Model Selection and Uniqueness Analysis for Reservoir History Matching

Von der Fakultät für Geowissenschaften, Geotechnik und Bergbau
der Technischen Universität Bergakademie Freiberg
genehmigte

Dissertation

Zur Erlangung des akademischen Grades

Doktor-Ingenieur

(Dr.-Ing.)
vorgelegt

von: M.Mohsen Rafiee, M.Sc.

geboren am 13.05.1982 in Shiraz, Iran

Gutachter: Prof. Dr.-Ing. habil. Frieder Häfner, Freiberg

Prof.Dr. -Ing. Leonhard Ganzer, Cluasthal

Dr. Ralf Schulze-Riegert, Hamburg

Tag der Verleihung: 28.01.2011
Model Selection and Uniqueness Analysis for Reservoir History Matching

By the Faculty of Faculty of Geosciences, Geo-Engineering and Mining of the Technische Universität Bergakademie Freiberg approved this THESIS to attain the academic degree of Doktor-Ingenieur (Dr.-Ing.)

by: M. Mohsen Rafiee, M.Sc.
born on 13.05.1982 in Shiraz, Iran

Assessors: Prof. Dr.-Ing. habil. Frieder Häfner, Freiberg

Prof. Dr. -Ing. Leonhard Ganzer, Cluasthal

Dr. Ralf Schulze-Riegert, Hamburg

Date of the award: 28 January 2011
Acknowledgements

Foremost, I would like to thank my supervisor, Prof. Dr. Ing. habil. Frieder Häfner, for his support, encouragement and his guidance during this work. He provided me brilliant ideas and deep insights in research, the best environment to work in and many opportunities to present my work.

I am greatly thankful to the professors of the Institute of Drilling Engineering and Fluid Mining, Prof. Dr. Ing. Matthias Reich, head of Institute, Prof. Dr. Ing. Mohamed Amro, head of Reservoir Engineering section and also Prof. Dr. Steffen Wagner for their helps and supports during my work in the Institute.

I would also like to thank all my friends, PhD colleagues and other staff members of the Institute of Drilling Engineering and Fluid Mining, especially Dr. Dieter Voigt, Dr. Nils Hoth and Dr. Carstern Freese, for their encouragement and proper support during the entire duration of my work. I take this opportunity to express my gratitude for all those who helped me.

This work has been completed through DGMK (German Society for Petroleum and Coal Science and Technology) research work 681. Here by I deeply appreciate the financial support provided by DGMK that made this project possible. License of the MEPO was provided by SPT-Group. I thank Dr. Ralf Schulze-Riegert for his ideas and good instructions in building and developing some works I used in this study.

Last but not least, my warmest thanks go to my family and my wife Yasaman for their effort, moral support and love during my work. This thesis is dedicated to them.
Abstract

“History matching” (model calibration, parameter identification) is an established method for determination of representative reservoir properties such as permeability, porosity, relative permeability and fault transmissibility from a measured production history; however the uniqueness of selected model is always a challenge in a successful history matching.

Up to now, the uniqueness of history matching results in practice can be assessed only after individual and technical experience and/or by repeating history matching with different reservoir models (different sets of parameters as the starting guess).

The present study has been used the stochastical theory of Kullback & Leibler (K-L) and its further development by Akaike (AIC) for the first time to solve the uniqueness problem in reservoir engineering. In addition - based on the AIC principle and the principle of parsimony - a penalty term for OF has been empirically formulated regarding geoscientific and technical considerations. Finally a new formulation (Penalized Objective Function, POF) has been developed for model selection in reservoir history matching and has been tested successfully in a North German gas field.

Kurzfassung

„History Matching“ (Modell-Kalibrierung, Parameter Identifikation) ist eine bewährte Methode zur Bestimmung repräsentativer Reservoireigenschaften, wie Permeabilität, Porosität, relative Permeabilitätsfunktionen und Störungs-Transmissibilitäten aus einer gemessenen Produktionsgeschichte (history).

Die vorliegende Studie hat die im Reservoir Engineering erstmals eingesetzte stochastische Theorie von Kullback & Leibler (K-L) und ihre Weiterentwicklung nach Akaike (AIC) als Basis für die Bewertung des Eindeutigkeitsproblems genutzt. Schließlich wurde das AIC-Prinzip als empirischer Strafterm aus geowissenschaftlichen und technischen Überlegungen formuliert. Der neu formulierte Strafterm (Penalized Objective Function, POF), wurde für das History Matching eines norddeutschen Erdgasfeldes erfolgreich getestet.
Table of Contents

Acknowledgements ... i
Abstract .. ii
Kurzfassung ... ii
Table of Contents ... iii
Table of Figures .. v
Table of Tables ... vi
Nomenclature ... vii

Chapter 1. Introduction and Literature Review ... 11
 1.1. Background .. 11
 1.2. Statement of the Problem ... 11
 1.2.1. Uniqueness Problem ... 11
 1.2.2. Consequences and Achievements .. 12
 1.3. Literature review on History Matching and inverse problems 14
 1.3.1. Forward modeling .. 15
 1.3.2. Mathematical Model for inverse modeling .. 16
 1.3.3. Optimization – Minimization of an Objective Function 16
 1.3.4. Effective model Calibration .. 20

Chapter 2. Model Selection Criteria .. 21
 2.1. Model selection .. 21
 2.2. Model Parameterization ... 21
 2.3. Simplicity and Parsimony .. 21
 2.4. The Kullback-Leibler Distance (Information) .. 22
 2.4.1. Information Criteria and Model Selection .. 24
 2.4.2. Akaike’s Information Criterion (AIC) ... 25
 2.5. Using Optimization packages .. 26
 2.5.1. UCODE .. 26
 2.5.2. SIMOPT .. 29
 2.5.3. MEPO ... 31

Chapter 3. Test of Different Criteria on Synthetic and Experimental Cases 33
 3.1. Synthetic 2D-Case ... 33
 3.1.1. Model description ... 33
 3.1.2. History matching and result ... 35
 3.1.3. AIC application .. 35
 3.2. Laboratory Permeability Measurement .. 37
 3.2.1. Model description ... 37
 3.2.2. History matching and AIC application result ... 37
 3.3. Packer test system (Insitu permeability measurement) 39
 3.3.1. Model Description ... 39
 3.3.2. History Matching and identification .. 40
 3.3.3. Uniqueness Analysis ... 41
 3.4. New empirical correlation for packer test system (AIC$_n$) 45

Chapter 4. Development of General Criteria for Model Selection 48
 4.1. Model Selection Complexity .. 48
 4.2. Penalization (POF) ... 50
 4.2.1. Development of POF ... 50
Table of Figures

Fig. 1: Forward and Inverse approach to modeling .. 15
Fig. 2: A comparison of steepest descent, Newton’s method and Levenberg-Marquardt algorithm .. 18
Fig. 3: Relation between number of parameter and OF. (Description for principle of parsimony) .. 22
Fig. 4: Flowchart showing major steps in the UCODE_2005 parameter estimation mode using perturbation sensitivities. ... 28
Fig. 5: Example of the Evolution Strategy application ... 32
Fig. 6: Top view gridding of the synthetic model ... 33
Fig. 7: PVT and SCAL properties for synthetic model ... 34
Fig. 8: Example of region selection for matching case 2 of the synthetic model 36
Fig. 9: Schematic of Laboratory Permeability Measurement apparatus 37
Fig. 10 Simulation model of laboratory permeability measurement 37
Fig. 11: Simulation result of the change in pressure in Laboratory Permeability Measurement (Version 1 and 2 versus measurement data) ... 38
Fig. 12: Schematic picture of packer test system (four packers installation system) 39
Fig. 13: model and schematic of gridding of packer test system 40
Fig. 14: Example of selected regions in a packer test (model 2 & 14 regions) 41
Fig. 15: The concept of global minima among different model sets.................................... 41
Fig. 16: Model with 3, 5, 6 and 7 regions parameter sets ... 42
Fig. 17: comparison of different parameter set with different modifier starter 43
Fig. 18: Graph of equivalent region modifier (sensitivity analysis) 44
Fig. 19: calculation of $\text{AIC} = \log(\text{OF}) + K$.. 44
Fig. 20: Application of different weight factors for AIC equation 45
Fig. 21: calculation of $\text{AIC} = \log(\text{OF}) + \log(K)$... 46
Fig. 22: History matching of a packer test model with 2 parameters 47
Fig. 23: History matching of a packer test model with 5 parameters 47
Fig. 24: History matching of a packer test model with 14 parameters 47
Fig. 25: Example of simple 2D Cartesian reservoir model .. 48
Fig. 26: Penalization concept and region definition considering model complexity 51
Fig. 27: Minimum Trust Region for packer test system .. 52
Fig. 28: Application of POF in packer test system ... 53
Fig. 29: Field Case model structure .. 54
Fig. 30: Example of production rate and BHP measurement data with simulation response in Well VIII ... 55
Fig. 31: Uncertainty in draw down period data measurement ... 56
Fig. 32: Top view of field case model showing 5 different pore volume regions 57
Fig. 33: Material Balance and p/z analysis .. 58
Fig. 34: Buildup pressure test analysis for field case in each well 62
Fig. 35: Example of model selection region in field case model (model with 5 and 60 regions) ... 63
Fig. 36: Identified permeability values for the model with 5 regions 66
Fig. 37: Identified permeability values for the model with 11 regions 66
Fig. 38: Identified permeability values for the model with 22 region.......................... 66
Fig. 39: Sensitivity analysis of field case with model of maximum 22 parameter regions. 67
Fig. 40: Comparison of OF and POF for the model with homogenous porosity 67
Fig. 41: Comparison of OF and POF for the model with non-homogenous porosity 68
Fig. 42: History Matching result of Well VIII for the model with 22-regions 68
Fig. 43: Comparison between pressure buildup analysis and history matching for a model with 22regions ... 69
Fig. 44: part example of SIMOPT Logfile .. 71
Fig. 45: sample example of akaiki.path file... 71
Fig. 46: equivalent REGION file example ... 72
Fig. 47: computation result of AKAIKI ... 72
Fig . B.1: History matching result of Well I in a model with 22 permeability regions ... 102
Fig . B.2: History matching result of Well II in a model with 22 permeability regions .. 103
Fig . B.3: History matching result of Well III in a model with 22 permeability regions .. 104
Fig . B.4: History matching result of Well V in a model with 22 permeability regions .. 105
Fig . B.5: History matching result of Well VI in a model with 22 permeability regions .. 106
Fig . B.6: History matching result of Well VII in a model with 22 permeability regions. 107
Fig . B.7: History matching result of Well VIII in a model with 22 permeability regions 108
Fig . B.8: History matching result of Well X in a model with 22 permeability regions .. 109
Fig . B.9: History matching result of Well XI in a model with 22 permeability regions .. 110
Fig . B.10: History matching result of Well IV in a model with 22 permeability regions 111
Fig . B.11: History matching result of Well IX in a model with 22 permeability regions 112

