode der Finiten Elemente nachgebildet werden, um somit eine wichtige Grundlage zur Optimierung der Lebensdauer zu erhalten.

In einem ersten Schritt wird dazu eine einfache Litze der Form 1+6 modelliert, welche aus einem Kerndraht mit sechs gleichmäßig um diesen gewickelten Außendrähten besteht. An dieser Litze ist zunächst das Verhalten unter Zugbelastung und nachfolgend unter Biegung über eine glatte Scheibe entsprechend der üblichen Dauerversuchsanordnungen für Zugstränge zu analysieren. Die dabei gewonnenen Ergebnisse sind mit den aus der Literatur bekannten theoretischen Betrachtungen zu vergleichen.

Wie allgemein bei der Modellierung von tatsächlichen Vorgängen üblich, ist es auch bei der Abbildung der Zugstrangbelastung mit der Methode der Finiten Elemente sehr wichtig, die Ergebnisse so weit wie möglich mit experimentellen Untersuchungen zu untermauern. Hierfür muss ein entsprechendes Validierungsverfahren gefunden werden.

Aus den bei der Simulation gewonnenen Aussagen sind geeignete Maßnahmen abzuleiten, um die inneren mechanischen Beanspruchungen im belasteten Zugstrang möglichst gering zu halten und damit ihre Lebensdauer zu erhöhen. Zudem können die hier erreichten Kenntnisse über die Belastungsverteilung in weiterführenden Arbeiten mit dazu beitragen, eine Theorie zur Lebensdauervorhersage aufzustellen.
4 Verhalten eines gewickelten dünnen Stahlseils

4.1 Aufbau und Einteilung gewickelter Stahlseile

Allgemein betrachtet besteht ein Stahlseil aus der Seileinlage mit um diese schraubenförmig angeordneten Litzen. Diese wiederum enthalten den Kerndraht, um den eine oder mehrere Lagen von Außendrähten geschlagen sind (Bild 4.1).

Die Seileinlage besteht bei Seilen großer Abmessungen in der Fördertechnik häufig aus Natur- oder Kunstfasern, mitunter werden jedoch ebenfalls Stahllitzen verwendet. Setzt man bei Zahnriemen Stahlseile als Zugstränge ein, sind aufgrund ihrer sehr geringen Durchmesser von oft unter einem Millimeter ausschließlich Stahllitzen als Einlage gebräuchlich. Die übliche die Seilkonstruktion beschreibende Nomenklatur verdeutlicht Bild 4.2a anhand der Konstruktion „SEL 0,365+6x0,35+6x(0,35+6x0,30)“, eines typischen Vertreters für Zugstränge. „SEL“ steht für ein Seil mit Stahleinlage. Diese besitzt einen Kerndraht mit
0,365 mm und sechs Außendrähte mit 0,35 mm Durchmesser. Die Seileinlage ist mit sechs Litzen umgeben, die aus jeweils einem Kerndraht mit 0,35 mm und sechs Außendrähten mit 0,30 mm Durchmesser bestehen. Ohne Berücksichtigung der verschiedenen konkreten Drahtdurchmesser kann eine solche Litze vereinfacht auch als Typ 1+6 und das ganze Seil als Konstruktion 1+6 + 6x(1+6) bezeichnet werden. Da in diesem Fall sowohl die Kern- als auch die Außenlitzen vom Typ 1+6 sind, ist darüber hinaus eine Zusammenfassung zur Konstruktion 7x7 üblich [Bek].

Neben der Anordnung der Drähte und Litzen im Seilquerschnitt spielt auch die Schlaglänge bzw. der Schlagwinkel eine große Rolle für die Eigenschaften des Seils. Die Schlaglänge \(L \) einer Litze bezeichnet die Seillänge, die diese Litze für eine vollständige Umschlingung der Seileinlage benötigt (Bild 4.3). Der Schlagwinkel der Litze ist der Winkel zwischen der Seilachse und der gestreckten Litzenachse. Analog dazu sind Schlaglänge \(l \) und Schlagwinkel \(\alpha \) der Außendrahtlagen in der Litze definiert. Damit entsprechen diese Kenngrößen der Steigung und dem Steigungswinkel beim Gewinde von Schrauben.

Die Komplexität eines Seils spiegelt sich nicht nur in der Anzahl der Einzeldrähte wider, sondern auch in der der notwendigen Verseilgänge. Bei der einfachen Verseilung, dem sogenannten Spiralseil, handelt es sich praktisch um eine Litze mehrerer Drahtlagen, wogegen...
man ein Rundlitzenseil als zweifach verseilt bezeichnet, d.h. die Litzen werden erst in einem zweiten Verseilgang zum Seil geschlagen. In Zahnriemen kommt meist diese Konstruktionsform zum Einsatz. So gehören die im Bild 4.2 dargestellten Beispiele ebenfalls zu dieser Klasse. Dreifach verseilte Konstruktionen, sogenannte Kabelschlagseile, werden aus mehreren Rundlitenseilen geschlagen. Für Zahnriemen haben diese allerdings keine Bedeutung, ebenso wie Flachseile, die aus mehreren nebeneinanderliegenden Litzen bestehen, oder Flechtseile, in denen die Litzen nicht umeinander geschlagen, sondern miteinander verflochten sind.

![Bild 4.5: Sonderformen bei der Seilherstellung](image)

a) Spiralseil mit 24 Keil- und 24 Z-Drähten [Jeh1], b) Dreikantlitze als Beispiel einer Formlitze [Fey2], c) Seil mit nachgezogenen Außenlitzen [Jeh1]

Für Zugstränge in Zahnriemen sind diese Verfahren jedoch bedeutungslos. Einerseits wäre bei den schon erwähnten kleinen Seildurchmessern der Einsatz dieser Technologien sehr problematisch, andererseits ist ein Schutz gegen äußere Verschmutzung meist nicht nötig. Man wünscht im Gegenteil für die gute Haftung des Elastomers eine große Oberfläche sowie

4.2 Simulation mit der Finite Elemente Methode

Das zugrundeliegende Prinzip ist bei all diesen Anwendungen gleich: Ein vorhandenes Kontinuum, also ein tatsächliches Bauteil bzw. Gebiet wird in einzelne endliche Teile, die *Finiten Elemente*, zerlegt, die über eine bestimmte Anzahl sogenannter Knotenpunkte, auch einfach nur *Knoten* genannt, miteinander verbunden sind. Bei dieser Diskretisierung wird nun die über das Gebiet verteilte physikalische Größe mithilfe sogenannter Ansatzfunktionen auf die Funktionswerte in den einzelnen Knoten zurückgeführt. Für Festigkeitsbetrachtungen bedeutet dies, dass ein Gleichungssystem \(F = Ku \) zwischen den Knotenkräften \(F \) und -verschiebungen \(u \) entsteht. Die Matrix \(K \) stellt dabei die sogenannte Gesamtsteifigkeitsmatrix dar, die sich aus den einzelnen Elementsteifigkeiten ergibt. Setzt man nun die Lager- bzw. Randbedingungen in das Gleichungssystem ein, kann dieses nach den Verschiebungen der freien Knoten aufgelöst werden, woraus sich alle Folgegrößen wie die Dehnungen und mithilfe der Werkstoffkennwerte die mechanischen Spannungen im Bauteil ableiten lassen.

Die Anfänge der Finite Elemente Methode reichen nach [Kno] bis in das 19. Jahrhundert zurück, als auf dem Gebiet der Baustatik die Stabwerksstatik in der noch heute bekannten
Verhalten eines gewickelten dünnen Stahlseils

Berechnung von Zugsträngen mit FEM

Obgleich der Zugstrang aus sehr einfachen geometrischen Grundkörpern besteht, bereitet die Modellierung mit einem FEM-System Schwierigkeiten. Da bei einem Großteil der Zugstrangkonstruktionen der Querschnitt über die Seillänge nicht konstant bleibt, reicht allein dessen Betrachtung im Rahmen eines vereinfachten zweidimensionalen Modells nicht aus. Auch das Ausnutzen von Kreissymmetrien, wie sie z.B. der einfache Strang aus Bild 4.8 bietet, kommt spätestens bei der Untersuchung der Seilbiegung und damit bei unsymmetrisch auftretenden Randbedingungen nicht mehr in Frage, so dass ein vollständiges,
dreidimensionales Modell eines Zugstrangabschnittes notwendig ist. Eigene vergleichende Untersuchungen haben gezeigt, dass für die meisten hier angestellten Betrachtungen mindestens eine ganze Schlaglänge simuliert werden sollte, um den Störeinfluss der Randbedingungen, also in dem Falle der vorgegebenen Festhaltungen und Verschiebungen an den Seilenden, vernachlässigigen zu können. Für einige Analysen, z.B. bei der später noch behandelten Sperrung bzw. Relativverschiebung zwischen den Drähten bei Seilbiegung, ist sogar die Abbildung mehrerer Schlaglängen erforderlich, was allerdings den Rechenaufwand vervielfacht.

Die einzelnen Drähte interagieren über eine Vielzahl veränderlicher Kontakte. Daraus ergibt sich für die Simulation eine stark nichtlineare Problematik mit sehr hohem Rechenaufwand. Die Berührungspunkte zwischen den Filamenten haben zudem eine geringe Ausdehnung, so dass an diesen Stellen eine besonders hohe Netzdichte erforderlich ist, was die Komplexität zusätzlich steigert. In der Praxis sind bei der Diskretisierung komplexer räumlicher Strukturen Tetraederelemente mit vier Eckknoten weit verbreitet, welche eine weitgehend automatisierte Vernetzung beliebiger Bauteile zulassen. Deutlich genauere Ergebnisse bei etwa gleicher Elementanzahl ermöglichen Hexaederelemente, die jedoch nicht so flexibel einzusetzen sind und meist ein manuelles Vernetzen erfordern. Dafür sinkt bei vergleichbarer Genauigkeit der Ergebnisse der Rechenaufwand gegenüber einem Modell mit Tetraederelementen erheblich. Durch das Verwenden von Elementen mit Mittenknoten, also Elementen mit quadratischer Ansatzfunktion, kann die Genauigkeit der Ergebnisse noch weiter erhöht werden. Bei der hier verwendeten Simulationssoftware CADFEM ANSYS™ ist diese Option für Tetraederelemente generell empfohlen, welche somit im Normalfall pro Element insgesamt zehn Knoten besitzen. Bei den quaderförmigen Elementen bleibt es dem Anwender überlassen, ob er die einfachen linearen Elemente mit acht Knoten oder jene mit Mittenknoten, also mit insgesamt 20 Knoten wählt (Bild 4.6).

Bild 4.6: Wesentliche Elemente zur Diskretisierung dreidimensionaler Gebilde nach [Ans]

Bild 4.7: Möglichkeiten der Vernetzung zylindrischer Stäbe

a) sehr dicht vernetzte Tetraederelemente mit Mittenknoten, b) relativ grob vernetzte Hexaeder mit Mittenknoten, c) dicht vernetzte Hexaeder ohne Mittenknoten
Damit die einzelnen Drähte im Modell interagieren können, müssen an ihrer Oberfläche sogenannte Kontaktelemente definiert werden. Diese flächenhaften Elemente sind, je nach Art der darunter liegenden Volumenelemente, drei- oder viereckig und besitzen gegebenenfalls Mittenknoten. Wie auch bei vielen anderen FE-Systemen üblich, wird in ANSYS das Paar der sich kontaktierenden Oberflächen in ein sogenanntes „Contact“- und ein „Target“-Gebiet aufgeteilt. Technisch gesehen gilt der Kontakt dann als geschlossen, wenn die Contact- die Target-Fläche minimal durchdrungen hat. Da in einem Simulationsmodell auch mehrere räumlich getrennte Kontaktpaare auftreten können, erhalten die miteinander korrespondierenden Kontaktelemente eine bestimmte Identifikationsnummer. Während der Simulation müssen nun nicht fortwährend jedes Contact- mit jedem Target-Gebiet auf möglichen Kontakt überprüft werden, sondern nur jene Paare mit gleicher Nummer, was einen deutlich positiven Einfluss auf die Rechenzeit hat. Bei Betrachtung ein- oder mehrlagiger Litzen ist die Definition verschiedener Kontakte durchaus sinnvoll, bei mehrfachen Verseilungen gestaltet sich die Zuordnung verschiedener Kontaktpaare jedoch als sehr schwierig. Um hier trotzdem überall einen möglichen Kontakt sicherzustellen, müssen auf der gesamten Oberfläche der Drähte sowohl Contact- als auch Target-Elemente gleicher Identifikationsnummer erstellt werden, in ANSYS „Symmetrischer Kontakt“ genannt. Durch die so entstehende große Anzahl von Kontaktelementen, die für die Simulation ein hohes Maß an Nichtlinearität darstellen, steigt der Berechnungsaufwand allerdings sehr stark an. Zwischen den Kontaktpartnern wird Coulombsche Reibung mit dem Reibkoeffizienten $\mu = 0,3$ angenommen, was einer ungeschmierten Stahl-Stahl-Paarung entspricht.

Die verwendete Werkstoffkennlinie ergibt sich aus Zugversuchen von hochfesten, mehrfach kaltgezogenen Drähten für Feinseile [Ifte1]. Mit einem E-Modul von ca. 210000 N/mm², einer Streckgrenze R_e von 2300 N/mm² und einer Bruchgrenze R_m von 3050 N/mm² entsprechen die Werte in etwa denen von hochwertigem Federstahl. Im Modell ist die Kennlinie durch eine abschnittsweise lineare Funktion angenähert.

Für die Zugsimulation wird ein Seilende fixiert und das andere mit der entsprechenden Axialkraft belastet sowie gegen Verdrehen gesichert. Bei Biegung um die Seilscheibe verändert sich nun schrittweise die Richtung dieses Kraftvektors, bis der gesamte Seilabschnitt mit der Scheibe in Kontakt steht. Die Scheibe selbst kann als ideal steif betrachtet werden.
4.3 Betrachtung einer Litze des Typs 1+6

Bild 4.8: Litzentyp 1+6
a) Schlagwinkel ca. 7°, b) Schlagwinkel ca. 60°
Nachteile dieser Technik sind die damit verbundene Kostensteigerung bei der Herstellung und Probleme durch unterschiedliche fettungsbedingte Torsions-Vorspannungen in den verschiedenen Drahtlagen.

Geometrisch betrachtet stellt der Kerndraht in der gestreckten Litze einen einfachen Zylinder dar. Um diesen winden sich die Außendrähte, einer helixförmigen Raumkurve folgend. Diese Bahnkurve lässt sich nach [Schi] mathematisch folgendermaßen beschreiben:

\[
x = \pm r \sin(\varphi + \varphi_0), \tag{4.1}
\]
\[
y = r \cos(\varphi + \varphi_0), \tag{4.2}
\]
\[
z = \frac{r}{\tan \alpha} \varphi, \tag{4.3}
\]

mit \(x, y, z\) kartesische Koordinaten, \(r\) Windungsradius der Drähte, \(\varphi\) laufender Winkel, \(\varphi_0\) Winkeloffset der Einzeldrähte und \(\alpha\) Schlagwinkel der Drähte.

Das positive Vorzeichen in Gl. (4.1) steht für Links-, das negative für Rechtsschlag. Die Bahnen der einzelnen Außendrähte in der Litze unterscheiden sich lediglich bezüglich des Winkeloffsets \(\varphi_0\), bei sechs dieser Drähte wächst \(\varphi_0\) also im Intervall von 60°. Bild 4.9 zeigt die resultierende Raumkurve für \(\varphi_0=0°\).

\[\text{Bild 4.9: Raumkurve eines Außendrahtes in der geraden Litze [Fey1]}\]
Schlagwinkel α und Schlaglänge l sind über Gl. (4.4) verknüpft:

$$l = \frac{2\pi r}{\tan \alpha}. \quad (4.4)$$

4.3.1 Verhalten bei Zugbelastung

Theoretische Ansätze

Üblicherweise wird die Zugbelastung eines Seils bei Aufbringen einer Axialkraft S über die allgemeine Seilzugspannung nach Gl. (4.5) ausgedrückt:

$$\sigma_z = \frac{S}{A_m}. \quad (4.5)$$

Dabei bezeichnet A_m den metallischen Seilquerschnitt, der sich aus der Summe der Querschnitte der Einzeldrähte zusammensetzt. Somit ist die Seilzugspannung nur als ein erster grober Richtwert für die Belastungsbetrachtung anzusehen, da sie weder die Belastungsunterschiede der einzelnen Drahtlagen erfasst, noch die Tatsache beachtet, dass der geometrische Querschnitt der Drähte von deren tatsächlicher Schnittfläche senkrecht zur Seilzugrichtung abweicht, wie bereits im vorherigen Abschnitt erläutert.

Genauere Aussagen liefert Gl. (4.6), welche nach [Fey1] die konkrete Drahtzugspannung σ_z der Drahtlage k in einem n-lagigen Spiralseil berechnet:

$$\sigma_z = \frac{\sum_{i=0}^{n_D} \left(z_i \cos^2 \alpha_i \frac{E_i}{1 + v_i \sin^2 \alpha_i} A_i \right) \cos^2 \alpha_k E_k}{\sum_{i=0}^{n_D} \left(z_i \cos^2 \alpha_i \frac{E_i}{1 + v_i \sin^2 \alpha_i} A_i \right)} S \quad (4.6)$$

mit v Querkontraktionszahl der Drahtwendel, E Elastizitätsmodul, A_i Drahtquerschnittsfläche in i-ter Lage, z_i Anzahl der Drähte in Drahtlage i und n_D Anzahl der Außendrahtlagen.
Im Litzentyp 1+6 beträgt $n_L = 1$, die Lage $k = 0$ bezeichnet den Kerndraht. Gemäß [Fey1] kann bei Seilen aus Stahllitze die Querkontraktionszahl der Drahtwendel $\nu = 0.3$ angenommen werden.

Durch die Axialkraft wird das Seil gestreckt, und sein Querschnitt nimmt ab. Die Außendrähte stützen sich auf dem Kerndraht ab, wodurch an den Kontaktstellen ein Schnürdruck auftritt. Gleichzeitig verformt sich jedoch auch die Drahtwendel, wodurch zusätzliche Biege- und Torsionsspannungen entstehen. Der Schnürdruck p_D, besser als längenbezogene Radialkraft bezeichnet, ergibt sich nach [Fey1] zu

$$p_D = \frac{F_D \sin^2 \alpha}{r}.$$ \hfill (4.7)

mit F_D Zugkraft im Draht.

Von dieser Linienkraft auf die tatsächlichen lokalen Druckspannungen zu schließen ist jedoch aufgrund der ungeklärten genauen Ausdehnung der Berührflächen schwierig. Einen Anhaltspunkt bieten die Gln. (4.8) bis (4.10) für die Hertzsche Pressung bei Linienberührung, die allerdings ein ideal elastisches Werkstoffverhalten voraussetzen. Dabei wird nach [Kra1] mit Gl. (4.8) zunächst ein Ersatzdurchmesser D_E bestimmt, mit dessen Hilfe die Geometrie zweier sich berührender Zylinder mit den Radien R_1 und R_2 auf ein Zylinder-Ebene-Problem zurückgeführt wird. Mit diesem Durchmesser berechnet sich nach Gl. (4.9) die Breite b_{Hertz} der als rechteckig angenommenen Abplattungszone, aus der schließlich durch Gl. (4.10) die maximale Pressung p_{Hertz} an der Berührstelle folgt:

$$D_E = \frac{2 R_1 R_2}{R_1 + R_2},$$ \hfill (4.8)

$$b_{\text{Hertz}} = \sqrt[4]{\frac{4 p_D D_E (1 - \nu^2)}{\pi E}},$$ \hfill (4.9)

$$p_{\text{Hertz}} = \frac{2 p_D}{\pi b_{\text{Hertz}}}. \hfill (4.10)$$

Erfahrungsgemäß kommt es bei Stahlselien jedoch auch schon bei moderaten Belastungen zu bleibenden Abplattungen, also plastischen Verformungen an den Berührstellen, die demnach mit den Gleichungen der Hertzschen Pressung nicht mehr zu erfassen sind.
Maximale Werte der durch die Axialkraft verursachten Biegespannung σ_b und der Torsionsspannung τ in der Außendrahtlage lassen sich nach [Fey1] analytisch aus der Änderung der Raumkurve ermitteln:

$$
\sigma_b = \left(\frac{\sin^2 \alpha}{r} - \frac{\sin^2 \alpha_0}{r_0} \right) \delta \frac{E}{2}, \quad (4.11)
$$

$$
\tau = \left(\frac{\sin \alpha \cos \alpha}{r} - \frac{\sin \alpha_0 \cos \alpha_0}{r_0} \right) \delta \frac{G}{2}, \quad (4.12)
$$

mit δ Drahtdurchmesser und G Schubmodul.

Hier gibt der Index 0 den Ausgangszustand an, die Zeichen ohne Index sind den sich durch die Verformung ergebenden Werten zugeordnet. Diese wiederum leiten sich wie folgt ab:

$$
r = r_0 \left(1 - \nu \frac{\sigma_{z(k-1)}}{E} \right), \quad (4.13)
$$

$$
\sin \alpha = \sin \alpha_0 \left(1 - \nu \frac{\sigma_{z(k-1)}}{E} \right) \frac{1}{1 + \frac{\sigma_{z(k-1)}}{E}}, \quad (4.14)
$$

Bei Belastung mit einer Axialkraft zeigt die Litze die Tendenz, sich aufzudrehen. Ist sie jedoch wie üblich gegen Verdrehen gesichert, wirkt durch jeden der Außendrähte ein Drehmoment:

$$
M_{\alpha_0} = F_D r \sin \alpha, \quad (4.15)
$$

mit F_D Zugkraft im Draht.

Simulation mit der Finite Elemente Methode

Bild 4.10 zeigt das Modell einer Schlaglänge der Konstruktion 1+6 mit dem Gesamtdurchmesser $d_S = 1,065$ mm, bestehend aus einem Kerndraht mit Durchmesser $d_0 = 0,365$ mm sowie sechs gleichmäßig um diesen gewickelten Außendrähten mit
Durchmesser $d_1 = 0,35$ mm. Die Schlaglänge beträgt $l = 18$ mm im Linksschlag, dies entspricht nach Gl. (4.4) einem Schlagwinkel α von ca. 7,1°.

Bild 4.10: FE-Modell einer Schlaglänge der Konstruktion 1+6 in S-Schlag

Vergleich zwischen den Ergebnissen der Simulation und der theoretischen Ansätze

Eine Gegenüberstellung der wichtigsten Ergebnisse nach den Gln. (4.6) bis (4.15) und der Resultate der Finite Elemente Methode anhand der oben angeführten Seilkonstruktion gibt Tabelle 4.1 wieder.

Gemäß des Ansatzes der Hertzschen Pressung ist die Abplattungszone nach Gl. (4.9) im konkreten Fall weniger als 1,4 µm breit. Um diese Abplattung realistisch abzubilden, müsste also die Ausdehnung der Elemente im Kontaktbereich noch um ein Vielfaches kleiner sein. Da zudem die exakte Kontaktposition vor der Simulation unbekannt ist, kann diese hohe lokale Netzdichte gegenwärtig noch nicht mit vertretbarem Aufwand realisiert werden.

Tabelle 4.1: Vergleich der Ergebnisse durch Simulation und nach den Gln. (4.5) bis (4.15)

<table>
<thead>
<tr>
<th>Konstruktion</th>
<th>0,365 + 6 x 0,35</th>
<th>7 x 0,35</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nach Theorie</td>
<td>Ergebnis FEM</td>
</tr>
<tr>
<td>Seilzugspannung σ_2 in N/mm², Gl. (4.5)</td>
<td>440</td>
<td>-</td>
</tr>
<tr>
<td>Drahtzugspannung Kerndraht σ_{0} in N/mm², Gl. (4.6)</td>
<td>463</td>
<td>450</td>
</tr>
<tr>
<td>Drahtzugspannung der Außendrähte σ_{1} in N/mm², Gl. (4.6)</td>
<td>453</td>
<td>440</td>
</tr>
<tr>
<td>Schnürdruck p_D in N/mm, Gl. (4.7)</td>
<td>1,87</td>
<td>1,9</td>
</tr>
<tr>
<td>Druckspannung p_K in N/mm², Gl. (4.10)</td>
<td>875</td>
<td>135</td>
</tr>
<tr>
<td>Biegespannung σ_b der Außendrähte in N/mm², Gl. (4.11)</td>
<td>7,8</td>
<td>10</td>
</tr>
<tr>
<td>Torsionsspannung τ der Außendrähte in N/mm², Gl. (4.12)</td>
<td>10,3</td>
<td>-</td>
</tr>
<tr>
<td>Drehmoment M_d des Seils in N·mm, Gl. (4.15)</td>
<td>11,6</td>
<td>11,1</td>
</tr>
</tbody>
</table>

Um dennoch die räumlich sehr begrenzten Spannungsspitzen mit hinreichender Genauigkeit zu berechnen, bieten sich zwei Möglichkeiten. Einerseits kann weiterhin auf die Hertzsche Pressung nach Gleichung (4.10) unter Verwendung der in der Simulation erhaltenen Kontaktkräfte zurückgegriffen werden. Dies gilt allerdings nur, solange die ermittelten Spannungen noch im Bereich des elastischen Werkstoffverhaltens der Drähte liegen. Andererseits bietet sich das sogenannte „Submodeling“ in der Simulation an. Hierbei berechnet man zunächst die Seilverformung mit der ursprünglichen Vernetzung. Daraufhin wird der interessierende Ausschnitt, in dem Falle ein ausgewählter Kontaktbereich, noch

Bild 4.14: Druckspannung zwischen Außen- (links) und Kerndraht mit „Submodeling“ in mN/mm² (Breite des Bildausschnitts etwa 10 µm)

Die Berechnungen nach den Gln. (4.6) bzw. (4.11) und (4.12) teilen die Spannungen im Drahtquerschnitt klar in Zug-, Biege- und Torsionsspannung auf. Eine ähnliche Zerlegung ist in bestimmtem Maße auch bei den Ergebnissen der Simulation möglich. Dazu bietet sich in diesem Fall die Analyse der Axialspannung im Außendraht nach Bild 4.15 an. Diese wird durch die Zug- und Biegespannung aufgrund der Längung der Drahtwendel sowie die Druckspannung an der Kontaktstelle zum Kerndraht beeinflusst. Nimmt man an, die biegeneutrale Faser liegt in der Mitte des Außendrahtes bei \(s = 0,175 \) mm, kann an dieser Stelle die Drahtzugspannung mit der Axialspannung gleichgesetzt werden. Bild 4.15b liefert hierfür einen Wert von ca. 445 N/mm². Damit lässt sich bei \(s = 0,35 \) mm ein betragsmäßig maximaler Biegespannungsanteil von rund 10 N/mm² ablesen, der hier als Druckspannung die Axialspannung mindert. An der Berührstelle zum Kerndraht ist die Biegespannung nicht so einfach aus der Axialspannung abzuleiten, da hier zusätzlich der Einfluss der hohen Kontaktpressungen zum Tragen kommt. Verlängert man jedoch den annähernd linearen
Abschnitt der Axialspannung, in Bild 4.15b blau dargestellt, ergibt sich bei \(s = 0 \) mm erwartungsgemäß ebenfalls eine Biegespannung von 10 N/mm². Diese ist etwas größer als die nach Gl. (4.11) ermittelte. Die in Gl. (4.12) aufgeführte Torsionsspannung spielt in der Simulation keine Rolle, ein deutliches Verdrehen der Außendrähte um ihre eigene Achse tritt hier folglich nicht auf.

Das Drehmoment der Außendrähte um die Litzenachse ergibt sich aus den tangentialen Komponenten der Knotenkräfte an der Einspannstelle der Litze und stimmt recht gut mit der Summe der aus Gl. (4.15) erhaltenen Einzelmomente überein.

a)

Bild 4.15: Axialspannung im Außendraht (längs zur Drahtachse) der Konstruktion 0,365+6x0,35
a) Lage des Pfades im Drahtquerschnitt,
b) Verlauf der Spannungskomponenten entlang des Pfades \(s \)

Auch bei der Konstruktion 7x0,35 ist die Seilzugspannung geringer als die Zugspannungen in den einzelnen Drähten. Während hier jedoch nach Gl. (4.6) ebenfalls die Zugspannung im Kerndraht größer als in der Außenlage ist, besteht in der Simulation fast kein Unterschied zwischen den Drahtlagen. Aufgrund des geringeren Querschnittes müsste laut Gl. (4.6) die Zugspannung im Kerndraht etwas größer sein als bei der Konstruktion 0,365+6x0,35. In der Simulation sind diese Werte jedoch praktisch gleich. Den Verlauf der Längsspannung in den Außendrähten zeigt Bild 4.16b, wieder entlang des Pfades aus Bild 4.16a. Da diesmal die hohen Druckbelastungen an den Kontaktstellen zu den benachbarten Drähten der Außenlage auftreten, befindet sich bei \(s = 0 \) mm das durch die Drahtbiegung bedingte Maximum der Axialspannung. Ein deutlicher Biegespannungsverlauf entlang des Pfades kann jedoch nicht
mehr ermittelt werden. Wiederum sind keine durch die Drehung der Außendrähte um ihre eigene Achse hervorgerufenen Torsionsspannungen zu erkennen.

Der Schnürdruck ist nach Gl. (4.7) nicht mehr zu berechnen, da sich dieser ja nur auf den Kontakt zwischen Kern- und Außendraht bezieht. Die Simulation liefert jedoch anhand der Kontaktkräfte einen Wert von ebenfalls ca. 1,9 N/mm zwischen den Außendrähten. Dieser Wert kann nun wieder verwendet werden, um die tatsächlichen Kontaktspannungs spitzen zu erhalten, entweder über die Hertzschen Gleichungen oder das erwähnte Submodeling. Das aus den Lagerreaktionskräften ermittelte Drehmoment stimmt auch hier sehr gut mit der Summe der Einzelmomente nach Gl. (4.15) überein.

Bild 4.16: Axialspannung im Außendraht (längs zur Drahtachse) der Konstruktion 7x0,35
a) Lage des Pfades im Drahtquerschnitt,
b) Verlauf der Axialspannung entlang des Pfades s
4.3.2 Verhalten bei Zug- und zusätzlicher Biegebelastung

Theoretische Ansätze

Entsprechend Gl. (4.5), die einen ersten Richtwert für die Seilbeanspruchung bei Zugbelastung liefert, besteht mit Gl. (4.16) nach Reuleaux die Möglichkeit, die Biegebeanspruchung abzuschätzen [Reu]:

\[
\sigma_{b,\text{Reul}} = \frac{\delta}{D} E. \tag{4.16}
\]

Genauere Aussagen zur Biegespannung entlang eines Drahtes lassen sich auch hier aus der Änderung der Raumkurve ermitteln. Die Parameterkurve für einen Außendraht im gebogenen Strang ist jedoch nach [Schi] deutlich komplizierter, wie die Gln. (4.17) bis (4.19) für einen rechtsgeschlagenen Draht mit \(\varphi_0 = 0 \) zeigen:

\[
x = -r \sin \varphi, \tag{4.17}
\]

\[
y = \frac{D}{2} \cos(\vartheta - \vartheta_0) + r \cos \varphi \cos(\vartheta - \vartheta_0), \tag{4.18}
\]

\[
z = \frac{D}{2} \sin(\vartheta - \vartheta_0) + r \cos \varphi \sin(\vartheta - \vartheta_0). \tag{4.19}
\]

Hierbei bezeichnet \(\vartheta \) den Drehwinkel der Litze um den Biegemittelpunkt entsprechend Bild 4.17. Dieser hängt ebenfalls von \(\varphi \) ab. Allerdings gibt es für diesen funktionalen Zusammenhang nach [Schi] zwei verschiedene Ansätze. Der erste folgt der Annahme, das Verhältnis von \(\vartheta \) zu \(\varphi \) sei konstant und der Schlagwinkel \(\alpha \) verändert sich entlang des gebogenen Seils, der zweite geht von einem konstanten Schlagwinkel aus.
Die resultierenden Biegespannungen zeigen nach Bild 4.18 einen sinusförmigen Verlauf über den Winkel φ. Dabei ist die Amplitude bei konstantem Drehwinkelverhältnis deutlich größer als bei konstantem Schlagwinkel. Während erstere die nach Reuleaux berechnete Biegespannung auch überschreitet, bleibt letztere immer etwas darunter.

Es existiert noch eine Reihe weiterer Herleitungen der Biegespannung, die ähnliche sinusförmige Verläufe ergeben.Alle haben jedoch gemein, dass sie kompliziert zu handhaben sind, so dass insbesondere bei den Seilherstellern meist nur die Spannung nach Reuleaux verwendet wird.

Neben den Biege- sind auch die Druckbelastungen, hervorgerufen durch den Kontakt zur Seilscheibe, von großer Bedeutung. [Fey1] gibt die Seilpressung k nach Gl. (4.20) des zu einem gekrümmten Zylinder vereinfachten Seils in einer Scheibe mit Rundrille mit oder ohne Unterschnitt als Funktion des Rillenwinkels γ an. Dabei geht er von einer kOSinusförmigen Verteilung über γ entsprechend Bild 4.19 aus:
Die Winkel γ_1 und γ_2 bezeichnen den Anfangs- und Endwinkel der Berührungszone. Für nicht unterschnittene Rundrillen beträgt $\gamma_1 = 0$. Die maximale Drahtkuppenkraft tritt in jedem Fall bei $\gamma = \gamma_1$ auf, jedoch ist nach [Fey1] die insgesamt größte Beanspruchung der Außendrähte trotzdem an der Drahtrückseite zu erwarten, wo die durch den Scheibenkontakt eingebrachte Querkraft an den benachbarten Innendrähten weitergegeben wird und zusätzlich durch die Seilbiegung eine hohe Zugspannung im Außendraht vorliegt.

\[
k = \frac{2 S \cos \gamma}{D d \left(\frac{1}{4} \sin 2\gamma_2 + \frac{1}{2} \gamma_2 - \frac{1}{4} \sin 2\gamma_1 - \frac{1}{2} \gamma_1 \right)}.
\]

(4.20)

Bild 4.19: Pressung zwischen Seil und Rundrille für eine idealisierte glatte Seiloberfläche [Fey1]

[Jeh1] teilt die Streckenkraft g nach Gl. (4.21) gleichmäßig auf die die Scheibe berührenden Drahtkuppen auf, woraus sich die Drahtkuppenkraft für eine einfache Litze nach Gl. (4.22) mit der Anzahl z_L der Außendrähte ergibt:

\[
g = \frac{2 S}{D}.
\]

(4.21)

\[
F_k = g \frac{L}{z_L}.
\]

(4.22)
Simulation mit der Finite Elemente Methode

Zunächst ist auch hier die in Kap. 4.3.1 behandelte Litze des Typs 0,365+7x0,35 Gegenstand der Untersuchung. Wiederum ist das eine Seilende fixiert und das andere gegen Verdrehen gesichert sowie mit der gewünschten Axialkraft belastet. Durch schrittweise Änderung der Richtung des Kraftvektors wird der Zugstrang daraufhin über eine als ideal steif betrachtete glatte Seilscheibe gebogen (Bild 4.20a). Die Axialkraft drückt das Seil gegen die Scheibe, die vom Biegemittelpunkt abgewandten Außendrahtabschnitte verschieben sich nach Bild 4.20b merklich, d.h. die Sperrung s_D, also der Abstand zwischen den Drähten der Außenlage, vergrößert sich an diesen Stellen deutlich. Beträgt nach [Fey1] die Sperrung für dieses Seil im geraden, entspannten Zustand konstant ca. 5 bis 6 µm, so ergibt die Biegesimulation bei einer Modellierung von drei Schlaglängen den in Bild 4.21a dargestellten Verlauf über φ zwischen zwei nach Bild 4.21b gewählten Außendrahten. Erwartungsgemäß ist eine Periodizität über 2π zu erkennen. Die geringfügigen Unterschiede in den Amplituden können auf die in diesem Fall auf drei Schlaglängen reduzierte Modellgröße zurückgeführt werden.

Bild 4.20: Biegung der Litze über eine glatte Scheibe (Modell einer Schlaglänge)

a) Randbedingungen, b) gebogenes Seil (Seilscheibe ausgeblendet, Farbdarstellung der ersten Hauptspannung)
Bild 4.21: Sperrung im gebogenen Seil

a) berechneter Verlauf über drei Schlaglängen \((D=50 \, d_S, \, S=200 \, N)\), b) Definition der Sperrung \(s_D\) am ausgewählten Drahtpaar (überhöht dargestellt), Zustand \(\phi=0\) an der Stirnseite links oben im Bild dargestellt

Die vonMises-Vergleichsspannung in den Drahtquerschnitten besitzt einen deutlichen Gradienten entsprechend der Seilbiegung und reicht bis ca. 1750 N/mm² (Bild 4.22). Prinzipielle Unterschiede zwischen Kerndraht und Außendrähten, wie sie bei reiner Zugbelastung (s. Bild 4.11a) auftreten, sind nicht mehr vorhanden. Durch die relativ hohen Biegespannungen tritt der Einfluss der Kontaktpressungen zwischen den Drähten auf die Vergleichsspannung in den Hintergrund. Wie in [Fey1] erwartet, liegt das Spannungsmaximum \(\sigma_{vM_{\text{max}}}\) an der Drahtrückseite des mit der Scheibe in Kontakt stehenden Außendrahtes.

Bild 4.22: vonMises-Vergleichsspannung in der Litze 0,365+6x0,35 in mN/mm² bei Biegung über eine glatte Scheibe \((D=100 \, d_S, \, S=300 \, N)\)
Deutliche Abweichungen zwischen den Spannungsbildern fallen jedoch bei Betrachtung der verschiedenen Seilabschnitte auf. Bild 4.23 zeigt die Kontaktbereiche zwischen Seil und Scheibe. Berührung tritt danach nur an den Stellen auf, wo genau ein Außendraht der Scheibe gegenüberliegt. Dort werden relativ hohe Druckspannungen in das Seil eingeleitet, anhand der dritten Hauptspannungen in Bild 4.24a dargestellt. Diese reichen betragsmäßig mit bis ca. 1060 N/mm² fast an die Größenordnung der maximalen Längsspannungen von 1380 N/mm² in Bild 4.25a heran. In den Bereichen ohne Kontakt zur Scheibe (Bild 4.24b) entstehen Druckspannungen lediglich durch den wesentlich geringeren Kontaktdruck der Drähte untereinander sowie durch die Seilbiegung und haben einen maximalen Betrag von 230 N/mm².

Bild 4.23: Kontaktstellen zwischen Seil und glatter Scheibe

Bild 4.24: Verteilung der dritten Hauptspannung im Strangquerschnitt in mN/mm² (D=100 d, S=300 N)

a) an Kontaktstelle zur Scheibe, b) Bereiche ohne Kontakt zur Scheibe
Verhalten eines gewickelten dünnen Stahlseils

Bild 4.25: Verteilung der Seillängsspannung im Strangquerschnitt in mN/mm² (D=100 dₜ, S=300 N)

a) an Kontaktstelle zur Scheibe, b) Bereiche ohne Kontakt zur Scheibe

Auch die Längsspannungen sind hier etwas niedriger (Bild 4.25b), da durch das nur örtliche Abstützen des Seils auf der Scheibe die kreisförmige Seilbiegung noch durch zusätzliche lokale Biegungen überlagert wird. Wo kein Kontakt mit der Scheibe existiert, rückt das Seil näher an diese heran. Das verdeutlicht Bild 4.26 durch die periodische Änderung der Axialspannungen im Kerndraht. Hier repräsentieren die rot dargestellten Abschnitte die Gebiete mit erhöhter Spannung über den Kontaktbereichen. Obwohl die Abweichungen der Kerndrallage von der idealen Kreisform nur wenige Mikrometer betragen, schwankt die Zugspannung in der Außenfaser zwischen 1050 und 1300 N/mm².