Table of Tables
Table 1: Guidelines for effective model calibration (after Hill and Tiedeman) 20
Table 2: Comparison between SIMOPT and UCODE ... 31
Table 3: History matching with model selection calculation (Synthetic 2D case) 36
Table 4: History matching with model selection calculation (Lab Measurement Test) 38
Table 5: Initial and Identified permeability for packer test with 5 regions 47
Table 6: The concept of general development of model selection criteria 49
Table 7: Effect of pressure adjustment in field case .. 56
Table 8: Material balance calculation for different wells and regions 59
Table 9: Calculation of Permeability by pressure Buildup analysis in field case 61
Table 10: History matching result of the model with homogeneous porosity 64
Table 11: History matching result of the model with non-homogeneous porosity 64
Table 12: Comparison of SIMOPT vs. MEPO for 3 different models 65
Nomenclature

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>Akaike’s Information Criterion</td>
<td></td>
</tr>
<tr>
<td>AIC<sub>c</sub></td>
<td>Extended Akaike’s Information Criterion</td>
<td></td>
</tr>
<tr>
<td>AKAIKI</td>
<td>New developed software for automatic history matching using SIMOPT</td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td>Bottom Hole Pressure</td>
<td>bar</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian Information Criterion</td>
<td></td>
</tr>
<tr>
<td>c<sub>t</sub></td>
<td>total compressibility</td>
<td>1/bar</td>
</tr>
<tr>
<td>d</td>
<td>step change</td>
<td></td>
</tr>
<tr>
<td>d<sub>m</sub></td>
<td>Kashyap Index model selection criteria</td>
<td></td>
</tr>
<tr>
<td>E<sub>f</sub></td>
<td>Expectation function</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>full reality model</td>
<td></td>
</tr>
<tr>
<td>F(X)</td>
<td>mathematical function in forward modeling</td>
<td></td>
</tr>
<tr>
<td>f(x)</td>
<td>mathematical function of residual (objective function) in inverse modeling</td>
<td></td>
</tr>
<tr>
<td>f<sub>\text{prior}</sub></td>
<td>prior term of OF in SIMOPT</td>
<td></td>
</tr>
<tr>
<td>f<sub>\text{residual}</sub></td>
<td>residual term of OF in SIMOPT</td>
<td></td>
</tr>
<tr>
<td>f<sub>\text{survey}</sub></td>
<td>survey term of OF in SIMOPT</td>
<td></td>
</tr>
<tr>
<td>g(x)</td>
<td>approximating model being compared to measured value</td>
<td></td>
</tr>
<tr>
<td>GOR</td>
<td>Gas Oil Ratio</td>
<td></td>
</tr>
<tr>
<td>G<sub>p</sub></td>
<td>total cumulative gas production</td>
<td>sm³</td>
</tr>
<tr>
<td>H</td>
<td>Hessian matrix</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>reservoir thickness</td>
<td>m</td>
</tr>
<tr>
<td>I</td>
<td>identity matrix</td>
<td></td>
</tr>
<tr>
<td>I(f, g)</td>
<td>Kullback-Leibler Information</td>
<td></td>
</tr>
<tr>
<td>IGIP</td>
<td>Initial Gas In Place</td>
<td>sm³</td>
</tr>
<tr>
<td>K</td>
<td>number of model parameters (regions or multiplier)</td>
<td></td>
</tr>
</tbody>
</table>
k permeability mD
K-L Kullback-Leibler information
k_r relative permeability
L(θ|x) maximum likelihood of a model with parameter vector θ and predictor variables x
LMA Levenberg-Marquardt Algorithm
Log natural logarithm function
m dip of straight line in pressure build-up analysis bars²/period
MES MEaSurement
n total number of observation points
N/G Net to Gross Ratio
OBS observation data
OF Objective Function
OF_{SIMOPT} SIMOPT objective function
p pressure bar
P_i probability of the i^{th} outcome
POF Penalized Objective Function
p_w wellbore pressure bar
p_w0 initial wellbore pressure bar
Q Gas production rate sm³/day
q_{cum} cumulative gas production in drawdown period before shut-in sm³
RMS Root Mean Square
r_{eff} effective wellbore radius m
SCAL Special Core Analysis
SIM SIMulation
T Temperature K
T transpose of the matrix or vector
t time days
Tr_{fault} Fault transmissibility
WBHP Well Bottom Hole Pressure bar
WBPH Well Bottom Hole Pressure History (pressure measurement data)

WGOR Well Gas Oil Ratio

WWCT Well Water Cut

x predictor variables, measured data, distance

$y_{\text{obs}}, y_{\text{cal}}$ observation values and simulator computing values

z gas compressibility factor

Greek Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>∇</td>
<td>Gradient operator</td>
</tr>
<tr>
<td>α, β, γ</td>
<td>overall weights for the production, survey and prior terms in SIMOPT-OF</td>
</tr>
<tr>
<td>ε_i</td>
<td>residual of n observation</td>
</tr>
<tr>
<td>θ</td>
<td>parameter vector</td>
</tr>
<tr>
<td>μ</td>
<td>Viscosity</td>
</tr>
<tr>
<td>μ_{lm}</td>
<td>the step size in Levenberg-Marquardt Algorithm</td>
</tr>
<tr>
<td>ν</td>
<td>vector of normalized parameter modifiers (multipliers)</td>
</tr>
<tr>
<td>ν^k</td>
<td>parameter normalized modifier values</td>
</tr>
<tr>
<td>π_i</td>
<td>Approximating probability distribution of ith outcome</td>
</tr>
<tr>
<td>ρ</td>
<td>fluid density</td>
</tr>
<tr>
<td>σ</td>
<td>standard deviation, measurement error</td>
</tr>
<tr>
<td>ϕ</td>
<td>Porosity</td>
</tr>
<tr>
<td>ω</td>
<td>weight factor</td>
</tr>
</tbody>
</table>

Indices

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>stands for initial reservoir condition, iteration</td>
</tr>
<tr>
<td>i, j, k</td>
<td>well number, time segment and data kind</td>
</tr>
<tr>
<td>n</td>
<td>number of observation points</td>
</tr>
<tr>
<td>n_w, n_t, n_k</td>
<td>the maximum of i, j, k respectively</td>
</tr>
<tr>
<td>P</td>
<td>production time before shut-in</td>
</tr>
<tr>
<td>R</td>
<td>radial direction, number of sets of prior models</td>
</tr>
<tr>
<td>St</td>
<td>standard or surface condition</td>
</tr>
</tbody>
</table>
Tr trust region
x x direction
xy Horizontal direction
y y direction
z vertical direction
Θ tangential direction
Chapter 1. Introduction and Literature Review

1.1. Background

In Reservoir Engineering a numerical reservoir model should be adjusted against dynamic performance of the field so that it can be used as a prediction tool for future forecasting. This process is so called “History Matching”. Although a number of different methods have been proposed for integrating dynamic information in numerical model and observation data [24],[2], the common conventional practice in the industry is to do multi phase flow simulations [51],[29] with user selected reservoir parameters in trial and error approach until agreeable history match is obtained.

History Matching in Reservoir Engineering is described as an automatic inverse model calibration. This is formulated as an optimization problem, which has to be solved in the presence of uncertainty because the available observed field data cannot be identical to the system responses calculated with a reservoir model due to the measurement errors and the simplified nature of the numerical model (model structure error). [30],[40],[65],[39]

Often it is advisable to simplify some representation of reality in order to achieve an understanding of the dominant aspects of the system under study. The study of the inverse problem in the stochastic framework provides capabilities using analytical statistics to quantify a quality of calibration and the inferential statistics that quantify reliability of parameter estimates and predictions [8],[31],[47]. The statistical criteria for model selection may help the modelers to determine an appropriate level of complexity of parameterization and one would like to have as good an approximation of the structure of the system as the information permits[12].

1.2. Statement of the Problem

1.2.1. Uniqueness Problem

Because of the complexity of many real systems under study the number of reservoir parameters is usually larger than the available data set allows to identify; therefore the solution is non-unique [4],[32],[26]; In other words, more than one set of reservoir model parameters fits the observation. While adding features to a model is often desirable to minimize the misfit function or Objective Function (OF) between simulated and observed values, the increased complexity comes with a cost and non-uniqueness. In general, the more parameters that a model contains the smaller the minimum OF, but the more non-unique the identified parameter set can be accrued[23],[22],[37],[8].

Since the same production history could be fit by different reservoir scenarios and reservoir models; a history matched reservoir model cannot be unique. Consequently the non-unique parameter set is more uncertain concerning the truth and the risk of wrong forecast prediction may arise from such non-uniqueness [33],[41],[20],[62]. Yamada[67] has shown these risks on three history matching scenarios over more than 20 years. These models have shown that could not be appropriate model for the entire life of the reservoir.
He has mentioned that different models should be investigated and evaluated in order of successful history matching, although none of them is considered as unique solution.

The determination of the model parameters with history matching requires the minimization of an objective function in a parameter space (wide ranges of different parameters through reservoir); Indeed:

the necessary condition in any model selection is to have convergence in regression to minimize the objective function (OF), using any minimization techniques,

but the sufficient condition would be the uniqueness of the model parameter set which has been selected.

From mathematical point of view both conditions must be fulfilled in a successful reservoir history match. In the today’s reservoir engineering practice only the necessary condition can be fulfilled with modern optimization algorithms. However the open question of parameter uniqueness leads to uncertainty in the prognosis of future reservoir development and using the conventional history matching methods will not practically guarantee to recover the true model.

Two of the major difficulties in history matching are, first, how to choose which parameters to modify in order to obtain a match, and second, how to ensure that the changes made to the model remain consistent with the geological concepts and other data used to build the model in the first place [15]. In other words, if a minimum in the objective function is found such that the differences between the calculated and measured observable quantities are sufficiently small, and if the parameterization by which this minimum has been found conforms to the geological model, then we have satisfactory history match [12].

Tavassoli et al. [61] have described the non-uniqueness problem with multi-modal objective function. They have defined three classes of non-uniqueness which may happen in history matching. First type is where the model has a single optimum in the parameter space; but because of the measurement errors, the ranges of error around the location of the most likely model are quite large. This situation is expected to occur in almost all history matching exercises. The next type is when the data cannot allow a unique optimum to be determined. For example if two or more variables can be adjusted all together to keep the overall misfit constant. The last type occurs where multiple high quality local optima exist, but the unique solution is the model with global minimum. In this case rather good minimum could be found with available data exist but these minimums involves lot of different local minima. In other words, more than one set of reservoir model parameters fits the observation history. Moreover, even a solution associated to a given minimum may be unstable.

1.2.2. Consequences and Achievements

Conventionally, the parameters are chosen using combination of feeling and trial and error manners, which can be time consuming and boring process. Researchers have been building tools for automatic history matching of permeability and porosity distributions to
match the production data for many years [40],[65],[39],[38]. However the problem of uniqueness is still one of the main concerned issues in model selection.

Bissell [12] has described a method “gradzone analysis” for optimally parameterization of a reservoir model in history matching. The method takes into account both the mathematical structure of minimization of the Objective Function, which is the necessary condition in successful history matching, and also the constraints imposed by geology (This could be prior boundary information to condition the history matching parameters). The method can be used to make a prediction about how far into the future can trust the model.

Gavalas et al. [32] have applied Bayesian estimation theory to history matching as an alternative to zonation. They expressed that it is a so called prior term can be added to the objective function to constrain deviations from an initial model or from underlying relationships between the parameters being varied. By using a priori statistical information on the unknown parameters, the problem becomes statistically better determined.

Do Nascimento et al. [25] incorporated “smoothness constraint” method in the spatial variation of physical properties as an example of a geological qualitative constraint that can be mathematically incorporated in an objective function which could also honoring the data. These constraints are applied by conditioning the permeability and/or porosity difference between adjacent grid blocks to be small. The smoothness constraint reduces the variance of the estimates by introducing bias in the solutions still preserving good match. However this method cannot be applied to all reservoirs. For this reason they use the idea that a “tool box” of history matching can be designed for each reservoir that can incorporate a different constraint. Therefore, the interpreter can choose a specific tool from this tool box according to the dependency and importance of its constraint to the particular reservoir being studied.

In the previous work by Mtchedlishvili [46], the statistical model selection approach, based on the Kullback-Leibler information, was used to choose the best parameter zonation pattern for a reservoir model. This approach measures directly the model deviation from the true system, taking into account the bias and variance between the predicted and observed system responses. It balances the trade-off between increased information and decreased reliability, which is fundamental to the principle of parsimony. Nevertheless in the case where no single model is clearly superior to some of the others, it is reasonable to use the concepts of model inference for translating the uncertainty associated with model selection into the uncertainty to assess the model prediction performance.

In the work of Mtchedlishvili [46] the inverse modeling techniques was applied for characterization of tight-gas reservoirs and in this situation the numerical investigation of the production behavior of the hydraulically fractured wells was an essential part of the investigations. He has also calculated the values for different model selection criteria. He
has shown the calculation of objective function (OF) coupling with the three model selection criteria (AICi, BIC[37],[32], d\textsubscript{m}[46]) with regard to the principle of parsimony and the Kullback-Leibler (K-L) weights for each of the alternative models of PUNQii project. The overall ranking of the models shows the different behaviors for each of the applied approaches. Furthermore, based on the calculated K-L weights he made formal inference from the entire set of models for model prediction purposes.

The need to limit the region of search space to physically meaningful ranges and numbers of the parameters has been recognized and discussed by number of authors[23],[15],[26],[12],[61]; nevertheless, the fact that wrong and not confident estimated parameters can arise from history matching with much more problem. There is yet also no clear guideline and rule that describes the number of parameters required for an accurate simulation model and that indicates if these parameters are unique.

In the present work problem of uniqueness in Reservoir History Matching has been explained. This has been discussed with the problem of under- and over-parameterization in reservoir model. In the following chapters the History Matching and inverse problem in Reservoir Engineering has been reviewed, different model selection criteria and also minimization and optimization techniques have been explained. The basic model selection criteria in our case have been implemented to three different cases; 2D synthetic model, lab permeability experiment and packer test system.

Based on the result of these tests, a new model selection criterion for general case of deterministic reservoir simulation model has been developed and explained in details. Right after, the application of this new strategy in packer test system has been verified.

In the last part of this work, a complete history matching has been done for a gas field reservoir in North of Germany. The results of history matching with minimum Objective Function have been used to find most probable unique solution by implementing new approach.

Beside of all, new software tool has been prepared to couple the results history matching with different model selection approaches. This can be used to find optimum solution in reservoir history matching.

1.3. Literature review on History Matching and inverse problems

It is not possible for geoscientist and reservoir engineers to know all static and dynamic multi phase flow properties of the reservoir; therefore describing a full reliable mathematical model for the reservoir is not achievable. Consequently “History Matching”

i AIC will be explained in more detail in section 2.4.2.

ii PUNQ which stands for Production forecasting with Uncertainty Quantification, is a typical reservoir history matching model, which has been used in a variety of different literatures to discussing the problem of optimization methods. The PUNQ case was qualified as a small size industrial reservoir engineering model[54].
is certainly needed for a successful reservoir simulation, which is to find an appropriate set of values for the simulator’s input parameters so that the simulator properly predicts the fluid outputs and the pressures of the wells in the reservoir. It is an inverse problem of partial differential equation theory and is not a well defined problem. History matching is most often a multi objective optimization problem, which means that additional criteria need to be met in order achieve an overall and acceptable match.

1.3.1. Forward modeling

In a mathematical model F if the model parameters X are known, then the relationship of these parameters which describing the outcome or observable data, OBS, could be expressed as:

\[F(X) = OBS \] \hspace{1cm} EQ. 1

In our case F refers to a mathematical equation of fluid flow in porous media. A usual forward modeling problem is described by differential equation with specified initial boundary conditions. With above deterministic equation; OBS can be calculated typically by running a numerical reservoir simulator that finds the solution of numerical approximation of a set of partial differential equations. This procedure is so called forward modeling (Fig. 1).

![Forward and Inverse approach to modeling](image)

The numerical simulator in forward modeling could be used further in inverse modeling as a process investigator. Forward modeling problems are mostly well posed problems or can be made to be well posed by adding natural physical constraints on the differential equation and boundary conditions [48]. If a problem is not well posed, it is called ill posed.

The problem is said to be well posed if it has a solution, the solution is unique and the solution is a continuous function of the problem data[48]. Well posed condition happens usually in any deterministic model.
1.3.2. Mathematical Model for inverse modeling

In the inverse modeling the observation data are used to find the variables that describe the model which has been explained in forward modeling. Here one should define an Objective Function (OF) for the purpose of inverse modeling. It is believed that almost all inverse modeling problems are ill posed.

It should be assumed that the limited non-linear optimization procedures which are used for inverse modeling of partial differential equation to find solution for history matching problem, define the objective function as the weighted squared sum of differences between the wells simulation values and the corresponding observation values [31],[60]:

\[
\sum_{i=1}^{n_{i}} \sum_{j=1}^{n_{j}} \sum_{k=1}^{n_{k}} \omega(i, j, k) \left(\frac{y^{\text{obs}}(i, j, k) - y^{\text{cal}}(i, j, k, \theta)}{\sigma_{i,j,k}} \right)^2
\]

EQ. 2

where \(y^{\text{obs}} \), \(y^{\text{cal}} \) denote the observation values and simulator computing values respectively (e.g. Well Head/Bottom Hole Pressure, Gas-Oil Ratio, Water Cut and etc., all versus time), \(\omega \) denotes parameter scale weight factor coefficient in order to prioritize contribution of each observation types, \(\sigma \) is the standard deviation or measurement error, \(i, j, k \) stand for well number, time period and data kind respectively, \(n_{i} ; n_{j} ; n_{k} \) are the maximum of \(i, j, k \) correspondingly , \(\theta \) denotes the parameter vector (e.g. Permeability, Porosity, Relative Permeability values, fault transmissibility etc.), \(\theta=[\theta_{1}, \theta_{2}, \theta_{3},..., \theta_{K}] \), \(K \) is the total number of parameters in parameter vector).

For a general history matching problem the objective function is functional of the parameter vector. It needs to carry out a history simulation run to gain an objective function value and it is the most computing cost. Individual contributions to the objective function, such as Bottom Hole Pressure (BHP), Gas Oil Ratio (GOR), individual well or reservoir behavior and etc., are included in the objective formulation.

The search of a set of simulation parameters typically requires the minimization of objective function in a parameter space.

1.3.3. Optimization – Minimization of an Objective Function

Modern history matching tends to be different from traditional methodology of manual trial and error. A variety of algorithms for this optimization have been developed with several variants, but the most usual approaches are gradient based methods and stochastic global optimization methods. Although the comparison of these techniques is not important in this work and the goal is to find a minimum regardless of the method, the gradient based method has been used as most usual and widely used method. Nevertheless in one part of this work we have used global optimization technique as an alternative to find probable global minimum.
1.3.3.1. Gradient based methods

Gradient based optimization methods are increasingly used [50] and using by oil industry for computer assisted history matching. This method allow a fast descend to the closest minimum [41],[6].

One of the most efficient algorithms which based on gradient techniques is the Levenberg-Marquardt Algorithm (LMA) as shown in EQ. 3 which is a combination of the Newton’s method\(^1\) and a steepest descent\(^2\) scheme. This Levenberg-Marquardt method works very well in practice and has become the standard of nonlinear least-squares routines [53].