Auch die durch die Biegung erzeugte Druckspannung in Längsrichtung des Seils wird an den Kontaktstellen zur Scheibe erhöht (s. Bereich I in Bild 4.25a). Grund hierfür ist die durch den Kontaktdruck im Draht erzeugte Querkontraktion, die jedoch andererseits die maximalen Zugspannungen in den Kontaktbereichen der Drähte untereinander im Gegensatz zur Vergleichsspannung etwas reduziert (Bereich II).
In dem im Elastomer des Zahnriemens eingebetteten Zugstrang sind diese Effekte durch den fehlenden direkten Kontakt zur Scheibe natürlich nicht in dem Maße zu erwarten; mit den dabei auftretenden Beanspruchungen wird sich Kap. 4.6 befassen. Wie jedoch schon in Kap. 2 erwähnt, sind auch bei Zugsträngen für Zahnriemen Aussagen zur Lebensdauer oft aus Dauerversuchen abgeleitet, in denen nur der Strang über eine herkömmliche Seilscheibe läuft, die entweder, wie bereits betrachtet, eine glatte Oberfläche oder aber eine Rundrille besitzt. Wird eine solche Scheibe mit Rundrille verwendet, fallen auch die auftretenden Spannungen etwas geringer aus. Das Seil schmiegt sich in die gewölbte Scheibe, wodurch sich die Kontaktflächen zwischen Seil und Scheibe vergrößern. So ist die Länge des Berührungsbereichs der Außendrähte zur Rundrille \((r_R=0,55 \, d_S)\) in Bild 4.27a 30 bis 40% größer als zur glatten Scheibe in Bild 4.27b, die vonMises-Vergleichsspannung z.B. verringert sich gegenüber der Biegung über die glatte Scheibe (vgl. Bild 4.22) um mehr als 15% (Bild 4.28).
Vergleicht man die Ergebnisse mit den bei Biegung auftretenden Spannungen in der Litze 7x0,35, sind sowohl bei Anwendung einer glatten als auch einer Scheibe mit Rundrille nur geringfügige Unterschiede zu erkennen. Im Gegensatz zur reinen Zugbelastung, bei der zwar die Maximalspannungen beider Seiltypen ähnlich, die Spannungsverteilungen jedoch deutlich verschieden ausfallen, stimmen nun auch letztere weitgehend überein. Der Biegeverlauf in den Drähten dominiert auch hier das Aussehen. Selbst bei sehr hohen Biegebeanspruchungen \((D = 60 \text{ } d_S, S = 300 \text{ N})\) liegen die maximalen Spannungen in der Litze mit 0,35 mm-Kerndraht nur ca. 5 Prozent über denen der Litze mit etwas größerem Innendraht, wie Bild 4.29 anhand der ersten Hauptspannungen bei Biegung über eine glatte Scheibe zeigt, obwohl sehr gut zu erkennen ist, dass sich bei letzterer zwischen den von der Scheibe abgewandten Drähten eine deutlich sichtbare Lücke bildet, die Außendrähte also erwartungsgemäß beweglicher sind.

Durch die Biegung und den Kontakt zur Scheibe bestehen nun auch bei der Litze 7x0,35 definierte Berührungsbereiche zwischen Kerndraht und Außenlage, die zwischen den Außendrähten übertragenen Kontaktdrücke sind vergleichsweise gering.
Bild 4.29: Verteilung der ersten Hauptspannung im Strangquerschnitt in \(\text{mN/mm}^2 \) bei hoher Biegebelastung \((D=60 \, d_S, S=300 \, N)\) an der Kontaktstelle zur Scheibe
a) Konstruktion 0,365+6x0,35, b) Konstruktion 7x0,35

Vergleich zwischen den Ergebnissen der Simulation und den theoretischen Ansätzen

Nach Gl. (4.16) von *Reuleaux* ergibt sich für die betrachtete Konstruktion 0,365+6x0,35 bei einem Biegeverhältnis \(D/d_S=100 \) in der Außendrahtlage eine Biegespannung von ca. \(\pm 690 \, \text{N/mm}^2 \). Durch Addition der aufgrund der Seillängskraft erzeugten Zugspannung in den Drähten von 453 \(\text{N/mm}^2 \) nach Gl. (4.6) bzw. Tabelle 4.1 resultiert demzufolge eine Drahtlängsspannung zwischen etwa \(-240\) und \(1140 \, \text{N/mm}^2\). Bild 4.30b zeigt einen mithilfe der FEM berechneten Verlauf der Drahtlängsspannung im Außendraht nach Bild 4.30a. Die Position des Drahtes im Seil entspricht dabei der des rechtsliegenden Außendrahtes in Bild 4.26b. Hier schwanken die Werte zwischen \(-110\) und \(1000 \, \text{N/mm}^2\). Wie jedoch z.B. [Schi] feststellt und wie auch Bild 4.25 veranschaulicht, ändern sich die Biegespannungen im Draht in Abhängigkeit des Winkels \(\varphi \) deutlich. Bild 4.31a stellt den mit der FEM berechneten Verlauf der maximalen und minimalen Axialspannungen im Querschnitt eines Außendrahts über zwei Schlaglängen dar. Die römischen Ziffern sind den Bereichen in Bild 4.31b zugeordnet. Gegenüber der glatten Scheibe sind die Spannungsspitzen bei Biegung in einer Rundrille deutlich reduziert, qualitativ sind die Kurven, abgesehen von einem leichten Phasenversatz, jedoch nahezu gleich.
Bild 4.30: Axialspannung im Außen Draht (längs zur Drahtachse) der Konstruktion 0,365+6x0,35 bei Biegebelastung (D=100 d₅₅, S=300 N)

a) Lage des Pfades im Drahtquerschnitt, Drahtlängsspannung in mN/mm², b) Verlauf der Axialspannung entlang des Pfades s

Bild 4.31: Verlauf der Axialspannung im Außen Draht der Konstruktion 0,365+6x0,35 bei Biegebelastung (D=100 d₅₅, S=300 N)

a) minimale und maximale Spannungswerte über zwei Schlaglängen, b) Zuordnung der Drahtbereiche I bis IV (Kerndraht transparent dargestellt)
Vermindert man diese Axial- um die durch die Seilzugkraft hervorgerufene Zugspannung im Draht von 440 N/mm² nach Tabelle 4.1 und normiert diese, hier reduzierte Axialspannung \(\sigma_{a,\text{red}} \) genannt, auf die ermittelte Reuleaux-Spannung von \(\pm 690 \, \text{N/mm}^2 \), kann der resultierende Verlauf mit den Kurven aus Bild 4.18 verglichen werden. Eine solche Gegenüberstellung zeigt Bild 4.32 anhand der Ergebnisse für die glatte Scheibe. Allerdings unterliegt die reduzierte Axialspannung noch den durch die Querkontraktion verursachten Spannungsänderungen an den Kontaktstellen nach Bild 4.25a. Im Bereich IV nach Bild 4.31b stimmen die minimalen und die maximale reduzierte Spannung in etwa überein, wogegen Bereich II deutliche Unterschiede aufweist, die auf den Einfluss der Querkontraktion zurückzuführen sind. In Bereich IV repräsentieren demzufolge die reduzierten Spannungen in etwa die Biegespannungen, wohingegen in Bereich II die tatsächlichen Biegespannungen zwischen beiden Werten zu suchen sind. In beiden Bereichen wird die Spannung nach Reuleaux deutlich überschritten. Liegt im Bereich IV die Spannung mit dem 1,2-fachen der Reuleaux-Spannung noch ungefähr innerhalb der mit konstantem Biegeverhältnis vorhergesagten Schwankungsbreite, wird sie im Bereich II mit dem 1,5- bis 1,8-fachen deutlich übertroffen. Allerdings verringern sich diese Werte bei Einsatz der Rundrille auf das 1,3- bis 1,5-fache der Spannung nach Reuleaux. Des weiteren sind genau die Bereiche II und IV nach der Theorie die Gebiete, wo der Außendraht mit der Seilkrümmungsebene den Schlagwinkel \(\alpha \) einschließt und demzufolge die geringste Biegespannung aufweisen sollte. Die im Gegensatz dazu an diesen Stellen liegenden Maxima in der Simulation lassen sich wiederum mit den zusätzlichen lokalen Biegungen über den Kontaktstellen zur Scheibe erklären, wie bereits zu Bild 4.26 ausgeführt. Dies gilt gleichermaßen für die glatte Scheibe wie auch, wenngleich etwas schwächer ausgeprägt, für die Rundrille. Ähnlich also dem Zahnriemen, der bedingt durch die eingreifenden Zähne bei der Biegung um die Zahnscheibe den Polygoneffekt zeigt, verhält sich auch das Seil bei Biegung um eine Seilscheibe aufgrund der Stützstellen der Außendrähte.
Bild 4.32: Vergleich des reduzierten Axialspannungsverlaufs bei glatter Scheibe mit der Biegespannung nach [Schi] über zwei Schlagängen bei Biegung mit $D=100\,d_S$ und Zugbelastung $S=300\,N$, normiert auf die Reuleaux-Spannung

Die Simulation ermittelt sowohl für die glatte als auch für die Scheibe mit Rundrille eine Drahtkuppenkraft von ca. 18 N, das entspricht in etwa der Drahtkuppenkraft nach [Jeh1], Gl. (4.22), die knapp 17 N beträgt.

Der maximale Kontaktdruck ist mit 900 N/mm² bei der glatten Scheibe bzw. 550 N/mm² bei der mit Rundrille jedoch um ein Vielfaches höher als nach Gl. (4.20) vorhergesagt. Für einen angenommenen Rillenöffnungswinkel $\gamma_2 = 60^\circ$ ergibt diese lediglich eine maximale Seilpressung von rund 7 N/mm². Ursache hierfür ist die zugrundeliegende Vereinfachung des Seils zu einem gebogenen Zylinder und die damit als viel zu groß angenommene Kontaktfläche zwischen Seil und Scheibe (vgl. Bild 4.19 und Bild 4.27).

4.3.3 Zusammenfassung

Für die einfache Litze $l+6$ existieren umfangreiche analytische Betrachtungen, die die mechanischen Beanspruchungen der Drähte sowohl bei Seilzugbelastung als auch bei reinen Biegung beschreiben. Bei reinen Zugbeanspruchung stimmen die analytischen Ergebnisse, abgesehen von den Torsionsspannungen, mit denen der Simulation für die
Konstruktion 0,365+6x0,35 gut überein und ermöglichen eine nahezu vollständige Erfassung der inneren Vorgänge. Für die Kontaktdrücke zwischen den Außendrähten und dem Kerndraht gilt dies jedoch nur, solange keine plastischen Verformungen auftreten. Ebenso stoßen diese Betrachtungen bei der Konstruktion 7x0,35 an ihre Grenzen, da hier die Außendrähte ein Gewölbe bilden, so dass z.B. die Gl. (4.7) für den Schnürdruck nicht mehr anzuwenden ist. Bei Biegung um eine Seilscheibe können die Einflüsse der Kontaktkräfte auf das gesamte Seilverhalten mit den herkömmlichen Methoden nicht berücksichtigt werden. Diese sind, wie Bild 4.32 zeigt, jedoch von großer Bedeutung, so dass eine sinnvolle Belastungsanalyse nur mit der Finite Elemente Methode möglich ist, die auch diese Einflüsse abbildet.

4.4 Mehrlagige Rundlitzen

Unabhängig von der Lagenzahl handelt es sich sowohl bei den Standard- als auch den Parallelschlaglitzen immer noch um einfach verseilte Konstruktionen, das heißt, die Raumkurven der Außendrahtachsen können wie schon beim Litzentyp 1+6 mit den noch relativ unkomplizierten Helixgleichungen (4.1) bis (4.3) beschrieben werden. Dementsprechend erfolgen auch die in der Literatur angeführten Belastungsberechnungen nach den in Kap. 4.3.1 und 4.3.2 genannten Gleichungen. Allerdings sind damit insbesondere die Wechselwirkungen zwischen den Außenlagen nicht mehr ausreichend zu erfassen. Nach [Fey1] gibt es auch hier einige Ansätze, insbesondere bezüglich der sekundären Biegespannung bei Standardlitzen, jedoch sind diese aufgrund ihrer Komplexität nur sehr schwer zu handhaben.

Für die Simulation wird sowohl für die Standard- als auch die Parallelschlaglitze ein in der Praxis gebräuchlicher zweilagiger Aufbau mit insgesamt 19 Drähten gleichen Durchmessers von 0,12 mm gewählt. Somit haben beide Konstruktionen den gleichen metallischen Querschnitt (Bild 4.33), was eine direkte Gegenüberstellung erleichtert. Wie schon bei Betrachtung der Litze 1+6 ist der Strang zunächst an einem Ende fixiert und am anderen gegen Verdrehen gesichert. Nach Aufbringen der gewünschten Zugkraft wird die Litze durch schrittweises Ändern der Richtung des Kraftvektors daraufhin über eine steife Scheibe
47

gebogen. Mit 440 N/mm² Seilzugspannung und einem Biegeverhältnis $D/d_S = 100$ entsprechen die äußeren Belastungen sowie die verwendeten Werkstoffparameter den schon bei der Konstruktion 1+6 angesetzten Werten.

Bild 4.33: Querschnitt der zweilagigen Litzen
a) Standardlitze, b) Parallelschlaglitze

4.4.1 Belastungsverhalten der Standardlitze

Die gewählte Litze hat den Aufbau (1+6+12)x0,12 mm mit einem Schlagwinkel von ca. 10,7° im Rechtsschlag, woraus sich für die erste Drahtlage eine Schlaglänge von 4 mm und für die zweite eine von 8 mm ergibt. Aus den vorgegebenen Werten für Seilzugspannung und Biegeverhältnis leitet sich eine Seilzugkraft von ca. 95 N und ein Seilkrümmungsdurchmesser von 60 mm ab. Doch zunächst soll nur die reine Zugbelastung betrachtet werden. Bild 4.34 zeigt die Verteilung der vonMises-Vergleichsspannung nach Aufbringen der Zugkraft. Deutlich erkennbar ist ein wiederkehrendes Muster wechselnder Spannungsminima (blau) und –maxima (rot) in der zweiten Außenlage, wohingegen die erste Außenlage offenbar keine so ausgeprägten Schwankungen aufweist. Grund dafür sind die bereits erwähnten Punktberührungen zwischen den Außendrahtlagen und die damit verbundenen sekundären Biegen. Die roten Bereiche auf den Außenseiten kennzeichnen die Gebiete, in denen Kontakt zwischen den Außenlagenten vorliegt, wohingegen sich in den blauen Bereichen der verseilte Draht ohne Kontakt zur ersten Außenlage durch die Zugspannung ein wenig gerade richtet, was die Existenz der vorhergesagten sekundären Biegespannungen bestätigt.
Dies zeigen auch die großen, jedoch von Draht zu Draht in ihrer Richtung entgegengesetzten Gradienten der Drahtlängsspannung im Strangquerschnitt der zweiten Außenlage in Bild 4.35. Dargestellt ist hier der Schnitt durch die Litze an den Kontaktstellen zwischen den Außenlagen, in Bild 4.34 als Bereich I gekennzeichnet. Aus Bild 4.35b kann man für die zweite Außenlage eine maximale Biegespannung von etwa 400 N/mm² und für die erste von immerhin noch etwa 100 N/mm² ablesen. Allerdings nimmt die Spannung in allen Drähten der ersten Außenlage nach außen hin ab. Nach Gl. (4.11) dürfte die durch die Streckung der Drahtwandel bedingte Biegespannung in der ersten Lage nur knapp 20 N/mm² betragen. Der wesentlich größere tatsächliche Wert ist folglich ebenfalls auf die Wechselwirkung mit der darüber liegenden zweiten Lage zurückzuführen. Betrachtet man hingegen den Querschnitt im Bereich II nach Bild 4.34, entsteht eine deutlich abweichende Spannungsverteilung (Bild 4.36). Zwischen den Außenlagen besteht hier kein Kontakt. Der maximale Biegespannungsanteil der ersten Außenlage beträgt etwa 70 N/mm², allerdings nimmt die resultierende Längsspannung diesmal von innen nach außen zu. Die zweite Außenlage, deren Biegerichtung hier nicht mehr zur Litzenachse gerichtet ist, zeigt eine maximale Biegespannung von ca. 120 N/mm², allerdings ist die sich insgesamt ergebende Drahtlängsspannung sogar kleiner als in der ersten Außenlage. Die Begründung ist in der Verteilung der Zugspannung in den einzelnen Lagen zu suchen. Nach Gl. (4.6) wären für den Kerndraht etwa 490 N/mm² und für die Außenlagen 465 N/mm² zu erwarten. Zwar zeigt der Kerndraht, wie schon bei der Konstruktion 7x0,35, eine homogene Spannung, die diesmal mit 500 N/mm² nur geringfügig über dem vorhergesagten Wert liegt, die Zugspannung in der
ersten Außenlage übertrifft laut Bild 4.35b mit ebenfalls etwa 500 N/mm² jedoch deutlich die Erwartungen, während die Zugspannung der zweiten Außenlage mit 400 N/mm² um einiges niedriger ist als nach Gl. (4.6) berechnet. Aufgrund der Möglichkeit der Drähte, sich in den in Bild 4.34 blau zu erkennenden Zonen gerade zu richten, können diese der äußeren Zugbelastung besser nachgeben. Das widerspricht der üblichen Annahme des Wertes von 0,3 für die Litzenquerkontraktion in Gl. (4.6), besonders in der zweiten Außenlage. Die teilweise Entlastung der zweiten hat natürlich eine höhere Zugbelastung der anderen Drahtlagen zur Folge. Damit sind zwar auch die Drahtzugspannungskomponenten nicht, wie in der Literatur angenommen, in allen Lagen identisch, jedoch relativ ähnlich. Aufgrund der zusätzlich auftretenden sehr hohen sekundären Biegespannungen ist dieser Umstand für die tatsächliche Seilbelastung jedoch nicht relevant.

Bild 4.35: Drahtlängsspannung im Strangquerschnitt im Bereich der Stützstellen zwischen erster und zweiter Drahtlage (Bereich I nach Bild 4.34, S=95 N)

a) Spannungsverteilung in mN/mm² und Verlauf des Pfades s, b) Spannungsverlauf entlang des Pfades s
Wie erwähnt, wird die hohe Belastung in Draht I nach Bild 4.38 durch die an dieser Stelle sehr ungünstige Überlagerung der Einflüsse von sekundärer Biegespannung und Polygoneffekt des Seils verursacht. Da die zweite Außenlage genau die doppelte Schlaglänge
der ersten besitzt, entstehen also, entsprechend der Anzahl der Drähte der zweiten Lage, zwölf dieser Gebiete maximaler Belastung pro Schlaglänge der zweiten Außenlage. Eine abweichende Belastungsverteilung ergibt sich allerdings, wenn das Seil gegenüber dieser Anordnung um 30° um seine Längsachse gedreht auf die Scheibe läuft. Dabei fallen die Positionen von Scheibenberührung und Kontakt der Außendrahtlagen in Seillängsrichtung gesehen zwar ebenfalls zusammen, allerdings haben sowohl der Außendraht mit Kontakt zur Scheibe (Draht I nach Bild 4.39a) als auch jener, der von ihr am weitesten abgewendet ist (Draht II nach Bild 4.39a), keine Berührung mehr zur ersten Außenlage. Das reduziert zwar den Polygoneffekt des Seils und damit die Belastungen fast aller Drähte, aber nun zeigt interessanterweise Draht I eine besonders hohe maximale Vergleichsspannung, deren Wert die Maxima nach Bild 4.38 noch deutlich übersteigt und mit 2400 N/mm² sogar die Elastizitätsgrenze leicht überschreitet. Da er hier nicht durch die erste Außenlage gestützt wird, passt er sich an dieser Stelle der Scheibenkontur an, das heißt, gegenüber seinem Ausgangszustand ist er in die entgegengesetzte Richtung gebogen.