Denoting the vector of our current parameter normalized modifier values (multiplier) as \(v^k\), \((\theta^k=v^k\times\theta_0)\), then the algorithm estimates the step, \(d\nu^k(\mu)\), required to minimize the objective function \(f(v^k)\) as [13],[33]:

\[
d\nu^k_i(\mu_{lm}) = v^k_i(\mu_{lm}) - v^k_{i+1}(\mu_{lm}) = \left[H_i(v^i) + \mu_{lm}I\right]^{-1} \times \nabla f(v^k_i) \tag{EQ. 3}
\]

where
\[d\] is the step change
\[i\] is the index of iteration
\[H\] is the Hessian matrix or the matrix of second derivatives of \(f\)
\[I\] is the identity matrix
\[\mu_{lm}\] is the step size.

The restricted Levenberg-Marquardt step is a compromise between the Newton step and the steepest descent step [45]. By increasing \(\mu_{lm}\) the method is more similar to steepest descent; however decreasing \(\mu_{lm}\) will change the method more likely to follow Newton’s method. The step size has important role to switch between Newton’s method and steepest descent method. In each iteration if \(f(v^i_{i+1}) \geq f(v^i_i)\) then \(\mu_{lm}\) should be increased by any substantial factor and if \(f(v^i_{i+1}) < f(v^i_i)\) then \(\mu_{lm}\) should be decreased and consequently update the solution \(v^k_{i+1} \rightarrow v^k_i\). The parameter \(\mu_{lm}\) is free and is varied so that, away from the solution where the Newton model may have less validity, it takes large values and so the bias of the step is towards the steepest descent direction. At the same time as near the minimum, it takes small values to make the best possible use of the fast convergence rate of the Newton step. Newton's method uses curvature information to take a more direct route. \((f_1 > f_2 > \ldots > f_{n-1} > f_n = \text{Min})\) [53].

\[i \quad \theta_{i+1} = \theta_i - \left[H_i(\theta_i)\right]^{-1} \times \nabla f(\theta_i)\]

\[ii \quad \theta_{i+1} = \theta_i - \gamma_i \nabla f(\theta_i)\]
The Levenberg-Marquardt algorithm is stronger than the Newton’s method, which means that in many cases it finds a solution even if it starts very far from the final minimum; however the Levenberg-Marquardt algorithm tends to be a bit slower than the Newton’s method [53]. A comparison of steepest descent, Newton’s method and Levenberg-Marquardt algorithm has been shown in Fig. 2 for minimizing a function. In this figure the isolines of the objective function consists of two parameters θ_1, θ_2. The goal is to minimize objective function with value f_1, starting with parameter θ_{12}^0 to minimum value f_n with parameter θ_{12}^n.

![Fig. 2: A comparison of steepest descent, Newton’s method and Levenberg-Marquardt algorithm](image)

1.3.3.2. Global Optimization methods

The task of global optimization is to find a solution in the parameter space for which the objective function has its smallest value or the global minimum. It is believed that these methods are less prone to get stuck in local optima. These methods are mostly practical and applicable to reservoir simulation on a routine basis with the availability of reasonable parallel computing hardware in the form of Linux clusters [58],[43].

Mantica et al. [41] mentioned that the history matching problem is conceptually better tackled using stochastic global optimization techniques, where the parameters space is explored by randomly generated parameters, until a satisfactory minimum is reached. In this framework, entrapment around local minima is avoided.
Chapter 1: Introduction and Literature Review

There are different global optimization methods available. Some of them such as Simulated annealing\cite{50} and Evolution Strategy \cite{19,56,57}; have been tested in reservoir history matching problems and found good applications in these context. Quenes et al. \cite{49} have shown general review of the application of global optimization methods to reservoir history matching problems.

These methods are computationally so intensive and time consuming, because they require the reservoir model to be run a large number of times (often several hundred) in order to properly explore the sensitivity of the models to the reservoir parameters. Indeed each simulation can take between a few minutes to several days, depending on the size and complexity of the model \cite{34}. However having available licenses and resources, it is possible to make parallel computation.

1.3.3.3. Gradient versus Global Optimization methods

It is believed that the Global Optimization methods can find global minimum in a parameters space populated by many local minima.

Some authors have used the combination of Gradient techniques and Global Optimization method to be applied in reservoir history matching tasks \cite{33,41}. In their methods the combination of both techniques will cooperate to find better minimum than as can be found individually with each technique.

Mantica et al. \cite{54} have used the global optimization technique to identify several points to be used as initial guesses for gradient based optimization. Their procedure provides a series of alternative matched models, with different production forecasts, that improve the understanding of the possible reservoir behaviors.

Gomez et al.\cite{33} have tested the benefits of using global optimization method coupling gradient information. In this case the process seeks to find a series of minima (with gradient technique), each one with lower objective function that the previous one (with global method). The last minimum in the series will be the global minimum.

Schulze-Riegert et al. \cite{58} have described the application of global optimization technique (Evolution Strategy) and gradient methods as complementary features. In their method first they search in complete parameter space to find initial minimum. After that the gradient method will be used to improve the convergence behavior.

In the following work these two methods have also been compared in a limited case for a gas field reservoir (Section 5.4.1). However it is shown that in a typical deterministic complex reservoir simulation, the hope to find global minimum is quite similar to that one with local or gradient techniques.
1.3.4. Effective model Calibration

There are many opinions about how nonlinear optimization can best be applied to the calibration of complex models, and there is not a single set of ideas that is applicable to all situations. It is useful, however, to consider one complete set of guidelines that incorporates many of the methods and statistics available in nonlinear regression, such as those suggested and explained by Hill and Tiedeman, [36], and listed in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Guidelines for effective model calibration (after Hill and Tiedeman,[36])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Development</td>
</tr>
<tr>
<td>• Apply the principle of parsimony (will be explained in section 2.3)</td>
</tr>
<tr>
<td>• Use a broad range of information to constrain the problem</td>
</tr>
<tr>
<td>• Maintain a well-posed, comprehensive regression problem</td>
</tr>
<tr>
<td>• Include many types of observations in the regression</td>
</tr>
<tr>
<td>• Use prior information carefully</td>
</tr>
<tr>
<td>• Assign weights that reflect errors</td>
</tr>
<tr>
<td>• Encourage convergence by improving the model and evaluating the observations</td>
</tr>
<tr>
<td>• Consider alternative models</td>
</tr>
<tr>
<td>Test the Model</td>
</tr>
<tr>
<td>• Evaluate model fit</td>
</tr>
<tr>
<td>• Evaluate optimized parameters</td>
</tr>
<tr>
<td>Potential New Data</td>
</tr>
<tr>
<td>• Identify new data to improve model parameter estimates and distribution</td>
</tr>
<tr>
<td>• Identify new data to improve predictions</td>
</tr>
<tr>
<td>Prediction Accuracy and Uncertainty</td>
</tr>
<tr>
<td>• Evaluate prediction uncertainty and accuracy using deterministic methods</td>
</tr>
<tr>
<td>• Quantify prediction uncertainty using statistical methods</td>
</tr>
</tbody>
</table>
Chapter 2. Model Selection Criteria

2.1. Model selection

Model selection is the task of selecting a simulation model from a set of potential models, given data. In its most basic forms, this is one of the fundamental tasks of scientific investigation. Determining the principle behind a series of observations is often linked directly to a mathematical model predicting those observations.

Model selection techniques can be considered as estimators of some physical quantity, such as the probability of the model producing the given data. A standard example of model selection is that of curve fitting, where, given a set of points and other background knowledge, we must select a function that describes the best curve.

2.2. Model Parameterization

A particular choice of model parameters is a parameterization of the system. For quantitative considerations on the system, a particular parameterization has to be chosen. To define a parameterization means to define a set of experimental procedures which allow us to measure a set of physical quantities that characterize the system.

The selection of the model parameters to be used to describe a reservoir system is generally not unique. The choice of discrete model parameters (in a reservoir grid) is called the parameterization of the problem. Model calibration allows to identify (to calibrate) the parameters and to reduce the parameter uncertainty (model selection) and, therefore, uncertainty in reservoir forecast.

The special challenge in calibrating reservoir model is to describe different physical processes and therefore includes a lot of different physical reservoir parameters (e.g. permeability, porosity, functions of capillary pressure and relative permeability). These parameters have to be discrete on a grid space. The higher the number of numerical parameters to identify, the higher the possible level of over-parameterization and non-uniqueness accrues.

In the present study, automatic model calibration and selection is demonstrated using concepts of model selection such as Akaike’s Information Criterion (AIC) and principle of parsimony which will be explained in section 2.4.2.

2.3. Simplicity and Parsimony

Parsimony enjoys a featured place in scientific thinking in general and in modeling specifically for a strictly science philosophy. Model selection is a bias versus variance trade-off and this is the statistical principle of parsimony, in other words the principle of parsimony is to identify the least complex explanation model for a set of observed data. The model has to be based on the basic physical process equations and the parameter set has to be as simple as possible and as complex as necessary!
Inference under models with too few parameters (variables) can be biased, while with models having too many parameters (variables) there may be poor accuracy or identification of effects that are false. These considerations refer to a balance between under- and over-parameterized models [18].

As it is shown in Fig. 3, in practice normally the more the number of parameter we have, the less value of the objective function will be found [23],[22],[37],[8]; but due to principle of parsimony the optimal number of parameter should be selected.

![Fig. 3: Relation between number of parameter and OF. (Description for principle of parsimony)](image)

The starting parameter values can be used to test for the uniqueness of optimized parameter values; that is, the values at which the regression converges. This is accomplished by initiating the regression with different sets of starting values. If the objective function achieved is similar and resulting parameter estimates differ from each other by values that are small relative to their calculated standard deviations, the optimization is likely to be unique. If this is not the case, the optimal parameter values are not unique. Lack of uniqueness can be caused by a number of factors. If caused by local minima, it may be possible to examine the objective function value achieved by the different sets of parameter estimates and identify a global minimum as the set of estimated parameter values that is both reasonable and produces the smallest objective-function value. If non-uniqueness is caused by extreme parameter correlation, the objective-function value for each optimized set of parameters is likely to be similar and at least one pair of parameters will have a correlation coefficient very close to 1.0 or -1.0, [17].

2.4. The Kullback-Leibler Distance (Information)

Kullback-Leibler Distance or information is a basis for making valid inference from analysis of empirical data [63]. This theory has already been used by Burnham & Anderson in ecological concept to select a best model among different sets of priori models. In this...
work this theory will be introduced here as simple general method for the purpose of model selection in History Matching problem.

The Kullback-Leibler (K-L) distance between the models \(f \) and \(g \) is defined for continuous functions as the (usually multi-dimensional) integral [18]:

\[
I(f,g) = \int f(x) \log \left(\frac{f(x)}{g(x|\theta)} \right) dx \tag{EQ. 4}
\]

where \(\log \) denotes the natural logarithm. Kullback and Leibler developed this quantity from “information theory” thus they used the notation \(I(f,g) \). \(I(f,g) \) is the “information” lost when \(g \) is used to approximate \(f \).

It is useful to think of \(f \) as full reality and let it have an infinite number of parameters which is typical for stochastic systems. This supports the infinite dimensionality at least keeps the concept of reality even if it is in some unattainable perspective.

Let \(g \) be the approximating model being compared to (measured against) \(f \). We use \(x \) to denote the data being modeled and \(\theta \) to denote the parameters in the approximating model \(g \).

\(g(x) \) is as an approximating model, whose parameter vector \(\theta \) must be estimated from these data (in fact, this will make explicit using the notation \(g(x|\theta) \), read as “the approximating model \(g \) for data \(x \) given the parameters \(\theta \)”), and \(\{g_i(x|\theta), i=1,...,R\} \) is a set of approximating models as candidates for the representation of the data.

It is good to think of an approximating model that loses as little information as possible; this is equivalent to minimizing \(I(f,g) \), over \(g \). \(f \) is considered to be given (fixed) and only \(g \) varies over a parameter space by \(\theta \). An equivalent interpretation of minimizing \(I(f,g) \) is finding an approximating model that has the “shortest distance” away from truth, therefore using both interpretations are useful.

The expression for the K-L distance in the case of discrete distributions\(^{i}\) is:

\[
I(f,g) = \sum_{i=1}^{K} P_i \log \left(\frac{P_i}{\pi_i} \right) \tag{EQ. 5}
\]

Here, there are \(K \) possible outcomes of the underlying random variable; the true probability of the \(i^{th} \) outcome is given by \(P_i \), while the \(\pi_i \) compose the approximating probability distribution (i.e., the approximating model). In the discrete case, we have \(0<P_i<1 \), \(0<\pi_i<1 \), and \(\sum_{i=1}^{K} P_i = \sum_{i=1}^{K} \pi_i = 1 \). Hence, here \(f \) and \(g \) correspond to the \(p \) and \(\pi \), respectively.

\(^{i}\) This is our interest as we have discrete distribution of parameter,(observation and simulation time)
The material above makes it obvious that both \(f \) and \(g \) (and their parameters) must be known to compute the K-L distance between these two models. We see that this requirement is diminished as \(I(f, g) \) can be written equivalently as

\[
I(f, g) = \int f(x) \log(f(x)) \, dx - \int f(x) \log(g(x | \theta)) \, dx \tag{EQ. 6}
\]

Note, each of the two terms on the right of the above expression is a statistical expectation with respect to \(f \) (truth). Thus, the K-L distance (above) can be expressed as a difference between two expectations,

\[
I(f, g) = E_f \left[\log(f(x)) \right] - E_f \left[\log(g(x | \theta)) \right] \tag{EQ. 7}
\]

each with respect to the true distribution \(f \). The important point is that the K-L distance \(I(f,g) \) is a measure of the directed “distance” between the probability models \(f \) and \(g \).

The above expression can be reduced to,

\[
I(f, g) - \text{Const.} = -E_f \left[\log(g(x | \theta)) \right] \tag{EQ. 8}
\]

The term \(I(f, g) - \text{Const.} \) is a relative, directed distance between the two models \(f \) and \(g \), if one could compute or estimate \(\log(f(x | \theta)) \). Thus, \(E_f \left[\log(g(x | \theta)) \right] \) becomes the quantity of interest.

Consequently, one can determine a method to select the model \(g_i \) that on average minimizes, over the set of models \(g_1, \ldots, g_R \), a very relevant expected K-L distance.

2.4.1. Information Criteria and Model Selection

Let \(\hat{L}(\theta | x) \) be the maximum likelihood\(^i\) of a model with \(K \) parameters based on a sample of size \(n \), which has been defined by Burnham & Anderson [18] as:

\[
\hat{L}(\theta | x) = \left(\frac{1}{\sqrt{2\pi\hat{\sigma}^2}} \right)^n e^{-\frac{1}{2} \hat{\sigma}^2 n} \tag{EQ. 9}
\]

where \(\theta \) is the parameter vector, \(x \) is the predictor variable vector, \(\hat{\sigma}^2 \) is an estimator which is defined as \(\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} \varepsilon_i^2}{n} \), \(n \) is the number of observation points and \(\varepsilon_i \) is the residual of \(n \) observation.

Then by taking logarithm of EQ. 9 we have log-likelihood:

\(\text{i} \) In statistics, the likelihood function (often simply the likelihood) is a function of the parameters of a statistical model that plays a key role in statistical inference. In non-technical usage, “likelihood” is a synonym for “probability”.

Chapter 2: Model Selection Criteria

\[\log \left(\frac{L(\theta|x)}{\sigma^2} \right) = -\frac{n}{2} \log \left(\hat{\sigma}^2 \right) - \frac{n}{2} \log \left(2\pi \right) - \frac{n}{2} \]
\[\text{EQ. 10} \]

The sum of residual differences is given by \(\sum_{i=1}^{n} \epsilon_i^2 \) which is equal to \(\text{OF} \). We can change the above equation to:

\[\log \left(\frac{L(\theta|x)}{\sigma^2} \right) = -\frac{n}{2} \log(\text{OF}) - \frac{n}{2} \log(n) - \frac{n}{2} \log \left(2\pi \right) - \frac{n}{2} \]
\[\text{EQ. 11} \]

The additive constant can often be discarded from the log-likelihood because it is constant and does not influence likelihood-based inference. Thus we can simply take:

\[\log \left(\frac{L(\theta|x)}{\sigma^2} \right) \approx -\frac{n}{2} \log(\text{OF}) \]
\[\text{EQ. 12} \]

2.4.2. Akaike’s Information Criterion (AIC)

AIC developed by Hirotsugu Akaike under the name of “An Information Criterion” (AIC) in 1971 and proposed by Akaike,[3], is a measure of the goodness of fit of an estimated statistical model. It is developed in effect offering a relative measure of the information lost when a given model is used to describe reality. The AIC is an operational way of trading off the complexity of an estimated model against how well the model fits the data [11].

In the general case, if all the models in the set assume normally distributed errors with a constant variance, then the AIC is:

\[\text{AIC} = -2 \log \left(\frac{L(\theta|x)}{\sigma^2} \right) + 2K \]
\[\text{EQ. 13} \]

where \(K \) is the number of the parameters of vector \(\theta \).

The first term on the right-hand side tends to decrease as more parameter are added to the approximating model (satisfies the necessary condition), while the second term (2K) gets larger as more parameter are added to the approximating model (to fulfill the sufficient condition). This is the tradeoff between under-parameterization (underfitting) and over-parameterization (overfitting) that is fundamental of the principle of parsimony. Combining EQ. 12 and EQ. 13 gives:

\[\text{AIC} = -2 \log \left(\frac{L(\theta|x)}{\sigma^2} \right) + 2K = n \log(\text{OF}) + 2K \]
\[\text{EQ. 14} \]

and also

i In statistics, overfitting is fitting a statistical model that has too many parameters. A false model may fit perfectly if the model has enough complexity by comparison to the amount of data available.
Chapter 2: Model Selection Criteria

\[AIC_c = -2\log(L(\theta|x)) + 2K + \frac{2K(K+1)}{n-K-1} = AIC + \frac{2K(K+1)}{n-K-1} \]

EQ. 15

called extended Akaike criteria, when K is large relative to sample size n [17].

The theory is based on linear models; hence the history matching problem is strongly nonlinear. Therefore we have used EQ. 14 in an empirical form as:

\[AIC = \omega_1 \log(OF) + \omega_2 K \]

EQ. 16

Increasing the number K of free parameters to be estimated improves the goodness of fit, regardless of the number of free parameters in the data generating process. Hence AIC not only rewards goodness of fit, but also includes a penalty that is an increasing the number of estimated parameters. This penalty discourages overfitting and will be known as over-parameterization in later stage of this project. The preferred model is the one with the lowest AIC value among different sets of possible models.

2.5. Using Optimization packages

Generally the optimization software uses following steps in predicting parameter value for all systems and models.

1. Work with process model input files and read values from process model output files. (Designed to work with existing software packages).
2. Compare user provided observations with equivalent simulated values derived from the process model output files using a number of summary statistics, including a weighted objective function.
3. Use optimization methods to adjust the value of user-selected input parameters in an iterative procedure to minimize the value of the weighted least-squares objective function.
4. Report the estimated parameter values and if necessary prepare for the next iteration.
5. Calculate and print statistics used to (a) diagnose inadequate data or identify parameters that probably cannot be estimated, (b) evaluate estimated parameter values, (c) evaluate model fit to observations, and (d) evaluate how accurately the model represents the processes. (But this part is different in different softwares and mostly is optional features.)
6. Find most probable unique solution and select the best model among different sets of selected models. (This is our intention and final goal of this project.)

2.5.1. UCODE

UCODE can compare observations and simulated equivalents. The simulated equivalents can be any simulated value written in the process-model output files or can be calculated from simulated values with user-defined equations. UCODE can be used effectively in model calibration through its sensitivity analysis capabilities and its ability to estimate parameter values that result in the best possible fit to the observations. Parameters are estimated using nonlinear regression. A weighted least-squares objective function is minimized with respect to the parameter values using a modified Gauss-Newton method or a double-dogleg' technique [63].

A flowchart describing UCODE operation when it is used to estimate parameters is presented in Fig. 4. As shown in Fig. 4, observation sensitivities can be calculated by UCODE using perturbation methods. For forward-difference perturbation, the process model(s) are executed once for each parameter. For each execution, one parameter value is increased slightly (perturbed) from its unperturbed value, while the other parameter values are not perturbed. The differences between the resulting perturbed simulated values and the unperturbed simulated values are used to calculate forward-difference sensitivities. Backward-differences are calculated similarly except that the parameter values are decreased slightly. Alternatively, the process models can be executed a second time for each parameter with the parameter values perturbed in the opposite direction and sensitivities can be calculated using more accurate central differences.