Bild 4.39: Verteilung der vonMises-Vergleichsspannung im Strangquerschnitt in mN/mm² in der Standardlitze bei Biegung über eine glatte Scheibe (D=100 d₀, S=95 N)

a) Litze läuft gegenüber Bild 4.38 um 30° gedreht auf die Scheibe, b) Litze läuft gegenüber Bild 4.38 um 15° gedreht auf die Scheibe (Schnittebene an die Stelle der größten Belastung verschoben)

Läuft das Seil gegenüber Bild 4.38 hingegen nur um 15° gedreht auf die Scheibe, fallen die Kontaktstellen vom Seil zur Scheibe sowie die zwischen den Außenlagen nicht mehr auf die gleiche Querschnittsposition zusammen (Bild 4.39b). Da folglich auch hier der Außendraht an der Berührstelle zur Scheibe nicht von der darunter liegenden Drahtlage gestützt wird, ist
auch bei dieser Anordnung die maximale Belastung noch größer als im ersten betrachteten Fall.

Wie das Seil tatsächlich auf die Scheibe läuft, lässt sich in der Realität jedoch kaum beeinflussen. Demzufolge werden im Betrieb meist alle der betrachteten Zustände auftreten, so dass sich eine mittlere Seilbelastung ergibt, die zwischen den ermittelten Werten liegt. Denkbar ist jedoch ebenfalls, dass sich das Standardseil immer in eine „geometrisch günstige“ Position dreht. Ob dies tatsächlich so ist und welche Position dies wäre bzw. ob dadurch zusätzliche Torsionsbelastungen auftreten, soll weiterführenden Untersuchungen vorbehalten bleiben.

Ist bei zweilagigen Standardlitzen die Drahtanordnung im Seil noch eindeutig, hat schon bei dreilagigen Konstruktionen die Ausgangsstellung der Drähte während des Verseilens einen deutlichen Einfluss auf die Geometrie des Litzenquerschnitts und folglich mit hoher Sicherheit auch auf das Belastungsverhalten bei Zug und Biegung. Mit dem Winkeloffset \(\varphi \) der einzelnen Außenlagen können die Kontaktpaarungen im Querschnitt beeinflusst werden, wie Bild 4.40 beispielhaft zeigt. Da jedoch Standardlitzen mit Lagenzahl drei oder höher bei Zugsträngen für Zahnriemen keine Bedeutung haben, soll auf diese Unterschiede hier nicht weiter eingegangen werden.

\[\text{Bild 4.40: Variation des Querschnitts dreilagiger Standardlitzen durch verschiedene Ausgangspositionen der Drahtlagen beim Verseilen} \]

* a) Kontakt paarungen liegen in einer Reihe, b) Kontakt paarungen sind im Querschnitt versetzt (Kontaktdrähte zwischen erster und zweiter Außenlage rot und zwischen zweiter und dritter braun dargestellt)
Standardlitze mit vergrößertem Kerendraht

Wird im Gegensatz zur betrachteten zweilagigen Standardlitze der Durchmesser des Kerendrahtes auf 0,14 mm erhöht, der der Außendrähte jedoch bei 0,12 mm belassen, erhält man die Konstruktion 0,14 mm+(6+12)x0,12. Bild 4.41 zeigt die Drahtlängsspannungen im Litzenquerschnitt in den Gebieten I und II entsprechend Bild 4.34. Im Gebiet I ähnelt die Verteilung der des Litzentyps (1+6+12)x0,12, es dominieren die Auswirkungen der sekundären Biegungen in der zweiten Außenlage. Deutliche Unterschiede in der Spannungsverteilung treten jedoch im Gebiet II auf. Im Gegensatz zu Bild 4.36 ist die sekundäre Biegung der ersten Außenlage nur noch sehr schwach ausgeprägt, da sich diese Drähte in Linienberührung auf dem Kerendraht abstützen können. Somit tritt die größte Belastung an dieser Seilposition im Kerendraht auf.

Bild 4.41: Verteilung der Drahtlängsspannung in der Konstruktion 0,14+(6+12)x0,12 bei Zugbelastung $\sigma_z=440\, \text{N/mm}^2$

a) im Gebiet I und b) im Gebiet II entsprechend Bild 4.34

Wie bereits beim Vergleich der Litzen 0,365+6x0,35 und 7x0,35 im Kap. 4.3.2 ergeben sich bei der Biegung über eine Scheibe keine nennenswerten Unterschiede zwischen den Belastungsverteilungen der betrachteten Standardlitzen mit 0,12 mm bzw. 0,14 mm Kerendrahtdurchmesser, weswegen auf eine gesonderte Darstellung der Biegebelastung der letztgenannten Konstruktion verzichtet wird.
4.4.2 Belastungsverhalten der Parallelschlaglitze

Die betrachtete Litze besteht aus 19 gleichartigen Drähten des Durchmessers 0,12 mm, die in der Praxis zusammen in einem Arbeitsgang mit der Schlaglänge von 8 mm verseilt sind. Deshalb wird dieser Litzentyp auch als 19x0,12 bezeichnet. Wie bei der zuvor betrachteten Standardlitze ergibt sich aus den gewählten Werten für Seilzugspannung und Biegeverhältnis eine Seilzugkraft von 95 N und ein Seilkrümmungsdurchmesser von 60 mm.

Die Verteilung der Drahtlängsspannung bei Zugbelastung zeigt Bild 4.42. Sofort fällt die unterschiedliche Belastung der äußeren Drähte auf. Während diejenigen, die durch jeweils zwei Drähte der ersten Außenlage gestützt werden, eine relativ gleichmäßige Zugspannung von nur etwa 430 N/mm² aufweisen, besitzen die Drähte, die von der Litzenachse am weitesten entfernt sind, einen deutlichen Biegespannungsanteil von etwa 20 N/mm², der einer Drahtzugspannung von etwa 490 N/mm² überlagert ist, wohingegen nach Gl. (4.6) für alle Drähte der Außenlage eine Zugspannung von etwa 455 N/mm² zu erwarten wäre. Diese Effekte sind jedoch nicht, wie bei der Standardlitze, auf sekundäre Biegungen zurückzuführen, sondern auf die Querschnittsverengung der Litze bei Zugbelastung. Dadurch finden nicht mehr alle Außendrähte auf dem Umfang Platz; in der Folge werden diese Drähte weiter nach außen gedrängt.

Bild 4.42: Drahtlängsspannung im Strangquerschnitt (S=95 N)

a) Spannungsverteilung in mN/mm² und Verlauf des Pfades s, b) Spannungsverlauf entlang des Pfades s
Sowohl der Kerndraht als auch die Drähte der ersten Außenlage zeigen eine relativ gleichmäßige Spannungsverteilung, deren Werte mit etwa 450 N/mm² bzw. 440 N/mm² sowohl deutlich unter denen der vergleichbaren Standardlitze als auch unter den Ergebnissen der Berechnung nach Gl. (4.6) von 475 N/mm² bzw. 470 N/mm² liegen.

Bei Biegung über eine glatte Seilscheibe dominieren auch bei der Parallelschlaglitze die Biegeanteile die Spannungsverteilung; die Unterschiede in den Zugspannungen der einzelnen Lagen fallen nicht mehr ins Gewicht. Deutlich ist jedoch auch bei dieser Konstruktion eine besonders hohe Belastung der Außendrähte an ihren Kontaktstellen zur Scheibe zu erkennen (Bild 4.43). Einerseits ist hier der Kontaktdruck zur Scheibe recht hoch, andererseits ist der auf der Scheibe aufliegende Draht nach Bild 4.43c einer besonders starken Biegung unterworfen. Der Querschnitt dieser Parallelschlaglitze zeigt eine relativ große Polygonalität. Das hat zur Folge, dass bei der zugbelasteten Biegung um die Scheibe nur jeder zweite Außendraht überhaupt in Kontakt mit dieser kommt und sich das gesamte Seil zwischen den Stützpunkten durchstrecken kann, somit die Litze und insbesondere die Außendrähte an den Berührungspunkten zur Scheibe regelrecht geknickt werden.

Bild 4.43: Spannungsverteilung im Strangquerschnitt in mN/mm² in der Parallelschlaglitze bei Biegung über eine glatte Scheibe (D=100 dₘ, S=95 N)

a) von Mises-Vergleichsspannung
b) dritte Hauptspannung
c) Axialspannung
Im Gegensatz zur Standard- ist bei der Parallelschlaglitze der Drehwinkel um ihre eigene Achse beim Auflaufen auf die Scheibe nicht von Bedeutung, da diese Konstruktion überall den gleichen Querschnitt aufweist. Bei Biegung über die Seilscheibe sind jedoch bei diesem Litzentyp die Außendrähte an ihren Kontaktstellen zur Scheibe immer mit Abstand am höchsten belastet. Nimmt man die Vergleichsspannung als Kriterium, liegen die maximalen Werte nur geringfügig über denen des günstigsten, aber weit unter denen des ungünstigsten vorher betrachteten Falles bei der entsprechenden Standardlitze.

Parallelschlaglitze mit vergrößertem Kerndraht

Bei Verwendung eines auf den Durchmesser von 0,14 mm vergrößerten Kerndrahtes ergibt sich bei Zugbelastung eine deutlich von Bild 4.42 abweichende Spannungsverteilung (Bild 4.44). Im Inneren des Kerndrahtes liegt eine reine Zugbelastung von etwa 475 N/mm² vor, die damit dem nach Gl. (4.6) vorhergesagten Wert entspricht. Zum Rand des Drahtes fällt die Längsspannung bedingt durch den nun vorhandenen Kontakt zur ersten Drahtlage merklich ab (Bild 4.44b). Die erste Außenlage besitzt eine etwas geringere mittlere Zugspannung von ca. 460 N/mm² und ist damit nur wenig kleiner als nach Gl. (4.6). Die resultierende Drahtlängsspannung wird jedoch zusätzlich durch die Drahtbiegung und den Kontakt zu den benachbarten Lagen stark beeinflusst. In der zweiten Außenlage zeigen, im Gegensatz zur Konstruktion 19x0,12, die Drähte, die am weitesten von der Litzenachse entfernt liegen, mit etwa 425 N/mm² die insgesamt geringste Längsspannung mit einem nun nach innen gerichteten Gradienten der Biegespannung, die mit ca. 10 N/mm² jetzt auch dem nach Gl. (4.11) erwarteten Wert entspricht.
Bild 4.44: Drahtlängsspannung der Konstruktion 0,14 +18x0,12 im Strangquerschnitt (S=95 N) bei Seilzugbeanspruchung
a) Spannungsverteilung in mN/mm² und Verlauf des Pfades s, b) Spannungsverlauf entlang des Pfades s

Auch bei der Parallelschlaglitze hat ein leicht vergrößerter Kerndraht keine nennenswerten Auswirkungen auf den qualitativen Verlauf der resultierenden Spannungen bei Biegebelastungen. Allerdings sinken im Vergleich zu Bild 4.43 die maximalen Spannungswerte um etwa 10%, da sich die Außendrähte an den Kontaktstellen zur Scheibe durch ihr gleichzeitig kontinuierliches Abstützen auf der ersten Außenlage nicht ganz so stark durchbiegen, wie Bild 4.45 anhand der vonMises-Vergleichsspannung zeigt.

Bild 4.45: Verteilung der vonMises-Vergleichsspannung in mN/mm² der Konstruktion 0,14+18x0,12 bei Biegung über eine glatte Scheibe (D=100 dₙ, S=95 N)
4.4.3 Zusammenfassung

als entsprechende Problemzonen die zum Biegemittelpunkt des Seils gewandten Kontaktstellen zu den Außenlitzen zu erwarten. Dies gilt ebenso für den Einsatz von Standard- als Kernlitzen. Haben hier die Außenlitzen Kontakt zu den innen ungestützten Außendrahtabschnitten der Standardlitze, sind sehr hohe Biegespannungen zu erwarten. Bemerkenswert ist weiterhin der Vergleich der maximalen Spannungswerte beider Litzentypen mit denen der einfachen Konstruktion 1+6 bei gleicher Seilzugspannung und gleichem Biegeverhältnis D/d_s. Nach Gl. (4.16) von Reuleaux müsste sich die die Seilbelastung dominierende Biegespannung der Drähte aufgrund des im Verhältnis zum Seilkrümmungsdurchmesser stark reduzierten Drahtdurchmessers sowohl in der Standard- als auch in der Parallelschlaglitze auf nur noch $\pm 420 \text{ N/mm}^2$ gegenüber $\pm 690 \text{ N/mm}^2$ im Typ 1+6 verringern. Tatsächlich zeigt auch ein Großteil der Drähte im Querschnitt im Vergleich zur einfachen Litze einen deutlich abgeschwächten Biegespannungsverlauf. Aufgrund der vorangehend beschriebenen Effekte unterliegen die Außendraht jedoch zusätzlichen Belastungen, die nahezu gleich bzw. sogar wesentlich höher als bei der vergleichbaren Konstruktion 1+6 sind. Zieht man außerdem in Betracht, dass bei Drähten gleicher mechanischer Belastung aber geringerem Durchmesser zusätzliche abrasive Vorgänge auch früher zum Drahtbruch führen, sind sowohl Standard- als auch Parallelschlaglitzen für den Einsatz in Zugsträngen für Zahnriemen nicht zu empfehlen.
4.5 Rundlitzenseile für Zahnriemen

Zwar folgen in einer unbelasteten, zweifach verseilten Konstruktion die Litzen den einfachen Helixgleichungen (4.1) bis (4.3), die mathematische Beschreibung der Raumkurve eines Einzeldrähtes ist jedoch deutlich komplizierter und lässt sich nach [Fey1] als Parameterkurve folgendermaßen darstellen:

\[
x = \pm \left[R \sin(\varphi_L) + r \left[\cos(\varphi_0 + m\varphi_L) \sin \varphi_L + \sin(\varphi_0 + m\varphi_L) \cos \beta \cos \varphi_L \right] \right], \quad (4.23)
\]
\[
y = R \cos(\varphi_L) + r \left[\cos(\varphi_0 + m\varphi_L) \cos \varphi_L - \sin(\varphi_0 + m\varphi_L) \cos \beta \sin \varphi_L \right], \quad (4.24)
\]
\[
z = \frac{L}{2\pi} \varphi_L - r \sin(\varphi_0 + m\varphi_L) \sin \beta, \quad (4.25)
\]

mit \(R \) Windungsradius der Litzen, \(\varphi_L \) laufender Winkel der Litzen, \(\varphi_0 \) Winkeloffset der Einzeldrähte in den Litzen, \(\beta \) Schlagwinkel der Litzen und

\[
m = \pm \frac{L}{l \cos \beta} - 1. \quad (4.26)
\]
Für Kreuzschlagkonstruktionen gilt in Gl. (4.26) das negative, für Gleichschlagseile das positive Vorzeichen. Sind die Litzen rechtsläufig zum Seil geschlagen, ist das Vorzeichen in Gl. (4.23) zusätzlich negativ, bei Linksschlag positiv.

Nachfolgend werden zwei Konstruktionen zweifacher Verseilung auf ihre Eigenschaften bei Zug- und Biegebeanspruchung untersucht, die bei Zahnriemen weit verbreiteten Kreuzschlagseile 3x3 und 7x3. Bei der Konstruktion 3x3 soll überdies auch das entsprechende Gleichschlagseil betrachtet werden, um zu überprüfen, ob sich die in [Jeh1] getroffenen Aussagen durch die Ergebnisse der FEM-Simulation bestätigen lassen.

4.5.1 Belastungsverhalten der Konstruktion 3x3

Das im folgenden betrachtete Kreuzschlagseil 3x(3x0,12)zS besteht aus drei Litzen, die sich aus je drei rechtsgeschlagenen Drähten mit dem Durchmesser 0,12 mm und der Schlaglänge \(l = 6,3 \) mm zusammensetzen. Die Litzen selbst sind linksläufig mit der Schlaglänge \(L \) von ebenfalls 6,3 mm zum Seil geschlagen (Bild 4.46).

Diese Konstruktion ist aufgrund ihres stark polygonalen Querschnittes sowie der relativ großen Schwankung ihres tatsächlichen Durchmessers in Seillängsrichtung auf den ersten Blick nur schwer als Rundlitzenseil zu erkennen. Aufgrund der im vorangehenden Kapitel aufgezeigten negativen Auswirkungen der geometrischen Polygonalität bei Parallelschlaglitzen sind somit insbesondere bei Biegung über eine Seilscheibe auch bei der Konstruktion 3x3 deutliche Probleme zu erwarten. Trotzdem wird dieser Zugstrang in Zahnriemen sehr gern eingesetzt, da er sich aufgrund seines inhomogenen Querschnitts im
Basiswerkstoff förmlich verhakt und somit eine außerordentlich gute Haftung im Riemen gewährleistet ist.

Mit nur neun Drähten im Seilquerschnitt stellt dieser Zugstrang zwar eine noch sehr einfache zweifach verseilte Konstruktion dar, die oben angegebenen Parameter reichen jedoch, im Gegensatz zu den vorangehend betrachteten einfach verseilten Bauformen, nicht mehr aus, um seinen tatsächlichen Aufbau eindeutig zu beschreiben. So zeigt Bild 4.47 jeweils zwei um \(\Delta \varphi_L = 30^\circ \) versetzte Querschnitte zweier möglicher Varianten, die sich lediglich im Winkeloffset \(\varphi_0 \) der Drähte einer der drei Litzen unterscheiden. Für die Praxis bedeutet dies, dass die anfängliche Ausrichtung der einzelnen Litzen beim zweiten Verseilgang ausschlaggebend für die letztendliche Querschnittsgeometrie des Seils ist, ein Umstand, der bislang in der Literatur keine Beachtung findet. Inwieweit die unterschiedliche Ausgangslage der Litzen Einfluss auf die mechanischen Belastungen hat, soll im folgenden ebenfalls untersucht werden.

Bild 4.47: Zwei Varianten der Konstruktion 3x(3x0,12)zS
a) u. b) radialsymmetrischer Aufbau, Querschnitte um \(\Delta \varphi_L = 30^\circ \) versetzt,
c) u. d) Ausgangslage einer Litze gegenüber radial-symmetrischer Konstruktion um 60° verdreht (\(\Delta \varphi_L = 60^\circ \)), Querschnitte ebenfalls um \(\Delta \varphi_L = 30^\circ \) versetzt

Belastungssimulation der Konstruktion 3x3

Wie bei den einfachen Verseilungen wird der Strang mit einer Seilzugspannung von 440 N/mm² beaufschlagt, was nach Gl. (4.5) einer Zugkraft von ca. 45 N entspricht. Nach
Verhalten eines gewickelten dünnen Stahlseils

[4.27] kann Gl. (4.6) wie folgt erweitert werden, um die Zugspannung eines Drahtes der Drahtlage \(k \) in der Litzenlage \(l \) zu bestimmen:

\[
\sigma_{z_{ij}} = \frac{\cos^2 \beta_i}{1 + \nu_i \sin^2 \beta_i} \frac{\cos^2 \alpha_{ij}}{1 + \nu_{ij} \sin^2 \alpha_{ij}} E_{kl} \sum_{j=0}^{n_l} z_j \frac{\cos^3 \beta_j}{1 + \nu_j \sin^2 \beta_j} \sum_{i=0}^{n_q} z_{ij} \frac{\cos^3 \alpha_{ij}}{1 + \nu_{ij} \sin^2 \alpha_{ij}} E_{ij} A_j S.
\]

mit \(\nu \) Querkontraktionszahl der Drahtwendel, \(E \) Elastizitätsmodul, \(A \) Drahtquerschnittsfläche, \(z_j \) Anzahl der Litzen in Litzenlage \(j \), \(z_{ij} \) Anzahl der Drähte in Drahtlage \(i \) der Litzenlage \(j \) und \(n_l \) Anzahl der Litzenlagen.