Observation sensitivities can be calculated by process models and read by UCODE from process-model output files, therefore for process-model sensitivities, the sensitivity loop in Fig. 4 is replaced by a single execution of the process models and a Derivatives-Interface input file is needed. For example this future is compatible with MODFLOW-2000 as a process model of ground water simulation, but cannot be used with ECLIPSE as process model of Reservoir simulation. UCODE also provides the following additional ways to improve regression performance. First, dynamic exclusion of insensitive parameters can be used so that insensitive parameters do not disrupt regression performance. Second, unique criteria for each parameter can be specified that govern the maximum amount that the parameter value can change in one parameter-estimation iteration. Smaller values may be useful for insensitive parameters. Third, a quasi-Newton\(^{ii}\) or double-dogleg modification of the Gauss-Newton method can be used to reduce the number of parameter estimation iterations needed and, in some cases, achieve successful regressions [36].

\(^i\) Double dogleg algorithm computes the step \(\theta^{(k)}\) as the linear combination of the steepest descent or ascent search direction \(\theta_1^{(k)}\) and a quasi-Newton search direction \(\theta_2^{(k)}\). \(\theta^{(k)} = \alpha_1 \theta_1^{(k)} + \alpha_2 \theta_2^{(k)}\).

\(^{ii}\) Quasi-Newton method is an optimization method which takes the updated successive gradient vectors instead of most difficult hessian derivative approximation. \(H = \frac{\nabla f(\theta_{i+1}) - \nabla f(\theta_i)}{\theta_{i+1} - \theta_i}\).
Chapter 2: Model Selection Criteria

Fig. 4: Flowchart showing major steps in the UCODE_2005 parameter estimation mode using perturbation sensitivities. (after Poeter et. al.; 2005) [52]
2.5.2. SIMOPT

SIMOPT [60] is an optimization program from Schlumberger that assists in the steps traditionally taken when trying to achieve a history match between an ECLIPSE 100/300 simulation model and the corresponding observed reservoir data. By applying mathematical techniques, it provides additional information on which the reservoir engineer can implement to improve the history match [28].

2.5.2.1. Objective function in SIMOPT

Objective function

The objective function, \(OF_{SIMOPT} \), which is minimized in SIMOPT regression, is a modified form of the general used equation as shown previously in EQ. 2 with below equation to be used in vector format:

\[
OF_{SIMOPT} = \alpha f_{\text{residual}} + \beta f_{\text{prior}} + \gamma f_{\text{survey}} \tag{17}
\]

\(OF_{SIMOPT} \) is made from three parts: the production data or residual term, the prior information term and the survey data term. Both prior and survey terms could be considered as the extra penalty term for residual term. This idea of penalization will be explained later in chapter Chapter 4 for developing general model selection criteria.

\(\alpha, \beta \) and \(\gamma \) are overall weights for the production, prior and survey terms respectively

\(f_{\text{residual}} \) is the objective function residual term

\(f_{\text{prior}} \) is the objective function prior term

\(f_{\text{survey}} \) is the objective function survey term

Observed production data residuals

\(f_{\text{residual}} \) is defined with the following equation:

\[
f_{\text{residual}} = \Delta y^T \times \Delta y \tag{18}
\]

Where \(\Delta y \) is the vector of residuals for the observed production data which is defined as:

\[
\Delta y = \left[\begin{array}{c} \sqrt{\omega_1} \Delta y_1 \sigma_1 \\
\sqrt{\omega_2} \Delta y_2 \sigma_2 \\
\vdots \\
\sqrt{\omega_n} \Delta y_n \sigma_n \end{array} \right] \tag{19}
\]
Each element in the vector of residuals, \(\Delta y \), for the observed production data is the normalized and weighted difference between an observed production value and the corresponding simulated value as defined in EQ. 19 and is a vector form of EQ. 2. \(n \) is the total number of observation and is equal to \(ixjxk \).

Survey Term

Survey term is the misfit between an observed survey value and the corresponding simulated value. This is a frequent form of observed data available within SIMOPT. This helps to define observed data getting for instance from, time-lapse seismic surveys in the history match.

In SIMOPT, survey term is specified as a value on each grid block in the simulation model, jointly with associated errors and weights. This data can be used in combination with observed production data in the SIMOPT history matching process.

Prior Term

Prior information specifies that how parameter modifiers are allowed to vary. The prior information can be obtained using geostatistical analysis. This process is not done directly in SIMOPT, so the information must be calculated externally and then input to the program. The prior term is a penalty term which constrains the distance of identified and parameter values.

The prior information is used to normalize the parameter modifier. This normalization usually leads to improve convergence of the regression process. The prior information is also used to change the OF so that the parameter modifiers try to match the statistical information as well as the observed data. This information is optional and if no prior information is provided, the history matching process can still be performed.

RMS index

SIMOPT calculates the overall measure of a history matching as a Root Mean Square (RMS) index from the objective function:

\[
\text{RMS} = \sqrt{\frac{\text{OF}_{\text{SIMOPT}}}{n}} \tag{EQ. 20}
\]

where \(n \) is the total number of observations and \(\text{OF}_{\text{SIMOPT}} \) is the objective function. The RMS index provides an average value of the deviation between simulated and observed data. This RMS will be our final value of OF from SIMOPT through the entire work (without prior term).

2.5.2.2. SIMOPT versus UCODE

We have tested both SIMOPT and UCODE to see the difference between these two to come up with an idea to choose one of them for our purpose of History Matching.
As can be seen in Table 2, UCODE is a universal code which could be used for every model, but SIMOPT is specified only to be used with ECLIPSE Reservoir Simulation models.

Although UCODE is good for matching every observation parameter (rather than SIMOPT which could match only real measurement parameter, such as WBHP, WWCT, WGOR, …), SIMOPT is faster, and more user friendly in petroleum engineering use. For this reason we have used SIMOPT for our regression and history matching problems; however in later stage of the projects MEPO has been used as an alternative to find possible global minimum

<table>
<thead>
<tr>
<th>SIMOPT</th>
<th>UCODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified only to be used with ECLIPSE</td>
<td>Universal Code</td>
</tr>
<tr>
<td>User friendly and easy to use</td>
<td>writing different codes are necessary</td>
</tr>
<tr>
<td>uses the Levenberg-Marquardt algorithm for minimization</td>
<td>Uses Modified Gauss Newton for minimization</td>
</tr>
<tr>
<td>Uses only the typical observation parameters for history matching</td>
<td>can be used for variety of different parameters for history matching</td>
</tr>
<tr>
<td>one simulation run in each perturbation step</td>
<td>one simulation run for each parameter in each perturbation step</td>
</tr>
</tbody>
</table>

2.5.3. MEPO

MEPO was originally developed in Germany under the name “Multipurpose Environment for Parallel Optimization” through a research project at the Braunschweig University of Technology.

MEPO is one of the global optimization tools for reservoir history matching which has been further developed and commercialized by Scandpower Petroleum Technology. MEPO uses global optimization methods such as Genetic Algorithms[19] and Evolution Strategy[43].

Fig. 5 shows an example of Evolution Strategy and how this method applicable. In this example, four simulation runs are made at the same time on separate CPUs, and at the end of each set of runs the quality of the resulting matches is evaluated. The best are then be used as the basis for the next set of runs (Parents and Children). Over successive ‘generations’, the resulting models show improving quality of history match.
Fig. 5: Example of the Evolution Strategy application (After Millar, D.; 2005, [44])
Chapter 3. Test of Different Criteria on Synthetic and Experimental Cases

In this chapter the application of model selection criteria after history matching on a synthetic small 2D-model will be shown. Also there are two case studies, one with field observation data (packer test) and one with experimental results (Laboratory measurement test).

3.1. Synthetic 2D-Case

The model illustrates the performance of AIC model selection criteria for a three-phase flow problem (The reservoir model is from Gao et.al; 2007, [31]). The grid system for this example is 7×7×1 with a uniform block size of 152.4×152.4 m (500 feet) and the uniform thickness of 6.1 m (20 feet). A production well is located near the center of the reservoir at gridblock (3, 3) in the grid system. Three other observation wells are located near corners of the reservoir. (Fig. 6)

3.1.1. Model description

The initial pressure of the reservoir is equal to the initial bubble point pressure; therefore the well PROD produces both gas and oil. Water saturation is approximately fixed at irreducible water saturation. Other PVT and SCAL properties extracted from typical history matching PUNQ model ([8], [66]). PVT and SCAL data are shown in Fig. 7.

![Fig. 6: Top view gridding of the synthetic model](image)

The initial permeabilities for measurement case are 200 mD in horizontal direction ($K_x = K_y = 200$ mD) and 150 mD in vertical direction ($K_z = 150$ mD). Our model is homogeneous but anisotropic. Since the permeability in vertical direction is insensitive we have identified only the horizontal permeability (K_{xy}).
Porosity is set equal to 25% for whole model. These properties are used initially to create measurement values as observation. We use BHP in all wells adding GOR in PROD well as measurement parameters. Note that we include 1% random error (noise) for pressure measurement data and 5% random error in GOR. The noise contents are representative of real data.

\[
WBP_{\text{new}} = WBP_{\text{old}} + \Delta WBP_{\text{random}}
\]

\[
\Delta WBP_{\text{random}} = \text{RandomNumber} \times 0.01 \times WBP_{\text{old}}
\]

in which: \(-1 < \text{RandomNumber} < 1\)

This is the same for GOR but with multiplication factor of \(0.05\).
Two main models are used to create simulation model for history matching to identify permeability. In the first model changes the value of \(K_x \) and \(K_y \) for all cells are equal to 10% of observation model (Case1). In second case (Case2) \(K_x \) and \(K_y \) have been reduced to 10% of the observation parameters just in half right of the model (i=4 to 7).

3.1.2. History matching and result

We run regression using SIMOPT to find the minimum of OF, that is RMS index (Root Mean Square). This will be done in 8 different versions increasing the number of regions (matching parameters, here \(K_{xy} \)). 1, 2, 4, 8, 12, 16, 20 and 24 regions have been defined. The versions with 2 and 20 regions are shown in Fig. 8.

It should be mentioned that the general zonation approach, will add significant modeling error by selecting uniform reservoir parameters within each zone and by choosing the boundaries of these regions more or less arbitrarily [32]; however this is the simplest way of selecting regions for initial history matching procedure.