Da sich beim Seiltyp 3x3 alle Drähte gleichwertig in der ersten Drahtlage der ersten Litzenlage befinden, beträgt die Drahtzugspannung aller Drähte nach Gl. (4.27) einheitlich 445 N/mm² und weicht somit von der Seilzugspannung nur geringfügig ab. Die tatsächliche Belastung der Drähte und damit auch die Spannungsverteilung in deren Querschnitten ist bei zweifach verseilten Konstruktionen jedoch schon bei reiner Zugbeanspruchung wesentlich komplizierter. Wie auch bei den einfachen Konstruktionen wird das Seil durch die äußere Belastung gelängt und gleichzeitig eingeschnürt, wodurch sich die Raumkurve der Drähte ändert und Biegespannungen auftreten. Dieser Vorgang ist wesentlich schwerer zu erfassen als etwa bei der Konstruktion 1+6, da sowohl die Drähte bezogen auf die Litzen als auch die Litzen im Seil selbst ihre Raumkurve ändern. Schwerwiegender ist jedoch der Umstand, dass sich die Litzen untereinander nur punktuell abstützen, wodurch zusätzliche Biege- und Druckspannungen entstehen.

750 N/mm² etwa 70% über der Seilzugspannung und sind damit mit den Spannungsüberhöhungen der Standardlitze bei entsprechender Zugbelastung vergleichbar.

Beim Zugstrang mit einer um 60° verdrehten Litze berühren sich im ersten Querschnitt in Bild 4.48c nur noch zwei, im zweiten in Bild 4.48d keine der Litzen mehr untereinander. Dafür treten hier in Seillängsrichtung noch weitere paarweise Kontakte zwischen den Litzen auf. Bild 4.49 zeigt eine dieser Kontaktstellen, die sich zwischen den in Bild 4.48 dargestellten Querschnitten befindet. Erkennbar ist eine deutlich erhöhte Biegebelastung, die eine maximale Seillängsspannung von 950 N/mm² zur Folge hat und damit um etwa 25% über der des radialsymmetrisch aufgebauten Zugstrangs liegt. Die großen Kontaktdrücke erzeugen zwar lokal sogar deutlich negative Seillängsspannungen, spielen bei der resultierenden vonMises-Vergleichsspannung, im Gegensatz zu den positiven Biege- spannungsanteilen, jedoch nur eine geringe Rolle (Bild 4.49b). Die häufigen Farbänderungen in der Darstellung der Vergleichsspannung verdeutlichen zudem die erheblichen
Belastungsschwankungen in den Drähten entlang ihrer Achse schon bei reiner Seilzugbelastung.

Bild 4.49: Spannungsverteilung in mN/mm² im Kontaktbereich der Litzen zwischen den Querschnitten aus Bild 4.48c und d bei reiner Zugbelastung $\sigma_z=440$ N/mm²
a) Spannung in Seillängsrichtung, b) vonMises-Vergleichsspannung

Wie bereits erwartet, führt der sehr unrunde Seilquerschnitt bei zusätzlicher Biegung um eine glatte Scheibe zu Problemen. Es entstehen hohe Belastungsspitzen im Bereich der Stützstellen zur Scheibe, da es pro Seilschlaglänge nur drei dieser Stützstellen gibt, zwischen denen sich das Seil wieder deutlich von der Scheibe entfernt (Bild 4.50). Dies führt zu starken lokalen Biegungen um die Kontaktbereiche zur Scheibe. Bild 4.50 zeigt den Verlauf der minimalen und maximalen Spannungen in Drahtlängsrichtung über eine Seilschlaglänge anhand der drei Einzeldrähte der in Bild 4.50b markierten Litze. Die Farben im Diagramm entsprechen der Zuordnung der Drähte in Bild 4.50b. Zusätzlich gelb eingezeichnet ist die aus der Seilzugspannung resultierende theoretische Zugspannung in den Drähten von 445 N/mm² nach Gl. (4.27). Sofern die maximalen und minimalen Drahtlängsspannungen um diese Linie symmetrisch angeordnet sind, kann man aus der Differenz die Biegespannungskomponenten ablesen. Das Maximum der Drahtlängsspannungen tritt mit knapp 1700 N/mm² im rot markierten Draht 1 im Bereich II nach Bild 4.50 auf. Dieser Draht hat hier Kontakt mit der Scheibe und biegt sich lokal sehr deutlich um den Berührpunkt. Zudem zeigt er an dieser Position eine hohe Druckspannung in Drahtlängsrichtung, die trotz vorhandener Seilzugspannung betragsmäßig etwa 1300 N/mm² erreicht. Ursächlich ist wieder der Einfluss der Kontaktdrücke auf die Drahtlängsspannung aufgrund der Querkontraktion, wodurch die zuvor erwähnte Symmetrie nicht mehr gegeben ist. Auch die Drähte 2 und 3 haben im Bereich II ihre Spannungsmaxima. Diese fallen zwar deutlich geringer aus, weil diese Drähte
die Scheibe nicht direkt berühren, sind jedoch mit etwa 1400 N/mm² immer noch recht hoch, da in Bereich II nicht nur Draht 1, sondern die ganze betrachtete Litze um den Stützpunkt auf der Scheibe geknickt wird. Um die Bereiche I und III zeigen alle drei Drähte lokale Maxima, die sich untereinander nur geringfügig unterscheiden und merklich unter den Spitzenwerten von Bereich II liegen. Sie lassen sich damit erklären, dass an den Scheibenstützpunkten auch das gesamte Seil einer lokalen Biegung unterworfen ist, die jedoch von den von der Scheibe entfernter liegenden Litzen durch Relativbewegungen der Drähte besser ausgeglichen werden kann.

Betrachtet man die vonMises-Vergleichsspannung im Bereich II (Bild 4.51), fällt noch ein weiteres Maximum auf. Dieses liegt an der Kontaktstelle von Draht 3 zur benachbarten Litze.
Hier ist wieder der Effekt zu beobachten, dass zwar die positive Drahtlängsspannung durch den Kontaktdruck vermindert wird, die Vergleichsspannung jedoch ansteigt. Die betragsmäßig sehr hohe minimale Drahtlängsspannung in Draht 1 an der Kontaktstelle zur Scheibe spielt bei der Vergleichsspannung hingegen keine bedeutende Rolle mehr.

Bei Biegung des Seils mit phasenversetzter Litze ergeben sich noch ungünstigere Berührverhältnisse zur Scheibe. Da diese Litze selbst keinen direkten Scheibenkontakt mehr aufweist (Bild 4.52), existieren pro Seilschlaglänge nur zwei Berührstellen zwischen Seil und Scheibe (Bereich II und III in Bild 4.53b), an welchen somit noch größere Kontaktkräfte zu übertragen sind. Des weiteren tritt der Polygoneffekt deutlich ausgeprägter auf, was sich in erhöhten Biegespannungen insbesondere in den die Scheibe berührenden Litzen in Bereich II und III ausdrückt.
Bild 4.53a zeigt den Verlauf der minimalen und maximalen Drahtlängsspannungen je eines Drahtes der phasenverschobenen Litze (Draht 3-3) sowie eines Drahtes einer „normal“ angeordneten Litze mit Scheibenkontakt (Draht 1-1). Die maximale Drahtlängsspannung in Draht 1-1 übersteigt mit ca. 1900 N/mm² die des vergleichbaren Drahtes 1 in Bild 4.50 um reichlich 10%. Das Belastungsmaximum des Drahtes 3-3 in Bereich III von über 1500 N/mm² belegt die ungünstigen Lageverhältnisse der phasenverschobenen Litze im Zugstrang, da dieses nicht durch direkten Scheibenkontakt sondern durch eine starke lokale Biegung um die Nachbarlitze entsteht.

Bei der Ausführung des Strangs als Gleichschlagseil fällt zunächst ein interessanter Aspekt auf: Da sowohl die Litzen- als auch die Seilschlaglänge 6,3 mm betragen, bleibt die Geometrie des Strangquerschnitts über die gesamte Seilschlaglänge annähernd gleich. Vergrößert man nun die Schlaglänge der Drähte in den Litzen geringfügig dahingehend, dass pro Seilschlaglänge tatsächlich exakt eine Litzenschlaglänge aufgewickelt ist, entsteht ein
Strang, dessen Querschnitt überall konstant ist. Die dafür notwendige Länge \(s_L \) einer Litze pro Seilschlaglänge berechnet sich nach folgender Gleichung:

\[
 s_L = \frac{L}{\cos \beta}.
\]

(4.28)

Im hier betrachteten Fall muss also die Schlaglänge der Drähte in den Litzen um knapp ein Prozent auf ca. 6,36 mm vergrößert werden. Eine solche Seilauslegung hat nun zur Folge, dass auch bei radialsymmetrischer Litzenanordnung je nach ihrer Ausgangslage verschiedene Strangkonstruktionen entstehen, wie die Beispiele in Bild 4.54a und b zeigen. Dies gilt selbstverständlich auch für die nonsymmetrischen Ausführungen, die im Extremfall einen sehr ungleichmäßigen Querschnitt aufweisen können und somit für praktische Anwendungen nicht in Frage kommen (Bild 4.54c). Des weiteren ist es möglich, dass bei diesen Konfigurationen aufgrund der nicht genau zu definierenden Litzenlage bereits beim Verseilprozess Probleme auftreten.

Bild 4.54: Drei Varianten der Konstruktion 3x(3x0,12)sS (Gleichschlag) bei Litzen- und Seilschlaglänge von 6,3 mm
a) und b) radialsymmetrische Litzenanordnung
c) Ausgangslage einer Litze gegenüber Konstruktion aus a) um 60° verdreht
(\(\Delta \varphi_0 = 60° \))
Die Konstanz des Querschnittes über die Seillänge bei aneinander angepasster Litzen- und Seilseilänge bedeutet weiterhin, dass im Ausgangszustand nicht nur zwischen den Drähten der Litzen, sondern auch zwischen den Litzen selbst Linienberührungen auftreten, was zweifellos vorteilhaft bezüglich der mechanischen Belastungen im Zugstrang ist. So reduzieren sich die maximalen Seillängsspannungen des Strangs aus Bild 4.54a gegenüber denen des vergleichbaren Kreuzschlagseils in Bild 4.48a und b bei identischer Zugbelastung um ca. ein Drittel, da der Einfluss der Kontaktdrücke zwischen den Litzen nur noch sehr gering ausfällt und auch keine sekundären Biegungen der Litzen mehr auftreten (Bild 4.55). Stattdessen ist ein einheitlicher Biegespannungsgradient in den Litzen in Richtung Seilachse erkennbar.

Bei Biegung über eine Scheibe sind diese Vorteile gegenüber dem Kreuzschlagseil jedoch nicht mehr zu erkennen. Auch hier existieren durch die starke Polygonalität des Seilquerschnitts nur drei Stützpunkte zur Seilscheibe, wodurch besonders an den Kontaktstellen in den die Scheibe berührenden Drähten sehr hohe Biegespannungen entstehen, welche letztendlich, wie auch schon beim Kreuzschlagseil, die Maxima der vonMises-Vergleichsspannung bestimmen (Bild 4.56).
Die deutlich verringerten Kontaktdrücke zwischen den Litzen haben keinen merklich positiven Einfluss. Ähnlich wie bei der Kreuzschlagausführung erreicht die maximale Vergleichsspannung fast 1700 N/mm². Zieht man zusätzlich in Betracht, dass das hier betrachtete Gleichschlagseil im Inneren ein sehr großes ungestütztes Gewölbe bildet, was es anfällig gegen Querkraftspitzen macht sowie hohe Anforderungen an den Verseilprozess stellt, kann dieser Typ allenfalls für rein zugbelastete Anwendungen empfohlen werden, bei denen tatsächlich ein deutlicher Vorteil gegenüber der Kreuzschlagvariante zu erkennen ist.

unterscheiden. Um bei der Berechnung solcher Seile mit Finiten Elementen die Modellgröße im erträglichen Umfang zu halten, sollten diese abschnittsweise berechnet werden, was jedoch immer noch einen erheblichen Aufwand erfordert. Bei den Kreuzschlagseilen bewirkt hingegen eine leichte Veränderung des Schlaglängenverhältnisses auch nur eine geringe Änderung der Periode, in welcher sich die Querschnitte aus Bild 4.47a und b abwechseln. Bei Biegung um die Scheibe ist dieser Umstand jedoch durchaus von Bedeutung. Sind auch hier Seil- und Litzenschlaglänge nicht genau aufeinander abgestimmt, ist der Strangquerschnitt nicht mehr an allen Kontaktstellen so zur Scheibe ausgerichtet wie in Bild 4.51, sondern er rotiert langsam bezogen auf die Scheibe. Das bedeutet, dass sich entweder die Kontaktflächen ständig verändern oder dass sich das Seil, sollte es trotzdem immer mit den gleichen Flächen auf der Scheibe zum Liegen kommen, langsam um seine eigene Achse verdreht, was zusätzliche Torsionsspannungen zur Folge hätte. Bei der Herstellung von Zahnriemen könnte eine solche Torsion auch in den Zugstrang eingebracht werden, noch bevor derselbe in das Elastomer eingegossen ist. Da dies insbesondere einen negativen Einfluss auf das seitliche Ablaufverhalten des Riemens erwarten lässt, sollte dieser Aspekt in weiterführenden Arbeiten genauer untersucht werden.

Für die Verwendung der Konstruktion 3x3 als laufendes Seil auf einer Seilscheibe ohne Ummantelung mit einem Elastomer ist jedoch zusammenfassend festzustellen, dass sowohl die Kreuz- als auch die Gleichschlagvariante ungeeignet sind, da ihr stark polygonaler Querschnitt sehr hohe Biegespannungen der Drähte an der Kontaktstelle zur Scheibe hervorruft.

4.5.2 Belastungsverhalten der Konstruktion 7x3

Die Konstruktion 7x3 besteht aus einer Kernlitze und sechs Außenlitzen. Wie beim Typ 3x3 bilden drei umeinandergeschlagene Drähte die Litzen, die somit selbst keinen Kerndraht besitzen. Obwohl auch hier die Litzen wegen der geringen Anzahl der Drähte einen deutlich polygonalen Querschnitt zeigen, nähert sich der Gesamtquerschnitt des Seils aufgrund der größeren Litzenanzahl schon deutlich besser der idealen Kreisform an (Bild 4.57). Bei der zunächst betrachteten, wiederum aus der Praxis entlehnten Konstruktion 7x(3x0,15)zS beträgt die Schlaglänge der Drähte in den Litzen 9 mm rechts- und die der Außenlitzen im Seil 8 mm linksläufig. Da die Litzen gemäß Gl. (4.28) für eine Umschlingung des Seils jedoch lediglich 8,25 mm ihrer tatsächlichen Länge zurücklegen, folgt, dass die Drähte nach einer Seilschlaglänge ihre Ausgangslage noch nicht wieder erreicht haben. Somit trifft hier
Verhalten eines gewickelten dünnen Stahlseils

ebenfalls die bereits bei der Konstruktion 3x3 betrachtete Problematik nicht aufeinander abgestimmter Seil- und Litzenschlaglängen zu. Da in diesem Fall die Polygonalität des Seilquerschnitts jedoch deutlich geringer ausfällt, sind bei Biegung um die Scheibe aufgrund der sich dann auch hier ständig ändernden Kontaktflächen zu dieser zwar keine so starken Auswirkungen auf das Gesamtbiegeverhalten zu erwarten, wohl aber auf die lokalen Beanspruchungen der Drähte. Ähnliches gilt für die Phasenlage der Litzen. Gegenüber der Konstruktion 3x3 sind sogar wesentlich mehr Varianten vorstellbar, die daraus resultierenden Seilgeometrien unterscheiden sich untereinander gegenüber denen des Typs 3x3 jedoch deutlich weniger. Die folgenden Betrachtungen greifen aus der Vielzahl möglicher Querschnitte zwei charakteristische Beispiele heraus, zunächst einen Strang mit radialsymmetrischer Anordnung der Außenlitzen und daraufhin einen, in dem die Phasenlage jeder zweiten Außenlitze gegenüber der radialsymmetrischen Ausführung um 30° versetzt ist. Die Phasenlage der Kernlitze, die bezüglich der Seilbiegung eine weitere Variationsmöglichkeit bietet, ist frei gewählt, jedoch bei beiden Ausführungen gleich.

Bild 4.57: FE-Modell einer Schlaglänge der Konstruktion 7x(3x0,15)zS (radialsymmetrisch)

Belastungssimulation der Konstruktion 7x3

Wie bereits bei der Konstruktion 3x3 sind die resultierenden Drahtbeanspruchungen schon bei reiner Seilzugbelastung sehr komplex und mit den herkömmlichen Methoden nicht mehr vollständig vorhersagbar. So werden auch hier die lokalen Drahtbiegungen durch Überlagerung der Biegung der Drähte um die Litzenachse, Biegung der Litzen um die
Seilachse sowie der sekundären Biegung der Drähte und Litzen um die Draht- bzw. Litzenkontaktstellen untereinander erzeugt. Zudem erhält man aufgrund des vorliegenden Schlaglängenverhältnisses unter Beachtung der Kernlitze praktisch in jedem beliebigen Querschnitt eine andere Geometrie und damit verschiedene Belastungsbilder schon bei reiner Zugbeanspruchung des Seils. Trotzdem sind auch hier charakteristische Effekte zu erkennen. So zeigt Bild 4.58 einen Querschnitt der radialsymmetrischen Ausführung bei reiner Seilzugbelastung mit $\sigma_z=440 \, \text{N/mm}^2$. Hier stützen sich die Außenlitzen ausschließlich gegenseitig ab, der Abstand derselben zur Kernlitze ist beträchtlich. Diese lokale Gewölbebildung tritt periodisch auf, pro Schlaglänge genau sechsmal. In den dazwischenliegenden Seilabschnitten berühren immer drei der sechs Außenlitzen die Kernlitze.

![Bild 4.58: Gewölbebildung im Querschnitt der radialsymmetrischen Konstruktion 7x(3x0,15)zS (vonMises-Vergleichsspannung in mN/mm² bei reiner Zugbelastung $\sigma_z=440 \, \text{N/mm}^2$)](image)

Bild 4.59 zeigt die Seillängsspannungen in zwei dieser Querschnitte. Wie auch die vonMises- ist die Seillängsspannung in Bild 4.59a durch die Gewölbebildung, die in den sich gegenseitig abstützenden Drähten der Außenlitzen einen erheblichen, nach außen gerichteten Biegegradienten verursacht, deutlich erhöht und beträgt mit 1210 N/mm² fast das Dreifache der Seilzugspannung. Die maximalen Spannungen im Querschnitt mit Kontakt zur Kernlitze (Bild 4.59b) sind mit etwa 950 N/mm² um einiges geringer, hier ist lediglich ein schwacher, zur Seilachse gerichteter Biegegradient in den Außendrähten zu erkennen.
Bild 4.59: Verteilung der Seillängsspannung in mN/mm² in zwei typischen Querschnitten der radialsymmetrischen Konstruktion 7x(3x0,15)zS bei rein Zugbelastung mit σz=440 N/mm²
a) Außenlitzen stützen sich ausschließlich gegenseitig, b) Kontakt dreier Außenlitzen zur Kernlitze

Auch die Kernlitze selbst wird im gesamten Seil mit maximal ca. 750 N/mm² deutlich geringer als die Außenlitzen belastet. Bemerkenswert ist zudem, dass über die vollständige untersuchte Seilschlaglänge hinweg nur die drei Außenlitzen Kontakt zur Kernlitze erhalten, die diese auch im Querschnitt von Bild 4.59b berühren. Die verbleibenden drei äußeren Litzen stützen sich ausschließlich auf ihren Nachbarlitzen in den Querschnitten entsprechend Bild 4.59a ab.