Weight factor is selected in such manner that the range of RMS for each observation value (Pressure, GOR) would be in the same order of magnitude. For this reason the simulation is first run with weight factor of 1 for all observation variable, then the RMS of each observation value is calculated separately. Knowing these RMSs and the total RMS we can compute weight of each kind of observation with EQ. 21.

\[
W_i = \frac{\text{RMS}_{\text{total}}}{\sum_{i=1}^{N_{\text{obs}}} \text{RMS}_i}
\]

EQ. 21

3.1.3. AIC application

After finding OF for different sets of models, the goal is to find the result of different criteria to select the “best” model among them. The reason of choosing such a small model for regression is that we know exactly the solution and therefore we could bring of an idea of the best criteria and most important parameters.

Two different sets of measurement data have been implemented for 8 selected versions; one with random errors (as explained previously) and one with no random errors. The results of minimum OF, AIC and deviation from true model are shown in Table 3.
This table shows different calculation of History Matching for our 2D model. In case 1, we know the true model in which all parameters changed together with one modifier. As could be seen in this table the smaller the number of parameter, the smaller the value of OF, AIC and lowest deviation from true model we have.

This also has the same result in Case 2 when there is no error exist and version 2 is the best case which is of our expectation as well.

However when we have random error in generation of observation value (this closes our case to real case), minimum OF is not a good indication of the best model that we expected; but AIC can predict perfectly the best model among others which of our interest.

Table 3: History matching with model selection calculation (Synthetic 2D case)

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{version number} & \text{number of parameter} & \text{SIMOPT (RMS)} & \text{AIC} & \text{Deviation from true model} \\
\hline
1 & 1 & 6.0330E-08 & -1.4623E+01 & 6.9372E-17 \\
2 & 2 & 1.4143E-07 & -1.1771E+01 & 9.0742E-17 \\
3 & 4 & 1.6724E-07 & -7.6039E+00 & 2.0766E-01 \\
4 & 8 & 3.772E-05 & -7.7891E+00 & 4.9511E-16 \\
5 & 12 & 2.3772E-05 & -7.6039E+00 & 4.7148E-10 \\
6 & 16 & 4.5932E-05 & -2.2012E+01 & 6.2776E-01 \\
7 & 20 & 2.4225E-05 & -2.9372E+01 & 5.7075E-01 \\
8 & 24 & 3.9847E-03 & -4.2475E+01 & 1.6841E+00 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{version number} & \text{number of parameter} & \text{SIMOPT (RMS)} & \text{AIC} & \text{Deviation from true model} \\
\hline
1 & 1 & 9.0388E-01 & 1.8989E+00 & 1.7420E-03 \\
2 & 2 & 1.5179E-08 & -1.4003E+01 & 7.1257E-17 \\
3 & 4 & 3.004E-08 & -1.3219E+00 & 4.9511E-14 \\
4 & 8 & 8.5943E-04 & 1.6941E+01 & 1.513E+00 \\
5 & 12 & 2.6338E-04 & 2.3758E+01 & 7.3116E-01 \\
6 & 16 & 1.8674E-04 & 3.1414E+01 & 8.2417E-01 \\
7 & 20 & 1.5470E-04 & 3.9226E+01 & 7.9316E-01 \\
8 & 24 & 8.7142E-01 & 1.8624E+00 & 1.5752E-02 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{version number} & \text{number of parameter} & \text{SIMOPT (RMS)} & \text{AIC} & \text{Deviation from true model} \\
\hline
1 & 1 & 1.0216E-01 & -2.1719E+01 & 1.7376E-01 \\
2 & 2 & 1.0216E-01 & 1.3535E+01 & 1.513E+00 \\
3 & 4 & 1.0215E-01 & 5.7186E+00 & 3.2392E-02 \\
4 & 8 & 1.0214E-01 & 3.5697E+00 & 2.3897E-05 \\
5 & 12 & 1.0213E-01 & 2.3719E+00 & 1.2316E+00 \\
6 & 16 & 1.0210E-01 & 2.9718E+00 & 9.9847E-01 \\
7 & 20 & 1.0209E-01 & 3.7718E+00 & 1.1933E+00 \\
8 & 24 & 1.0208E-01 & 4.5718E+00 & 1.0617E+00 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{version number} & \text{number of parameter} & \text{SIMOPT (RMS)} & \text{AIC} & \text{Deviation from true model} \\
\hline
1 & 1 & 1.0216E-01 & 1.8624E+00 & 1.5752E-02 \\
2 & 2 & 1.0216E-01 & 3.5697E+00 & 2.3897E-05 \\
3 & 4 & 1.0215E-01 & 5.7186E+00 & 3.2392E-02 \\
4 & 8 & 1.0214E-01 & 3.5697E+00 & 2.3897E-05 \\
5 & 12 & 1.0213E-01 & 2.3719E+00 & 1.2316E+00 \\
6 & 16 & 1.0210E-01 & 2.9718E+00 & 9.9847E-01 \\
7 & 20 & 1.0209E-01 & 3.7718E+00 & 1.1933E+00 \\
8 & 24 & 1.0208E-01 & 4.5718E+00 & 1.0617E+00 \\
\hline
\end{array}
\]

\[
\text{Deviation from True Model} = \sqrt{\frac{\sum_{i=1}^{\text{No. of Parameters}} \left(\log \left(\frac{\text{Value of Estimated Parameter}}{\text{Value of True Parameter}} \right) \right)^2}{\text{No. of Parameters}}}
\]

\[\text{ISOTROPIC CASE 1} \quad \text{ISOTROPIC CASE 2} \quad \text{ISOTROPIC CASE 1 with random Error} \quad \text{ISOTROPIC CASE 2 with random Error}\]

\[\text{Fig. 8: Example of region selection for matching case 2 of the synthetic model}\]
3.2. Laboratory Permeability Measurement

In this lab experiment we tried to find permeability of low permeable plates. Schematic of our experimental apparatus is in Fig. 9.

3.2.1. Model description

The model geometry is shown in Fig. 10. The model is 50×1×1 with dimension of 12.5cm×8.5cm×8.5cm. Constant amount of Air (200 cm³) with pressure 1.005 barsa is start to inject from Entrance chamber and passed through two low permeability plates, and finally released to the atmospheric pressure (1 bar) at end point measurement chamber. The pressure change in entrance chamber is the matching parameter to find permeability in these plates.

![Fig. 9: Schematic of Laboratory Permeability Measurement apparatus](image1)

![Fig. 10 Simulation model of laboratory permeability measurement](image2)

3.2.2. History matching and AIC application result

Four different versions have been selected with region number from 1, 2, 4 and 8. In Table 4 history matching result of lab measurement test with calculation of normalized
minimum OF and model Akaike’s information criteria is shown. It could be seen that among these models, version 2 with 2 number of parameter regions has lowest minimum OF while the minimum AIC is happened in version 1 with 1 parameter.

If we take a look on the history matching curves of these two models in Fig. 11, we could see the match of history with observation data for both are the same, whereas the forecast has a bit deviation in these two models.

Table 4: History matching with model selection calculation (Lab Measurement Test)

<table>
<thead>
<tr>
<th>version number</th>
<th>Number of parameter</th>
<th>SIMOPT OF (RMS)</th>
<th>AIC</th>
<th>Permeability (mD)</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>9.3522E-01</td>
<td>1.9709E+00</td>
<td>2.4812E-03</td>
<td>2.4812E-03</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>7.7802E-01</td>
<td>3.8910E+00</td>
<td>6.6571E-04</td>
<td>2.8317E-03</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7.9177E-01</td>
<td>7.8986E+00</td>
<td>8.7678E-04</td>
<td>2.8154E-03</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>8.3513E-01</td>
<td>1.5922E+01</td>
<td>1.3642E-03</td>
<td>2.7525E-03</td>
<td></td>
</tr>
</tbody>
</table>

Discussion of the results: The OF and AIC show that problem is over-parameterized in versions 3 and 4 with more than 2 parameters. From a physical point of view the observation in one point only shows the identification of one permeability value and the second value (last plate) is more insensitive. Therefore we conclude that “best and most reliable” result is one permeability region in version 1. AIC also shows that the best model is a model with 1 parameter selection.

![Fig. 11: Simulation result of the change in pressure in Laboratory Permeability Measurement (Version 1 and 2 versus measurement data)](image-url)
3.3. Packer test system (Insitu permeability measurement)

Packer test or insitu permeability measurement system is one of practical system to measure the insitu properties of rocks. This may use to calculate permeability of salt rock in a radioactive waste disposal [27],[10].

Insitu packer test gives a lot of real pressure data for History Matching. The multiple packer tests have the advantage to allow parameter uniqueness estimation by analyzing the flow pattern [59]. In this case we used a practical equipment of insitu permeability measurement. This packer equipment is used to measure the permeability of rocks in the vicinity of boreholes. In Fig. 12 schematic picture of this test could be seen.

![Fig. 12: Schematic picture of packer test system (four packers installation system) [9]](image)

3.3.1. Model Description

For this reason the cylindrical model is used with logarithmic radial gridding (Fig. 13). For this test constant amount of air (411 cm³) is released from Air chamber (OBS0) and goes through high and low permeability zones. The pressure changes in the Air Chamber and Measurement point 1 and 2 (OBS1 & OBS2) are recorded respectively. These points could be defined either as wells which bottom hole pressure is an observation parameters for history matching or could be defined as block to measure block pressure for history matching.

The model is in radial geometry with dimension of $N_r=33$, $N_\theta=1$, $N_z=46$ and radial cell radius $DR=1$mm to 287 m with logarithmic gridding (DR of the central cell is 3.5cm), $\theta=360^\circ$ for all cells. Knowing that the Air chamber length is 19 cm, the length of packers are 13 cm and measurement’s cell sizes are 9 cm. The boundaries both above and down are open boundaries with high pore volume. The porosities for entire cells are 0.25%; the initial permeabilities for all cells are 0.001 mD. The air properties have been used for the simulation as in the real model [64].

[39]
3.3.2. History Matching and identification [55]

First the model has been tuned precisely. This has been done by changing initial pressure and also considering the model totally isotropic. Since the model is isotropic tangential permeability (K_θ) and vertical permeability (K_z) are equal to radial permeability (K_r).