Der Hauptnachteil des radialsymmetrischen Strangs, einerseits im Querschnitt mit Kontakt zur Kernlitze einen sehr großen Abstand aller Außenlitzen untereinander aufzuweisen, andererseits jedoch im Querschnitt nach Bild 4.59a ein Gewölbe zu bilden, ist zu vermeiden, indem jede zweite Außenlitze um 60° um ihre eigene Achse gedreht wird, wodurch immer etwa gleiche Abstände zwischen den Drähten der benachbarten Außenlitzen entstehen. Die hier betrachteten Fälle sind nur als theoretisches Gedankenspiel anzusehen, da die Seilhersteller in der Praxis die Ausgangsphasenlage der Litzen beim Verseilen kaum beeinflussen können. Aber man kann annehmen, dass sich die Belastungen eines realen Seils der Konstruktion 7x3 zwischen diesen Extremfällen bewegen. Bild 4.60 zeigt wiederum zwei charakteristische Querschnitte des Seils 7x3 mit nun drei phasenversetzten Außensträngen. Zwar kann eine Gewölbebildung tatsächlich vermieden werden, die maximalen Seillängsspannungen liegen dennoch nur geringfügig unter denen des radialsymmetrischen Seils. Zum einen weist nun die Kernlitze eine recht hohe Belastung auf, welche darauf zurückzuführen ist, dass die Außenlitzen der Zugbelastung durch Einschnürung bzw. sekundäre Biegungen nachgeben können, also zur Seilachse hinwandern. Die Kernlitze, die
der äußeren Beanspruchung praktisch nur durch ihre eigene Dehnung nachkommen kann, nimmt somit einen Großteil der gesamten angreifenden Seilzugkraft auf. Zum anderen verschieben die Außenlitzen die Drähte der Kernlitze an ihren Kontaktstellen leicht (Bild 4.61a), so dass eine zusätzliche lokale Biegespannung in diesen Drähten auftritt (s. Bild 4.60a). Wieder berühren nur jeweils drei der sechs Außenlitzen die Kernlitze in einem Querschnitt, diesmal wechseln jedoch die kontaktierenden Litzen entlang der Seilachse, so dass letztendlich alle Außenlitzen in Kontakt mit der Kernlitze kommen. Weiterhin sind in den Außendrähten der nicht die Kernlitze berührenden Außenlitzen sehr hohe, zur Seilachse gerichtete Biegegradienten zu erkennen, wie es Bild 4.60a verdeutlicht. Hier kommt es zu einer für die Gesamtbelastung sehr ungünstigen Überlagerung der zugkraftbedingten Litzenbiegung um die Seilachse und Drahtbiegung um die Litzenachse. Bild 4.60b sowie Bild 4.61b zeigen, dass auch hier der Fall auftritt, in welchem sich ausschließlich die Außenlitzen gegenseitig berühren, jedoch ohne eine so ausgeprägte Gewölbebildung wie beim radialsymmetrischen Seil.

Bild 4.60: Verteilung der Seillängsspannung in mN/mm² in zwei typischen Querschnitten der Konstruktion 7x(3x0,15)zS mit drei phasenversetzten Außensträngen bei reiner Zugbelastung $\sigma_z=440$ N/mm²
a) Außenlitzen stützen sich untereinander und auf der Kernlitze ab, b) Außenlitzen stützen sich ausschließlich untereinander
Verhalten eines gewickelten dünnen Stahlseils

Bild 4.61: Kontaktstellen zwischen den Drähten bzw. Litzen der Querschnitte aus Bild 4.60 bei reiner Zugbelastung $\sigma_z=440 \text{ N/mm}^2$ (Darstellung der dritten Hauptspannung, grüne und blaue Bereiche entsprechen Kontaktstellen)

a) Außenlitzen stützen sich untereinander und auf der Kernlitze ab, b) Außenlitzen stützen sich ausschließlich untereinander

Man kann aber davon ausgehen, dass sich die vergleichsweise hohen Zugspannungen der Kernlitze durch entsprechendes Vorrecken des Seils und der daraus folgenden verringerten Einschnürung der Außenlitzen unter Zugbelastung deutlich reduzieren lassen. Da die genauen Vorgänge beim Vorrecken jedoch herstellerspezifisch und als wesentliche Technologie auch nicht allgemein zugänglich sind, müssen deren Auswirkungen auf die Einschnürung sowie auf die nicht unerheblichen sekundären Biegespannungen späteren Untersuchungen an konkreten Seilausführungen vorbehalten bleiben.

Bei zusätzlicher Biegung des Seils über die glatte Scheibe kommen zu der Vielzahl der Effekte, die schon bei reiner Zugbeanspruchung die Spannungsverteilung in den Drähten bestimmen, noch die Einflüsse der Seilkrümmung an sich sowie der Kontaktstellen zur Scheibe hinzu. Im radialsymmetrischen Seil treten bei einem Biegeverhältnis $D/d_s=100$ jedoch weiterhin die durch die Gewölbebildung hervorgerufenen Spannungserhöhungen am deutlichsten zutage, wie es Bild 4.62 erkennen lässt. Da an diesen Stellen zudem der Seildurchmesser am größten wird, sind hier gleichzeitig die Kontaktstellen zur Scheibe zu finden. Obgleich der kontaktbedingte Polygoneffekt gegenüber der Konstruktion 3x3 weitaus geringer ausgeprägt ist, führt er zu einer zusätzlichen Biegebelastung, welche die Biegespannungen zwar in den zur Scheibe gerichteten Litzen verringert, in den von ihr abgewandten jedoch zusätzlich erhöht. Gegenüber reiner Zugbelastung steigen hier die Maxima von etwa 1400 N/mm2 auf 1550 N/mm2, was allerdings lediglich eine Spannungserhöhung um ca. 10 Prozent bedeutet.
Bei Biegung des Seils mit den phasenversetzten Litzen sind zwar, wie schon bei reiner Zugbelastung, keine ausgeprägten Gewölbebildungen zu erkennen, die maximalen auftretenden Vergleichsspannungen liegen jedoch mit ca. 1700 N/mm² sogar noch über den Spitzenwerten des radialsymmetrischen Strangs. Bild 4.64 zeigt die zwei Seilquerschnitte der betrachteten Seilschlaglänge mit den höchsten Spannungswerten. In Bild 4.64a ist die Litze mit Kontakt zur Scheibe weder durch die Kernlitze noch durch die anderen Außenlitzen ausreichend gestützt. Dadurch bewegt sie sich lokal in das Seil hinein, wodurch vergleichsweise hohe Biegespannungen in ihren Drähten entstehen. Bild 4.64b zeigt hingegen erhöhte Spannungen in der Kernlitze. Hier besteht Kontakt zwischen der die Scheibe berührenden Außenlitze und der Kernlitze. In der Folge biegt sich letztere lokal über die Außenlitze und erhält so die erhöhten Spannungen.

Bild 4.63: Seilquerschnitt des radialsymmetrischen Seils mit Kontakt zur Scheibe (Darstellung der dritten Hauptspannung, grüne und blaue Bereiche entsprechen Kontaktstellen) a) im Bereich I nach Bild 4.62, b) im Bereich II nach Bild 4.62
Vergleich der Biegebeanspruchung der einfachen Litze 1+6 und der Konstruktion 7x3

Stellt man die über knapp eine Seilschlaglänge maximal auftretenden Spannungen der Drähte einer Litze im Seil 7x3 denen eines Drahtes des in Kap. 4.3 untersuchten einfachen Strangs 1+6 gegenüber, fällt auf, dass bei gleicher äußerer Belastung \((D=100 \, d_S, \sigma_z=440 \, \text{N/mm}^2) \) insgesamt keine überragenden Vorteile der zweifach verseilten Konstruktion zu erkennen sind, obwohl nach Gl.(4.16) aufgrund der geringeren Drahtdurchmesser der von Reuleaux berechnete Biegespannungsanteil weniger als halb so groß wie bei der einfachen Litze sein sollte. Wie aus Bild 4.65 hervorgeht, liegt zwar das Maximum der Vergleichsspannung im Draht der Litze 1+6, welches an der Kontaktstelle zur Scheibe auftritt, um reichlich zehn Prozent über den Spitzenwerten des radialsymmetrischen komplexen Seils, über die gesamte Schlaglänge gesehen ergibt sich jedoch eine zumeist geringere Belastung der einfachen Litze, da die Gewölbebildung in der Konstruktion 7x3 zahlreiche sekundäre Biegungen und damit lokale Belastungsspitzen erzeugt. Das Seil mit phasenversetzten Außenlitzen vermeidet hingegen diese Gewölbebildung und weist damit auch eine gegenüber der Litze 1+6 weitestgehend geringere Beanspruchung auf. An der Kontaktstelle zur Scheibe tritt jedoch das in Bild 4.64a dargestellte Problem der ungestützten Außenlitze auf, wodurch an dieser Stelle die Maximalspannungen des Drahtes der einfachen Litze sogar noch leicht übertroffen werden.
Allerdings hat die hier gewählte Litze 1+6 mit 18 mm eine mehr als doppelt so große Schlaglänge wie das Seil 7x3. Außerdem ist eine direkte Gegenüberstellung auf Basis übereinstimmender Seilzugspannungen und Biegeverhältnisse nicht praxisrelevant. Um tatsächlich vergleichbare Ergebnisse zu erhalten, wird im weiteren von folgenden Überlegungen ausgegangen: Gegeben ist eine glatte Scheibe, über welche das bereits behandelte radialsymmetrische Seil 7x3 unter einer Seilzugkraft $S=164\,\text{N}$, die der Seilzugspannung $\sigma_z=440\,\text{N/mm}^2$ entspricht, gebogen ist. Dieses will man nun durch einen einfachen Strang 1+6 ersetzen. Darf in diesem ebenfalls die zugkraftbedingte...
Seilzugspannung $\sigma_z = 440 \text{ N/mm}^2$ nicht überschritten werden, ergibt sich nach Gl.(4.5) ein Einzeldrahtdurchmesser von mindestens 0,26 mm. Da in der Konstruktion 7x3 sieben identische Litzen verseilt sind, sollen auch bei der Litze 1+6 sieben Drähte gleichen Durchmessers zur Anwendung kommen. Um der Forderung nach vergleichbarer Geometrie nachzukommen, wird der Schlagwinkel der Drähte im einfachen Strang dem der Litzen der Konstruktion 7x3 angepasst. Daraus resultiert nach Gl.(4.4) für die Litze 1+6 eine Schlaglänge $l = 6,43 \text{ mm}$. Da aufgrund der deutlich geringeren Anzahl der Drähte und des damit verbundenen kompakteren Aufbaus bei gleichem metallischen Querschnitt A_m der Außendurchmesser der einfachen Litze mit 0,78 mm etwa 20% unter dem des Seils 7x3 von etwa 0,97 mm liegt, ergeben sich für die Konstruktion 1+6 für die vorgegebene Scheibe auch wesentlich günstigere Biegeverhältnisse D/d_S. Bild 4.66 zeigt die sich aus den neuen Seilparametern ergebende Gegenüberstellung mit dem radialsymmetrischen Seil 7x3 jeweils für die Biegung um eine relativ große und eine kleine Scheibe. Die Zuordnung der Drähte entspricht dabei wieder Bild 4.65a und b. Wird das Seil wie in Bild 4.66a nur geringfügig gebogen, ist die zweifach verseilte Konstruktion aufgrund der sekundären Biegungen und Gewölbebildung deutlich im Nachteil, nahezu über die gesamte Schlaglänge ergeben sich höhere Vergleichsspannungen. Erst bei starker Reduzierung des Biegedurchmessers verschiebt sich das Bild zugunsten des komplexen Seils, die Spitzenwerte treten nun bei beiden Konstruktionen an der Berührungsstelle zur Scheibe auf (Bild 4.66b), erreichen allerdings auch bei beiden Werte nahe der Zerreißgrenze, womit dieser Belastungsfall für beide Seiltypen nicht mehr in Frage kommt.

4.5.3 Zusammenfassung

In der Konsequenz ist festzustellen, dass zumindest aus Sicht der maximal auftretenden Vergleichsspannungen der Einsatz der Konstruktionen 3x3 sowie 7x3 anstelle der einfachen Litze 1+6 beim Lauf über eine glatte Scheibe keine Vorteile bringt, zumal die geringeren Drahtdurchmesser des komplexen Seils auch eine höhere Anfälligkeit gegenüber verschleißbedingtem Drahtbruch besitzen. Die Vorteile der geringeren Biegespannung in den dünneren Filamenten werden durch die sekundären Effekte, die durch die Wechselwirkungen der sich oft nur punktförmig berührenden Drähte und Litzen im komplexen Seil entstehen, weitestgehend in den Hintergrund gedrängt. Darüber hinaus führt der stark polygonale Querschnitt des Seils 3x3 zu sehr ungünstigen Biegeverhältnissen auf der Scheibe.
Bild 4.66: Vergleich der maximalen vonMises-Vergleichsspannung über knapp eine Seilschlaglänge in einer Litze der radialsymmetrischen Konstruktion 7x(3x0,15)zS und in einem Draht des entsprechenden einfachen Seils 7x0,26 bei Biegung über eine glatte Scheibe unter gleicher Seilzugspannung $\sigma_z=440$ N/mm²

a) maximale Spannungswerte bei Biegung um eine große Scheibe mit $D=96,7$ mm (entspricht $D/d_S=100$ für Typ 7x3 und $D/d_S=124$ für Litze 1+6),
b) maximale Spannungswerte bei Biegung um eine kleine Scheibe mit $D=29$ mm (entspricht $D/d_S=30$ für Typ 7x3 und $D/d_S=37$ für Litze 1+6)
4.6 Zugstränge in Zahnriemen

Bild 4.67 zeigt den prinzipiellen Aufbau eines Zahnriemens aus Polyurethan mit dem Hochleistungsprofil1 AT. Im Gegensatz zu Flachriemen ermöglichen die Riemenzähne schon bei deutlich geringerer Vorspannung das Übertragen großer Drehmomente. Die resultierenden Zugkräfte im Trum werden von den nebeneinander angeordneten Zugsträngen aufgenommen.

Bild 4.67: Typischer Aufbau eines Zahnriemens aus Polyurethan mit Zugsträngen aus Stahllitze

Ein Riemen für Positionierzwecke wird meist aus sogenannter Meterware hergestellt, wobei man die kammförmig ausgeführten Enden eines zugeschnittenen Riemenstücks der gewünschten Länge verschweißt. Die so entstandene Verbindungsstelle kann nur eingeschränkt eine Zugkraft übertragen, da die Zugstränge unterbrochen sind. Deshalb kommen bei Anwendungen im Hochleistungsbereich sogenannte Endlosriemen zum Einsatz. Bei diesen wird ein einziger Zugstrang helixartig mit nur sehr geringer Steigung über zwei gegenüberliegende Scheiben gewickelt und anschließend im Extrusionsverfahren mit dem Basiswerkstoff umgeben. Der Abstand der beiden Scheiben legt die resultierende Riemenlänge fest. Fertigungsbedingt sind die Zugstränge also gegenüber der im Riemen

1 Hochleistungsprofile zeichnen sich durch ein vergrößertes Zahnvolumen aus, und die entsprechenden Zahnriemen haben verstärkte Zugstränge. Dadurch ergibt sich eine wesentlich höhere Belastbarkeit.

4.6.1 Belastungsverhalten eingebetteter Zugstränge

Da, wie in den vorangegangenen Kapiteln dargestellt, der Einfluss der direkten Kontaktstellen zwischen Seil und Scheibe auf die Belastungsverteilung im Zugstrang sehr groß ist, kann man annehmen, dass der in ein Elastomer eingebettete Zugstrang ein deutlich abweichendes Verhalten zeigt. Bei dessen Simulation mit FEM ergibt sich jedoch ein zusätzlich erhöhter Rechenaufwand, da nun auch die Deformation des Basiswerkstoffs mit zu berücksichtigen ist und die Elementanzahl weiter steigt. Im folgenden soll deshalb zunächst nur die schon in Kap. 4.3 behandelte einfache Litze 0,365+6x0,35 Gegenstand der Untersuchung sein, diesmal jedoch in eine zylinderförmige Schicht Polyurethan eingebettet. Diese wird anfangs ebenfalls über eine glatte Scheibe gebogen. Im weiteren Verlauf kommen noch Untersuchungen der Konstruktion 3x3 in Verbindung mit einer Schicht des Elastomers sowie der einfachen Litze unter Berücksichtigung des Zahnräumenprofils hinzu, um z.B. Rückschlüsse zur Wirkung des in der Literatur häufig zitierten Polygoneffektes der verzahnten Scheibe auf das Biegeverhalten der Zugstränge ziehen zu können.

Belastungsverhalten einer von PU umgebenen Litze 0,365+6x0,35

Wie bereits erwähnt, ist ein möglichst tiefes Eindringen des Elastomers in die Draht- bzw. Litzenzwischenräume Voraussetzung für die gute Verankerung der Zugstränge im Riemen. Somit sind Konstruktionen wie die der Litze 7x0,35, die schon von vornherein eine durchgehende Gewölbung durch Linienberührung in der Außenlage aufweist, für den Einsatz in Zahnrämen ungeeignet. Die Litze 0,365+6x0,35 hat im geraden, entspannten Zustand, wie in Kap. 4.3.2 beschrieben, eine Sperrung von etwas über 5 µm, durch die das Polyurethan während der Extrusion in Richtung Kerendraht eindringen kann. Wie weit das Elastomer jedoch genau die Zwischenräume penetriert, ist von einer Vielzahl äußerer
Faktoren abhängig. Auch hier ist jeder Riemenhersteller bemüht, durch spezielle Prozess- und Werkstoffoptimierung die Eindringtiefe weiter zu steigern. Für die folgenden Betrachtungen wird angenommen, dass das Polyurethan bis auf das 0,8-fache des Windungsradius der Außendrähte in den Zugstrang vordringt. Bild 4.68 zeigt das Modell des Zugstrangs, eingebettet in einen Elastomerzylinder mit 1,5-facher Ausdehnung des Seildurchmessers. Da hier die mechanischen Belastungen der Zugstränge im Vordergrund stehen und zunächst nur der Einfluss des Elastomers auf das Systemverhalten wichtig ist, kann die Netzdichte im PU deutlich größer als im Zugstrang ausfallen. Problematisch für die Vernetzung sind jedoch die sehr engen Zwischenräume der Außendrähte, in denen eine hohe Belastung im Elastomer zu erwarten ist.

Bild 4.68: Einfache Litze 0,365+6x0,35, zylinderförmig in PU eingebettet

Für die Berechnungen wird angenommen, dass zwischen den Drähten und dem kontaktierenden Werkstoff PU entsprechend dem Idealfall keine Relativbewegungen stattfinden können. Das Elastomer ist wie auch der Zugstrang selbst mit Hexaeder-Elementen vernetzt. Obwohl Polyurethan strenggenommen ein hyperelastisches Verhalten aufweist, ist aufgrund der gewonnenen Erfahrungen bei der Simulation von Zahnriemengetrieben [Ifte2] ein lineares Werkstoffmodell für die hier betrachtete Problematik ausreichend. Der dabei verwendete E-Modul für PU beträgt 40 N/mm², die Querkontraktionszahl ν aufgrund der Inkompressibilität 0,49 und der Reibwert zur Stahlscheibe wird mit 0,8 festgelegt [Ifte2]. Bild 4.69 zeigt die vonMises-Vergleichsspannungen in der Litze jeweils mit und ohne Ummantelung unter der Zugbelastung $S=300$ N. Der Einfluss des Elastomers ist aufgrund seiner geringen Steifigkeit nahezu vernachlässigbar, lediglich die Richtung des Biegegradienten der Außendrähte ändert sich leicht. Der grau dargestellte Bereich im PU
repräsentiert Spannungen, die weit unterhalb der hier auf die Belastungen in den Zugsträngen bezogenen Farbskala liegen. Somit nimmt das Elastomer praktisch keine Zugkraft auf, und folglich stimmt die Gesamtdehnung des ummantelten Seils von ca. 0,22% mit der der bloßen Litze überein.

Bild 4.69: vonMises-Spannungsverteilung in mN/mm² im Strangquerschnitt 0,365+6x0,35 bei Zugbelastung S=300 N
a) reine Litze, b) Litze in PU eingebettet

Um bei zusätzlicher Biegung über eine glatte Scheibe ebenfalls ein Biegerverhältnis von $D/d_s=100$ zu erhalten, ist gegenüber der Anordnung mit bloßem Seil der Radius der Scheibe entsprechend der geometrischen Ausdehnung des Elastomers zu reduzieren. Allerdings wird unter Belastung das Elastomer so deformiert, dass sich der Biegeradius des eingebetteten Seils strenggenommen noch etwas verringert.

Besteht beim bloßen Seil nur lokal Kontakt zur Scheibe, der dort besonders hohe Spannungen nach sich zieht, berührt das elastische PU diese über die gesamte Länge und kann somit die Kontaktkraft gleichmäßig aufteilen sowie den Polygoneffekt des Seils deutlich reduzieren. Bild 4.70 zeigt die Kontaktfäche zur Scheibe anhand der vonMises-Vergleichsspannung im PU. Die am unteren Ende deutlich zurückgehende Spannung ist den dortigen Randbedingungen geschuldet, die im Gegensatz zum entgegengesetzten Seilende ein Heranrücken an die Scheibe verhindern. Der verminderte Polygoneffekt wirkt sich auch auf den Verlauf der maximalen Vergleichsspannungen in einem Außendraht entlang einer Schlaglänge aus. Bild 4.71 zeigt gegenüber dem bloßen Seil eine starke Reduzierung der Spitzenwerte in dem Außendraht, wie er in Bild 4.65a hervorgehoben ist, um bis zu 30%.
Bild 4.70: vonMises-Vergleichsspannung im Polyurethan an der Kontaktfläche zur glatten Scheibe in mN/mm² (D=100 dₜ, S=300 N)

Bild 4.71: Maximale vonMises-Vergleichsspannung eines Außendrahtes entlang einer Schlaglänge mit und ohne Polyurethan-Ummantelung bei Biegung über eine glatte Scheibe (D=100 dₜ, S=300 N)

Bild 4.72 zeigt den Seilquerschnitt, der ohne PU-Einbettung die Scheibe berühren und somit, wie in Bild 4.22, Bild 4.24 sowie Bild 4.25 dargestellt, besonders hohe Belastungen aufweisen würde. In diesem verringern sich die Spitzenwerte der Axialspannung um 13%, die der dritten Hauptspannung um mehr als 50% und die der vonMises-Vergleichsspannung um mehr als 25% gegenüber der gebogenen Litze ohne Ummantelung, obwohl durch das Nachgeben des Elastomers das Biegeverhältnis D/dₜ sogar noch etwas kleiner als 100 ist. Liegt in Bild 4.22 das Maximum der Vergleichsspannung an der Kontaktstelle des auf der Scheibe liegenden Außendrahtes zum Kerndraht, befindet es sich nun an der von der Scheibe...
abgewandten Seite des Kerndrahtes (Bild 4.72c). Dies ist auf die wesentlich verringerten Kontaktdrücke zwischen den Drähten zurückzuführen.

Bild 4.72: Spannungsverteilungen in der Litze 0,365+6x0,35 mit PU in mN/mm² bei Biegung über eine glatte Scheibe (D=100 ds, S=300 N)

a) Axialspannung,

a) dritte Hauptspannung,

b) vonMises-Vergleichsspannung

Belastungsverhalten des Seiltyps 3x3 mit einer Schicht PU zwischen Seil und Scheibe

Das Erstellen eines FE-Modells des von einem Elastomer umgebenen zweifach verseilten Zugstrangs ist aufgrund der Komplexität dieser Seilkonstruktionen äußerst problematisch. Einerseits stellen, wie bereits beschrieben, schon die vielen praktisch nicht vorhersehbaren Kontakte der einzelnen Filamente untereinander eine große Herausforderung an die Simulation dar, andererseits verlangt die stark strukturierte Seiloberfläche, die für die gute Verankerung im Elastomer sorgt, nach einer extrem hohen Elementanzahl des den Zugstrang vollständig umschließenden PU-Grundkörpers. Auf eine Berechnung nach diesem Schema, analog zur eingebetteten einfachen Litze 1+6, verzichtet deshalb diese Arbeit. Stattdessen
wird eine gleichmäßige, quaderförmige Schicht PU zwischen die Scheibe und das Seil eingebracht (Bild 4.73). Diese kann zwar folglich nicht die Relativbewegung der Filamente insbesondere bei der Seilbiegung verhindern, jedoch die Kontaktdrücke zur Scheibe dämpfen, aus denen gemäß Kap. 4.5.1 die wesentlichen Seilbelastungen bei der direkten Biegung der Konstruktion 3x3 über eine Seilscheibe resultieren. Wie die vorangehenden Untersuchungen an der eingebetteten einfachen Litze 1+6 zeigen, sind die Auswirkungen der Elastomerummantelung auf die Kontaktdrücke weit entscheidender als auf die relativen Drahtverschiebungen, so dass die hier behandelte, deutlich einfachere Methode zumindest eine erste Orientierung für die Belastung der eingebetteten zweifach verseilten Konstruktion bietet.

Das betrachtete Seil ist identisch mit dem radialsymmetrischen Typ 3x(3x0,12)zS aus Kap. 4.5.1, der PU-Block hat eine Dicke vom 1,6-fachen des Seildurchmessers. Der Durchmesser der Scheibe ist unter Berücksichtigung der Elastomerschicht derart reduziert, dass der Seilbiegeradius dem der Anordnung in Kap. 4.5.1 entspricht. Wie auch das Seil ist der Elastomerblock an einem Ende fixiert, das entgegengesetzte Ende wird jedoch nur durch die am Zugstrang angreifende Kraft schrittweise gegen die Scheibe gedrückt. Die Seilzugspannung wird wiederum mit 440 N/mm² angesetzt, was einer Seilzugkraft von ca. 45 N entspricht.

Auf die reine Zugbelastung des Seils hat der verwendete PU-Block selbstverständlich keinen Einfluss, bei Biegung entstehen jedoch im Vergleich zu den Ergebnissen in Kap. 4.5.1 deutlich verschiedene Spannungsverteilungen. Bild 4.74 zeigt die von Mises-Vergleichs-spannung im Bereich II des Seils nach Bild 4.75b.
Bild 4.74: Verteilung der von-Mises-Vergleichsspannung in mN/mm² im Bereich II nach Bild 4.75b

Bild 4.75: Vergleich der minimalen sowie der maximalen Drahtlängsspannung im Querschnitt von Draht 1 bei direktem Kontakt zur Scheibe und bei einer dazwischenliegenden Polyurethanschicht (D=100 ds, \(\sigma_z = 440 \text{ N/mm}^2 \))

a) Spannungsverlauf über eine Seilschlaglänge,

b) Zuordnung der Seilbereiche und gewählter Draht 1 im Modell mit PU (Draht 1 im Modell ohne Elastomer s. Bild 4.50)
Diese Ansicht ist vergleichbar mit Bild 4.51, jedoch berührt der Draht 1 nicht mehr direkt die Scheibe, sondern kann sich tief in das zwischenliegende Elastomer eindrücken. Dadurch verschwinden die sekundären Biegeeffekte fast vollständig, die höchsten Belastungen treten nun an den punktförmigen Kontaktstellen zwischen den Drähten verschiedener Litzen auf. Diese liegen mit knapp 1200 N/mm² jedoch etwa 30% unterhalb der Maximalwerte des die Scheibe direkt berührenden Seils in Bild 4.51.

Bild 4.75a zeigt den Verlauf der maximalen und minimalen Drahtlängsspannungen im Draht 1, welcher ohne Elastomerschicht im Bereich II die Scheibe berühren würde. Sieht man von der leichten Spannungserhöhung vor Bereich I ab, die der Nähe zu den Festhaltungen im Modell geschuldet ist, bewegt sich die maximale Belastung entlang einer Schlaglänge in einem im Gegensatz zur Anordnung mit direktem Kontakt zur Scheibe vergleichsweise eng gefassten Bereich zwischen 600 und 1100 N/mm² und unterschreitet damit sogar leicht die Spitzenwerte der ummantelten einfachen Litze 1+6 im vorhergehenden Kapitel. Abgesehen von einigen geringen durch Drahtkontakte verursachten Abweichungen liegen die minimale und maximale Drahtlängsspannung symmetrisch um die Drahtzugspannung nach Feyrer.

4.6.2 Belastungsverhalten der Litze 1+6 im Zahnriemen mit AT10-Profil

Die Dicke der PU-Schicht ist zweifellos entscheidend für die tatsächliche Minderung des Kontaktdruckes und damit der gesamten Drahtbelastungen. Kann bei Flachriemen die wirksame Dicke noch recht einfach ermittelt werden, stellt sich die Situation bei Zahnriemen schon wesentlich komplizierter dar. Während beispielsweise bei sogenannten fußabstützenden Profilen der Zugstrang meist nur durch eine sehr dünne Elastomerschicht von den Scheibenzähnen getrennt ist (Bild 4.76a), nutzen kopfabstützende Profile den gesamten Riemenzahn als Puffer zwischen Zugstrang und Scheibe, in den Abschnitten zwischen den Riemenzähnen existiert hingegen gar kein Kontakt zur Scheibe (Bild 4.76b). Zudem ist das Einzahnverhalten des Riemens in die Zahnscheibe gegenüber dem Einlauf eines Flachriemens auf eine glatte Scheibe deutlich komplexer, was zusammen mit dem durch die diskrete Scheibenzähnezahl verursachten Polygoneneffekt zusätzliche lokale Biegunen in den Zugsträngen erzeugt. Diese Einflüsse auf die tatsächliche Belastung der Zugstränge im Zahnriemen sind zweifellos nicht zu vernachlässigen und sollen deshalb im Folgenden exemplarisch anhand des Zahnprofils AT10 untersucht werden.
Der Hochleistungs-Riemen AT10 ist üblicherweise mit dem in Kap. 4.5.2 behandelten Seiltyp 7x3 ausgestattet. Da aber wie erwähnt die Simulation eines zweifach verseilten Zugstrangs, der vollständig von PU umgeben ist, zum gegenwärtigen Zeitpunkt noch die Rechenkapazitäten übersteigt, beschränken sich die Betrachtungen auf die einfache Litze 0,365+6x0,35 aus Kap. 4.3, die jedoch völlig ausreicht, die prinzipiellen Auswirkungen der Verzahnung auf den Zugstrang zu demonstrieren. Ihr Durchmesser ist lediglich knapp 10% größer als der des tatsächlichen Seils, somit lässt sie sich mit nur geringfügigen Modifikationen der Riemengeometrie in das AT10-Profil einfügen. Allerdings ist der metallische Querschnitt der einfachen Litze fast zweimal so groß wie beim ursprünglichen Zugstrang, was beim Aufbringen der Seilzugkraft zu beachten ist. Die Schlaglänge der Litze beträgt 18 mm, das entspricht knapp dem Doppelten der Teilung von 10 mm, also des Abstands zweier Zähne des Riemens im entspannten Zustand.

Das am Institut für Feinwerktechnik und Elektronik-Design der TU Dresden entwickelte und bereits verfügbare Zahnräumen simulationssystem basiert auf einem ausschließlich zwei-

Bild 4.77: Modell eines Zahnriemensegmentes mit AT10-Profil und einer Litze 1+6 als Zug­strang und der dazugehörenden Zahnscheibe
Die folgenden Betrachtungen beziehen sich auf ein innenliegendes Riemensegment eines AT10-Hochleistungsgetriebes ohne Teilungskorrektur, d.h. sowohl die Teilung der Zahnscheibe als auch die des gestreckten, unbelasteten Riemens beträgt genau 10,0 mm.

Bild 4.79 zeigt ein solches eingebettetes Riemensegment unter reiner Zugbelastung. Wie an den Seitenflächen zu erkennen ist, verursacht die resultierende Seilverformung auch außerhalb der Drahtzwischenräume lokale Erhöhungen der Vergleichsspannungen im PU. Deren Größe kann Auskunft darüber geben, ob der Abstand zwischen den einzelnen Zugsträngen im Riemen ausreicht. Der Einfluss des Elastomers selbst auf die Spannungsverteilung im Zugstrang ist jedoch, wie bereits beim zylinderförmig ummantelten Seil, äußerst gering (Bild 4.80).

Bild 4.79: vonMises-Spannungsverteilung in mN/mm² im PU des Zahnriemensegmentes bei reiner Zugbelastung S=300 N

*Bild 4.80: vonMises-Spannungsverteilung in mN/mm² im Strangquerschnitt 0,365+6x0,35 bei Zugbelastung $S=300$ N

a) reine Litze, b) Litze in verzahntem PU eingebettet
Bild 4.81: vonMises-Spannungsverteilung in mN/mm² im PU des in die Scheibe eingreifenden Riemenzahns mit dem Profil AT10 und Zugstrang 1+6 (D=100 mm, S=300 N); dreidimensionales Modell mit modellierten Einzeldrähten im Zugstrang

a) Lage der Riemenzähne in der Scheibe, b) Belastungen an den kraftübertragenden Riemenflanken (Scheibe ausgeblendet)

Die qualitative Verteilung der Vergleichsspannung stimmt sehr gut mit den Ergebnissen des dreidimensionalen Modells in Bild 4.81 überein, auch hier nehmen die Flankenbelastungen von Zahn 1 bis Zahn 3 zu, nur der folgende Zahn zeigt geringere Spannungswerte, da er noch nicht vollständig in die Scheibe eingreift.

Allerdings sind in Bild 4.82 die Maximalspannungen an den kraftübertragenden Zahnriemenflanken fast doppelt so groß wie beim dreidimensionalen Modell. Darüber hinaus ist die Lücke zwischen unbelasteter Riemen- und Scheibenflanke deutlich größer. Ursache hierfür sind wiederum die Riemenlängung und die damit verbundenen Randbedingungen. Während beim nur drei Zähne umfassenden Riemensegment in Bild 4.81 das rechts dargestellte Zugstrangende fixiert ist, was die Bewegung von Zahn 1 deutlich einschränkt,
resultiert bereits die Lage von Zahn 1 im zweidimensionalen Modell in Bild 4.82 aus der Simulation des Einlaufvorgangs bzw. der Längung aller vorangehenden Riemenzähne auf der Scheibe.

Bild 4.82: vonMises-Spannungsverteilung in mN/mm² im PU des in die Scheibe eingreifenden Riemenzahns mit dem Profil AT10 und Zugstrang 1+6 (D=100 dS, S=300 N); zweidimensionales Modell mit zu Linieelementen reduzierten Zugsträngen

Die Spannungsverteilungen im Seilquerschnitt offenbaren auf den ersten Blick keine bedeutsamen Abweichungen von denen der ummantelten Litze in Bild 4.72, welche über eine glatte Scheibe gebogen wird. So unterscheidet sich z.B. die maximal auftretende Vergleichsspannung in Bild 4.83 um nur etwa 5% von der in Bild 4.72. Verfolgt man jedoch den Verlauf der auftretenden Spannungen entlang der Seilachse im Riemen, ergeben sich deutliche Schwankungen (Bild 4.84). Diese sind in Bild 4.85a am Beispiel des Kerndrahtes dargestellt und weichen deutlich von den bislang behandelten und hier gegenübergestellten Belastungsfällen ab. So schwanken die maximalen Längsspannungen im Kerndraht einer direkt um eine glatte Scheibe gebogenen Litze zwischen etwa 1050 und 1300 N/mm² mit einer Periode von der Länge des Abstands der Scheibenkontaktstellen. Immer, wenn ein darunter liegender Außendraht die Scheibe berührt, wird also auch der Kerndraht lokal um diesen gebogen. Auch bei der ummantelten Litze ist dieser Effekt noch zu erkennen, wenngleich aufgrund des entfallenden direkten Kontakts zwischen Seil und Scheibe die Welligkeit des Verlaufs wesentlich geringer ist. Diese Kurve deckt sich auch relativ gut mit der vorhergesagten theoretischen maximalen Drahtlängsspannung von knapp 1200 N/mm²,
die sich aus der Summe der Zugspannung nach Gl. (4.6) sowie der Reuleaux’schen Biegespannung nach Gl. (4.16) ergibt.

Bild 4.83: vonMises-Spannungsverteilung in mN/mm² im Seilquerschnitt über dem Scheibenzahn \((D=100 \, \text{d}_{S}, \, S=300 \, \text{N})\)

Bild 4.84: Seillängsspannung in mN/mm² entlang des modellierten Riemensegmentes \((D=100 \, \text{d}_{S}, \, S=300 \, \text{N})\)

Der Spannungsverlauf des Kerndrahtes im belasteten Zahnprofil zeigt im Gegensatz dazu deutliche lokale Minima und Maxima mit der Periode der Riementeilung. Die maximale

Aus dem Verlauf der resultierenden Raumkurve des Zugstrangs, die in etwa einen Kreisbogen mit dem Radius des halben Wirkkreisdurchmessers beschreibt, kann man nach Gl. (4.29) den örtlichen Krümmungsradius berechnen [Bro]:

\[
R_k = \frac{1 + \left(\frac{dy}{dx}\right)^2}{\frac{d^2y}{dx^2}}^{3/2}
\]

(4.29)

Bei dem zum Linenelement reduzierten Zugstrang des zweidimensionalen Zahnrämentmodells ist das Ermitteln der Raumkurve recht einfach. Für ein komplexes Seil, das aus mehreren um einander geschlungenen Drähten bzw. Litzen besteht, muss zunächst ein geeignetes Maß für die Gesamtbiegung gefunden werden. Bei dem Zugstrang 1+6 bietet sich
als Kriterium die Raumkurve der Kerndrahtachse an, die gleichzeitig die Seilachse bildet. Da die minimalen und maximalen Drahtlängsspannungen in Bild 4.85 relativ symmetrisch zur Drahtzugspannung nach Feyrer liegen, der Einfluss störender Querkräfte also sehr gering ist, kann alternativ der Krümmungsradius näherungsweise auch über diese Drahtlängsspannungen sowie Gl. (4.6) und Gl. (4.16) wie folgt ermittelt werden:

\[
R_k = \frac{1}{2} \frac{d}{\sigma_z - \sigma_{\sigma}}
\]

(4.30)

Bild 4.85: Biegung der im AT10-Zahnriemensegment eingebetteten Litze 1+6 um die Zahnscheibe (D=100 dS, \(\sigma_z = 440 \) N/mm²)

a) Verlauf der minimalen und maximalen Längsspannung im Kerndraht (rot dargestellt) im Vergleich zu den entsprechenden Spannungsverläufen der mit und ohne PU versehenen Litze 1+6 bei Biegung über eine glatte Scheibe,
b) Lage der Gebiete I und II im eingezahnten Riemen

kraftübertragende Zahnflanke

Bild 4.86: Biegung der im AT10-Zahnriemensegment eingebetteten Litze 1+6 um die Zahnscheibe (D=100 dS, $\sigma_z=440$ N/mm²)

a) Verlauf des Krümmungsradius des Zugstrangs über drei Riemenzähne im zwei-dimensionalen sowie im dreidimensionalen Modell,
b) Lage der Gebiete I und II im eingezahnten Riemen
4.6.3 Zusammenfassung

![Bild 4.87: Vergleich von Ausgangslage von Zahn 1 nach Bild 4.82 und seiner Position nach dem Einlaufvorgang relativ zur Scheibe, ermittelt mit dem zweidimensionalen Modell](image-url)
5 Validierung der Modelle

Bild 5.2a zeigt die Seilhalterung zusammen mit der Röntgenquelle. Der Sockel ist zwischen der Punktquelle und dem Detektorschirm in ein Bohrfutter eingespannt, welches den Aufbau langsam im Strahlkegel rotieren lässt. Die dabei in Abhängigkeit der Winkelstellung entstehenden Aufnahmen, eine davon ist beispielhaft in Bild 5.2b dargestellt, werden anschließend von der zum Tomographen gehörenden Software zu einem dreidimensionalen Modell zusammengesetzt und liegen in Form einer sogenannten Voxel-Grafik vor (Bild 5.3). Damit können nun beliebige Schnittbilder erstellt und die Drahtpositionen mit denen aus der Simulation verglichen werden.

Mit diesem Verfahren wurden mehrere Messungen durchgeführt. Besondere Sorgfalt erforderte dabei das Biegen des Seils um die Rolle, um nicht mit zusätzlichen Querbelastungen die Lage der Drähte zu verfälschen. Wie Bild 5.4 beispielhaft belegt, ergab die Validierung unter Beachtung dieser Umstände eine recht gute Übereinstimmung von Modell und realem, gebogenem Seil, was die Glaubwürdigkeit der Simulationsergebnisse untermauert.
Bild 5.1: Seilversuchsstand für die Aufnahme im Computer-Tomographen

a) Messaufbau mit Seil, b) Explosionszeichnung der Konstruktion

1 Seilrolle; 2 Grundplatte;
3 Stellschraube; 4 Seilendrollen;
5 Messfeder; 6 Sockel; 7 Seil
Bild 5.2: Aufnahme des Seils mit dem Computer-Tomographen
a) Messaufbau mit punktförmiger Röntgenquelle, b) Röntgenaufnahme für eine bestimmte Winkelstellung

Bild 5.3 Aus der CT-Aufnahme resultierende Voxel-Grafik
Bild 5.4: Vergleich der Seilquerschnitte der Konstruktion 1+6 bei Biegung über eine glatte Scheibe

a) FE-Simulation (Farbdarstellung der 3. Hauptspannung), b) CT-Aufnahme
6 Richtlinien zur Auslegung von Zugsträngen aus Stahllitze für Zahnriemen

Die in dieser Arbeit gewonnenen Ergebnisse bestätigen in mehreren Teilen die bereits in der Literatur, u.a. in [Fey1] und [Jeh1], für laufende Seile aufgeführten theoretischen Überlegungen bzw. die durch Versuche und Beobachtungen in der Praxis gesammelten Erfahrungen. Darüber hinaus ergeben sich jedoch wesentliche neue Erkenntnisse, insbesondere was die quantitative Wichtung verschiedener auf das Seil einwirkender Effekte unter Berücksichtigung der Elastomer-Einbettung betrifft. Im Folgenden sind diese Ergebnisse in verallgemeinerter Form zu Richtlinien für die Auslegung von Zugsträngen für Zahnriemen zusammengefasst:

Drahtanordnung im Litzenquerschnitt
Bei Einsatz eines Kerendrahtes sollten die Außendrähte einen geringfügig kleineren Durchmesser haben, so dass diese auch unter Belastung ausschließlich auf dem Kerendraht aufliegen und ein gutes Eindringen des Elastomers in die Drahtzwischenräume gestatten. Jedoch darf der Außen- gegenüber dem Kerendrahtdurchmesser nicht zu klein gewählt werden, da sonst größere Hohlräume entstehen und sich folglich angrenzende Litzen lokal nicht mehr abstützen können, was unter Umständen zu starken sekundären Biegungen führt. Zudem steigt mit abnehmendem Außendrahtdurchmesser auch der Kontaktdruck an den Stützstellen zu den benachbarten Litzen. Darüber hinaus ist immer ein hoher Füllfaktor, also ein großer metallischer Querschnitt im Verhältnis zum Seildurchmesser anzustreben, um eine möglichst hohe Seilzugsteifigkeit zu gewährleisten.

Anzahl der Drahtlagen im Litzenquerschnitt
Trotzdem ist der Einsatz mehrlagiger Litzten in einigen Fällen gerechtfertigt, insbesondere, wenn man eine hohe Seilzugsteifigkeit fordert, die in Verbindung mit dem hier hohen Litzendurchmesserverhältnis ermöglicht wird.

Schlaglänge und Schlagrichtung der Drähte in den Litzen
Die Schlaglänge bestimmt maßgeblich das erforderliche Durchmesserverhältnis vom Kerndraht zu den Außendrähten. Je kleiner die Schlaglänge ist, desto mehr muss der Durchmesser der Außendrähte reduziert werden, um eine Gewölbebildung zu verhindern. Andererseits darf die Schlaglänge auch nicht zu groß gewählt werden, da sonst die Außendrähte nicht ausreichend durch ihre Relativverschiebungen auf die Seilbiegung reagieren können. Bei mehrlagigen Litzten sollten die Außenlagen verschiedene Schlagrichtungen besitzen, um weitgehende Drehungsarmut zu gewährleisten, was bei Parallelschlaglitzen aber nicht möglich ist.

Auswahl und Anordnung der Litzen im Seilquerschnitt

Mehrlagige Litzen sollten lediglich die Funktion der Kernlitze übernehmen, da bei dieser die lokalen Biegebelastungen geringer ausfallen und deren vergleichsweise schlechte Verankerung im Elastomer nicht so stark ins Gewicht fällt.

Schlaglänge und Schlagrichtung der Litzen im Seil
Hier gilt analog zur Litzenschlaglänge, dass die Seilschlaglänge den zulässigen Litzenaußendurchmesser bestimmt, sie sollte also nicht zu gering gewählt werden. Eine zu große Schlaglänge behindert jedoch ebenfalls die Ausgleichsbewegungen der Litzen bei der Seilbiegung. Als Orientierung gilt, dass die minimal im Getriebe auftretende Umschlingungslänge nach Möglichkeit immer größer als die Seilschlaglänge sein sollte [Jeh1], was insbesondere beim Einsatz von zusätzlichen Spannrollen bedeutsam ist. Darüber hinaus zeigen die Simulationsergebnisse des im Zahnriemen eingebetteten Zugstrangs, dass auch der verzahnungsbedingte Polygoneffekt eine nicht zu unterschätzende lokale Biegekomponente zur Seilbelastung beiträgt, die bei Umlauf um die Scheibe mit einer der Teilung entsprechenden Periode auftritt. Eine Schlaglänge kleiner als die Riementeilung ist in der Regel jedoch nicht praktikabel, so dass durch geeignete Wahl des Riemenprofils nur ein möglichst gering ausgeprägter Polygoneffekt auftreten sollte.

Drehungsarmut wird im Seil durch gegensätzliche Seil- und Litzenschlagrichtung erzeugt, Litzen verschiedener Schlagrichtungen in ein und demselben Seil sind aus Kostengründen hingegen nicht üblich.

Tabelle 6.1 gibt eine zusammenfassende Übersicht zur Auswahl und zum Aufbau der Zugstränge in Abhängigkeit der konstruktiven Randbedingungen und der daraus resultierenden Zugstrangbelastungen, verbunden mit den sich ergebenden Schädigungsrisiken bei nicht genügender Beachtung.

Die hier vorgestellten Richtlinien können keine Patentlösung zur Konstruktion von Zugsträngen für Zahnriemen bieten, zu komplex ist die Vielzahl von konstruktiven Parametern miteinander verkoppelt, zu vielfältig sind die konkreten Anforderungen und Randbedingungen in der Praxis, zwischen denen es abzuwägen gilt. Diese Richtlinien liefern aber wichtige Anhaltspunkte. Für die sorgfältige Einschätzung einer konkret gewählten Seilkonstruktion, etwa um sicherzustellen, dass verschiedene Litzenphasenlagen unter den

Tabelle 6.1: Empfehlungen zu Auswahl und Aufbau von Zugsträngen aus Stahllitze

<table>
<thead>
<tr>
<th>Konstruktive Randbedingungen</th>
<th>Zugstrangbelastungen</th>
<th>resultierende Schädigungs- bzw. Ausfallrisiken</th>
<th>Auswahl und Aufbau des Zugstrangs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zahnriemenprofil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- fußabstützend</td>
<td>hohe punktuelle Querkräfte durch Stützstellen des Riemens auf der Scheibe, lokal hohe Biegebelastung des Riemens durch ausgeprägten Polygoneffekt</td>
<td>Verschleiß bzw. Bruch der Zugstränge im Bereich des Riemeneinlaufes</td>
<td>kompakter Querschnitt mit wenig Hohlräumen, trotzdem gute Biege- willigkeit</td>
</tr>
<tr>
<td></td>
<td>Riemenzahn nimmt Großteil der Kontaktkräfte auf, Querkräfte auf Zugstrang vergleichsweise gering</td>
<td>keine direkte Schadensfolge</td>
<td>häufige Verwendung bei Hochleistungsriemen, hierfür hohe Zugsteifigkeit bzw. großer metallischer Querschnitt</td>
</tr>
<tr>
<td>Scheibendurchmesser</td>
<td>starke Biegung</td>
<td>Ermüdungsbruch der Zugstränge durch Biege- wechselbelastung</td>
<td>kleiner Draht- bzw. Seildurchmesser, mehrlitzig für gute Beweglichkeit der Drähte bei Biegung</td>
</tr>
<tr>
<td>- klein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- groß</td>
<td>geringe Biegung</td>
<td>keine direkte Schadensfolge</td>
<td>großer Drahtdurchmesser sowie Verwendung unverseilter einfacher Litzen für großen Füllfaktor, kostengünstige Produktion möglich</td>
</tr>
<tr>
<td>Achsabstand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- groß</td>
<td>Zugkräfte wirken auf große freie Zugstrang-/Riemenlänge</td>
<td>Verschleiß der Zahnflanken des Riemen durch Zahneingriffssprobleme aufgrund zu großer Riemengesamtdehnung, Überspringen der Verzahnung,</td>
<td>großer metallischer Querschnitt für geringe Gesamtdehnung,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verschleiß der Riemenkanten durch seitlichen Riemenablauf infolge des Eigendrehmoments der Zugstränge</td>
<td></td>
</tr>
<tr>
<td>- klein</td>
<td>Riemenschwingungen durch Zahneingriff, viele Biegezyklen pro zurückgelegtem Verfahrenweg</td>
<td>Ermüdungsbruch durch große Biegewechselzahl, Schwingungseinfluss normalerweise gering</td>
<td>mehrlitzige Konstruktion für gute Biegewilligkeit</td>
</tr>
<tr>
<td>Trumkräfte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- stark schwan-kend durch hohes Lastmo-ment</td>
<td>große Zugkräfte mit ständigen Relativbewegungen der Filamente, hohe Beanspruchung der Elastomer-Zugstrang-Verbindung</td>
<td>Ermüdungsbruch der Zugstränge, Ablösen der Zugstränge aus dem Elastomer, Zahnflankenverschleiß des Riemen bei zu großer Dehnung, Überspringen der Verzahnung</td>
<td>Litzenanzahl möglichst gering, zugsteife Konstruktion durch großen metallischen Querschnitt, stark strukturierte Oberfläche für gute Verankerung im Elastomer</td>
</tr>
<tr>
<td>- geringe Änderungen</td>
<td>Relativbewegungen und Dehnungsänderung hauptsächlich durch Biegung um Scheibe</td>
<td>keine direkte Schadensfolge</td>
<td>mehrlitzige Konstruktion für gute Biegewilligkeit und gute Verankerung im Elastomer</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Umschlingungslänge</td>
<td>klein (z.B. bei Spannrollen) sehr lokale Biegung</td>
<td>Ermüdungsbruch der Zugstränge durch Biegewechselbelastung</td>
<td>Seilschlaglänge nach Möglichkeit kleiner als Umschlingungslänge, keine spezifischen Anforderungen</td>
</tr>
<tr>
<td></td>
<td>groß</td>
<td>lokale Biegungen nur durch verzahnungsbedingten Polygoneffekt auf Scheibe</td>
<td></td>
</tr>
</tbody>
</table>
Algorithmus zur Modellierung der Zugstrangbelastung mit FEM

Auswahl des Belastungsfalls
- Seil unmittelbar auf Scheibe
- Seil ummantelt auf Scheibe
- Zugstrang im Zahnriemen auf Zahnscheibe

Analyse der Werkstoffparameter und Geometriedaten
- Werkstoff der Drähte und des Elastomers
- Reibwerte Draht/Draht, Seil/Scheibe bzw. Elastomer/Scheibe
- Zugstrang-, Scheiben-, Elastomergeometrie

Wahl der Modellgröße
- Anzahl der Schlaglängen / ggf. Zähnezahl des Riemensegments

Konstruktion des Seils
- Erstellen der Raumkurven der Drähte
- Konstruktion der Drahtquerschnitte senkrecht zu Raumkurven
- FE - Vernetzung der Drahtquerschnitte
- Extrusion der Querschnitte entlang der Raumkurven
- Definition der Kontakte zwischen den Filamenten

Elastomer-Ummantelung
- ja
- nein

Konstruktion der Elastomer-Ummantelung
- Erstellen der Geometrie, ggf. mit Zahnräumenprofil
- FE - Vernetzung
- Definition der Verbindung mit den Drähten
Konstruktion der Scheibe

Erstellen der Kontaktfläche, ggf. mit Verzahnung der Scheibe

FE - Vernetzung

Definition der Kontakte zu Zugstrang oder Ummantelung

Festlegen der Randbedingungen

Fixieren der Knotenfreiheitsgrade an Symmetrieebenen

Fixieren der Scheibe und des Seilanfangs

Antragen der Kräfte und Verschiebungen am freien Seilende

Berechnung

Ergebnisse
- mechanische Spannungen und Dehnungen
- Kontaktkräfte zwischen Drähten
- Verschiebungen der Filamente
- Seilverformung
- Einlaufverhalten in die Scheibe

Bild 6.1: Algorithmus zur Modellierung der Zugstrangbelastung mit FEM
7 Gesamtzusammenfassung und weiterführende Aufgaben

Als Ergebnis dieser Arbeit liegt erstmalig ein sehr flexibles Simulationssystem auf Basis der Finite Elemente Methode vor, welches es gestattet, die inneren Vorgänge in den Zugsträngen von Zahnriemen in Abhängigkeit der Seilkonstruktion und der äußeren Zug- oder Biegebelastung detailliert abzubilden.

Als Vertreter zweifach verseilter Konstruktionen wurden die bei Zahnriemen häufig verwendeten Zugstränge 3x3 sowie 7x3 untersucht. Hier überlagern sich aufgrund der hinzukommenden Interaktion der einzelnen Litzen bereits bei reiner Seilzugbelastung so viele verschiedene Belastungseinflüsse, dass eine rein analytische Betrachtung der Spannungsverteilung praktisch unmöglich ist. Die Simulation offenbarte weiterhin einen nicht zu unterschätzenden Einfluss der Phasenlage der Litzen auf die resultierende Seilbeanspruchung, ein Umstand, dem bislang kaum Beachtung geschenkt wurde.

Wie bereits eingangs dargestellt, zeigt ein Zugstrang unabhängig von seiner Konstruktion ein deutlich anderes Belastungsverhalten, wenn zwischen diesem und der Scheibe eine Schicht Polyurethan die direkte Berührung verhindert. So verringerten sich in der Simulation die durch die Scheibenko kontakte hervorgerufenen Druck- und Biegespannungen sowohl bei der
vollständig von PU umgebenen Litze 1+6 als auch bei der zweifach verseilten, mit der Elastomerschicht unterlegten Konstruktion 3x3 erheblich. Bei der ummantelten Litze 1+6 entsprechen die maximalen Vergleichsspannungen in den Außendrähten über die gesamte Schlaglänge nahezu der Summe aus analytisch vorhergesagter Drahtzugspannung und Biegespannung nach Reuleaux, bei der Konstruktion 3x3 kommen als zusätzliche Spannungskomponenten noch die Auswirkungen der sich weiterhin untereinander abstützenden Litzen hinzu.

Zahnriemensimulationssystem [Ifte2] und überträgt diese in Form geeigneter Randbedingungen analog zum erwähnten „Submodeling“-Prozess auf das separate, ggf. im Riemensegment eingebettete Zugstrangmodell, welches so letztendlich die resultierenden Belastungen der Einzeldrähte liefert. Ob beim Zugstrangmodell auch komplett auf das umgebende Elastomer verzichtet werden kann, hängt dabei ganz entscheidend von der Frage ab, inwieweit sich allein aus der praktisch auf eine Linie reduzierten Zugstrangverformung im Riemensimulationssystem ausreichend genaue Randbedingungen für die tatsächliche Berechnung der Seildeformation finden lassen.

Das in dieser Arbeit entwickelte Simulationssystem bietet sich besonders für vergleichende Untersuchungen verschiedener Zugstrangkonstruktionen an, wie z.B. hinsichtlich der Variation der Schlaglängen, der Drahtdurchmesser, des Einflusses der bestehenden Fertigungstoleranzen oder der Phasenlagen der einzelnen Litzen im Seilquerschnitt. Für praktisch relevante Aussagen ist dazu auch die Berücksichtigung herstellungsbedingter Besonderheiten zu beachten. So werden die Zugstränge häufig vorgereckt, was an den Kontaktstellen der Litzen und Drähte zu plastischen Verformungen führt. Zudem besitzen die Drähte meist auch ohne äußere Belastung fertigungsbedingte, teilweise sogar gewollte Eigenspannungen. Ob deren Einflüsse auf die letztendliche Seilbelastung zu vernachlässigen sind oder in der Geometrie bzw. als Initialspannungen im Modell aufgenommen werden müssen, ist für jeden Zugstrang im Vorfeld zu klären.

Die meisten hier vorgestellten Berechnungen beschränken sich auf die Abbildung einer bis zwei Schlaglängen der entsprechenden Seile, wodurch der Einfluss der Randbedingungen auf das zu betrachtende Seilstück in der Regel ausreichend minimiert wird. Besonders bei mehrfach verseilten Konstruktionen oder bei Einbettung in den Zahnräumen wiederholen sich die Seilbelastungen jedoch nicht mehr mit der Periode der Seilschlaglänge aufgrund der gegebenen Verhältnisse von Litzen- zu Seilschlaglänge bzw. von Seilschlaglänge zu Riementeilung. Darüber hinaus sind noch weitere Effekte denkbar, die sich über einen längeren Seilabschnitt erstrecken können. So erwähnt z.B. Feyrer, dass bei laufenden Drahtseilen zusätzliche Belastungen am Übergang vom gestreckten zum gebogenen Seilabschnitt beim Einlauf in die Scheibe auftreten [Fey1]. Um die Bedeutung dieser Effekte genauer zu untersuchen, sollten in jedem Fall auch längere Seilabschnitte betrachtet werden. Der zusätzliche Aufwand bei der Modellierung ist sehr gering, allerdings sind auch hier der Simulation bislang noch rechentechnische Grenzen gesetzt, die sich jedoch bald relativieren dürften.

Zusammen mit dem bereits verfügbaren Zahnriemensimulationssystem bietet das hier entwickelte Zugstrangmodell die Basis, alle denkbaren mechanischen Ausfallrisiken des Zahnrämens umfassend zu untersuchen. Kann ersteres die Belastung des Riemenprofils bei Umlauf um die Zahnscheibe abbilden, ermöglicht letzteres die Betrachtung der dabei
auftretenden inneren Beanspruchungen der Filamente des Zugstrangs sowie der zwischen den Außendrähten liegenden Elastomer-Gebiete.

In jedem Fall ist das Modell zugleich für die Untersuchung einer Vielzahl anderer Anwendungen in der Förder- und im Bauwesen geeignet, bei denen Stahlseile zum Einsatz kommen, die Zug- und Biegebelastungen unterworfen sind.

Bild 7.1: Prinzipielles Vorgehen zum Ableiten einer Verschleißtheorie für Zugstränge
Gesamtzusammenfassung und weiterführende Aufgaben

1. **Verschleißmodell**
 - Berechnung mit FEM
 - Zugstrang im Zustand nach der Fertigung
 - Beachtung geometrischer Effekte, z.B. durch das Vorrecken, sowie vorhandener Eigenspannungen
 - Einbettung im Elastomer
 - Simulation eines Belastungsvorgangs
 - Verschleißrelevante Belastungsgrößen
 - Berechnung des Materialabtrags in verschleißrelevanten Zonen innerhalb des angesetzten Zeitintervalls bzw. innerhalb einer bestimmten Anzahl von Belastungszyklen
 - Verschleißmodell
 - Modifizierte Geometrie

2. **Ausfallkriterium erreicht?**
 - nein
 - ja

3. **Lebensdauer**
 - Lebensdauer t_{nd} bzw. N_{max}

Bild 7.2: Iterativer Algorithmus zum Bestimmen des Verschleißfortschritts bei Zugsträngen unter Verwendung des Verschleißmodells aus Bild 7.1
Literaturverzeichnis

Lebenslauf

Zur Person

Name | Robert Witt
geboren am | 01.05.1977 in Dresden
Familienstand | ledig

Werdegang

1995 – 1996 | Zivildienst im Krankenhaus Dresden Friedrichstadt
2000 | Praktikum an der Universidade Federal de Santa Catarina - UFSC, Florianópolis (Brasilien)
ab 2002 | Promotion am Institut für Feinwerktechnik u. Elektronik-Design der TU Dresden als Stipendiat der Studienstiftung des deutschen Volkes
seit 2006 | Wissenschaftlicher Mitarbeiter am Institut für Feinwerktechnik u. Elektronik-Design der TU Dresden