Different parameter region sets increasing the number of parameter from 1 to 14 have been tested successfully. For these cases the different starting modifier values (0.1, 1 and 100) have also been used and Levenberg-Marquadt algorithm of SIMOPT has been applied for identification. The modifiers (Permeability multipliers) are free to change from $1e-7$ to $1e+7$.
However the nature of flow has to be considered accurately and model parameters should be selected in a way that less number of parameters could result in minimum OF. The gridding near packer tool should be finer rather than the regions away from the packer. As an example a model with 2 & 14 permeability regions is shown in Fig. 14.

![Fig. 14: Example of selected regions in a packer test (model 2 & 14 regions)](image)

3.3.3. Uniqueness Analysis

The idea for uniqueness analysis is to find the same identified model with minimum objective function with different initial guesses. This means that if the simulation model starts with different initial modifier, the final identified parameter should be in the same range. As it is shown in Fig. 15 different simulation models (with different parameter sets) can have different local minima, but the model with global minimum has only a unique parameter set.

![Fig. 15: The concept of global minima among different model sets](image)
From physical point of view this uniqueness is to a certain extent could be explained for the permeability measurement (packer) test. In this test there are three observation points (pressure chamber and two nearby chambers) and the flow pattern is known. The gas intends to pass toward observation points. This could happen mostly in the regions near packer tool (observable zones [26])\(^1\), since the flow path is shorter and the flow is faster. These regions are more sensitive than the regions far from the packer tool, so they could be identified easily with three observation points. The model with 3, 5, 6 and 7 parameter regions could be seen in Fig. 16.

\(^1\) If a specific zone away from the well does not affect the measured pressure, then the system is not observable at that particular location.
Chapter 3: Test of Different Criteria on Synthetic and Experimental Cases

the model with 5 parameters (considering region definition in Fig. 16) is the unique solution for this test and this could be an indication for further conclusion in the following.

As explained the idea of starting different model sets with different initial modifier could help to find the global minimum. For this reason, four different models with 4, 5, 6 and 7 isotropic regions (modifiers) have been tested (s. Fig. 16). These models have been identified with different starting modifier values, knowing that the minimum and maximum multiplier limits for parameter identification is 1E-7 and 1E+10 respectively. The result is given in Fig. 17.

![Fig. 17: comparison of different parameter set with different modifier starter](image)

This shows that if we start our model with 4 or 5 homogenous regions, we reach to the same modifier after full identification (History Matching). The result for model with 5 regions is with almost good consent, except the model with starting modifier 0.1 (this test failed because gradient technique has remained in a local minimum). For other two models (6 and 7 number of regions) the result is completely unsatisfied which means the minimums are only local minima but not the global ones.
Chapter 3: Test of Different Criteria on Synthetic and Experimental Cases

Fig. 18: Graph of equivalent region modifier (sensitivity analysis)

To check the sensitivity of different regions and to compare all versions in one figure, the modifier values versus region number in the case of maximum number of regions (here 7 regions as shown in Fig. 16) have been plotted. (Indeed some regions have the same modifier value as other regions). This graph (Fig. 18) shows that the modifiers of some regions (such as region 3) are hard to identify while the other region (such as region 2) which are close to observation point are simple to find. The closer the regions near well the most sensitive parameter in those regions. This is also concurring with physical point of view which has been explained previously.

Concerning above explanation, it could be concluded that unique solution for packer test system is a model with 5 homogenous modifier regions.

Fig. 19: calculation of $\text{AIC} = \log(\text{OF}) + K$

At the final stage we apply the AIC relation to see how this equation fit our expectation. In Fig. 19 the calculation of AIC based on EQ. 16 for $\omega_1 = \omega_2 = 1$ could be seen. This has been done for two models with starter modifier 1 and 100. Here the blue curve shows the minimized OF and red one shows the AIC value. Although we don’t have pretty good match in model with 1 and 2 parameters, this estimate shows us minimum values of AIC in the model with 2 parameters which are under-parameterized models, since we expect a unique solution in the model with 5 number of parameter regions. However the selection of weight for OF and number of parameters (K) should be considered precisely.
3.4. New empirical correlation for packer test system \((AIC_n)\)

We use the concept of Akaike’s information criterion and principle of parsimony to find new formulation to avoid over- and under-parameterization. For this reason we have used different weight factors in EQ. 16 for number of parameters \((\omega_2)\). Nonetheless as could be seen in Fig. 20 any of them could not show us a solid decision for general criteria. This means that the penalty term could not fulfill the sufficient condition of model selection.

To develop new empirical equation for packer test system to find best reliable and most probable unique solution, we refer to the characteristic behavior of identified parameters. In view of the fact that here we identified only permeability and it has logarithmic behavior, we have to define the weight for parameters in logarithmic order.

Accordingly, the new formula has been developed so that instead of defining weight for AIC method (EQ. 16) the natural logarithm of Objective Function and parameter number has been considered. This may close the tradeoff between necessary condition and sufficient condition together in the same order of magnitude.

\[
AIC_n = \omega_1 \log(OF) + \omega_2 \log(k) \quad \text{EQ. 22}
\]

This new equation \((AIC_n)\) unlike AIC (Fig. 19), takes the logarithm of the number of parameters, hence the increasing in the number of parameter will gradually change the effect of objective function. The proof of this equation (with \(\omega_1, \omega_2=1\)) could be seen in Fig. 11. Here in these cases \(AIC_n\) is minimum in the model with 5 number of regions which satisfies the expectation as discussed before.
Chapter 3: Test of Different Criteria on Synthetic and Experimental Cases

![Graphs showing AIC and OF for different number of parameters with starter modifiers 1 and 100.](image)

Fig. 21: Calculation of $AIC_n = \log(OF) + \log(K)$

To check the result of history matching, the graph of simulation versus observation should be studied as well. These results for three cases are shown in Fig. 22, Fig. 23 and Fig. 24. The model with 5 parameters shows better match rather than model with 2 parameters and 14 parameters. The initial and identified permeability values could be seen in Table 5. With this method it is possible to identify very low permeability as could be seen mostly in Tight Gas Reservoirs.

Discussion of the results: Although the OF normally get smaller increasing the number of parameter, the comparisons of OF does not show the unique solution; however AIC should be considered precisely in terms of weight definition for OF and the number of parameter (K).

Here in the case of packer test system, different tests have been conducted to reach a concrete conclusion for weight definition. It seems that AIC_n could explain the uniqueness problem.

We can conclude:

The best and most unique parameter sets seems to be in version 5 with small OF and small AIC_n.

For a better and more clear result we should repeat the test with a longer test duration and also repeat the test with different starter modifier values.

The more parameter we have the less OF we have, however AIC_n will increase with increasing the number of parameters.
Chapter 3: Test of Different Criteria on Synthetic and Experimental Cases

Fig. 22: History matching of a packer test model with 2 parameters

Fig. 23: History matching of a packer test model with 5 parameters

Fig. 24: History matching of a packer test for model with 14 parameters

Table 5: Initial and Identified permeability for packer test with 5 regions

<table>
<thead>
<tr>
<th>Region no.</th>
<th>Initial Permeability Guess (mD)</th>
<th>Identified Permeability (mD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
<td>0.231920000</td>
</tr>
<tr>
<td>2</td>
<td>0.001</td>
<td>0.054847000</td>
</tr>
<tr>
<td>3</td>
<td>0.001</td>
<td>0.000001191</td>
</tr>
<tr>
<td>4</td>
<td>0.001</td>
<td>0.155000000</td>
</tr>
<tr>
<td>5</td>
<td>0.001</td>
<td>0.277950000</td>
</tr>
</tbody>
</table>
Chapter 4. Development of General Criteria for Model Selection

The main challenge in developing model selection criteria is to fill a gap between input information (measurement data) and output parameters (identified parameters), since this would be a major cause of non-uniqueness in model selection. However there is no theoretical way to overcome this challenge.

In previous chapters we have seen the theory of Akaike to find most reliable and unique solution for model selection. This idea has been applied successfully on synthetic and lab experiment cases, and with small changes on packer test system. For these cases the penalty term for OF would be sufficient for model selection; where as in real reservoir with large number of complexity and uncertainty this penalty term should be modified.

This idea could help us to develop general criteria for model selection based on the principle of parsimony and the penalty term for Objective Function in terms of number of parameters.

Referring to the linear fluid flow equation [35], there are two main parts in this equation, the terms with time (left side, t) and the terms with space (right side, x). This may give the feeling that that the porosity is most sensitive to time and permeability is sensitive to space, however there is no exact proof for that.

\[
\frac{\partial (\rho \phi)}{\partial t} = \frac{\partial}{\partial x} \left(\frac{k_x k_r}{\mu} \frac{\partial p}{\partial x} \right)
\]

EQ. 23

Consider Fig. 3 for developing of new criteria for model selection. In normal practice, the value of Objective Function is decreasing with increasing the number of parameters. The goal is to find the model with optimum parameterization which could be considered as the unique or most probable solution.

4.1. Model Selection Complexity

Fig. 25: Example of simple 2D Cartesian reservoir model
Chapter 4: Development of General Criteria for Model Selection

If we consider our reservoir as simple Cartesian model reservoir with 7 wells and 3 faults as can be seen in Fig. 25; the flow equation will affect from time dependency parameters and space depend parameters.

The model complexity will classify in four different sections namely Under-Parameterization, Minimum Trust Region, Suitable-Parameterization and Over-Parameterization as could be seen in Table 6.

Under-Parameterization is happened if we want to identify few parameters. For example we want to identify only one parameter region all around the reservoir model. In this case the model that is going to be selected in unique and we can identify only one parameter easily after few minimization iterations but the objective function value is not fulfils the necessary condition of model selection.

Minimum Trust Region is the zone in which we have simplest probable model considering geological prior information and reservoir engineering decision. As a hint; in terms of geological information we could take into consideration the location of the faults and the regions bounded between faults and for reservoir information selection, this could be the number of pore volume regions or the regions bounded between wells. However we don’t have concrete procedure to count and decide for the complexity of this part.

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Description</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under-Parameterization</td>
<td>The solution is unique but not well matched</td>
<td></td>
</tr>
<tr>
<td>Minimum Trust region</td>
<td>Simplest probable model</td>
<td></td>
</tr>
<tr>
<td>Suitable-Parameterization</td>
<td>Optimum solution</td>
<td></td>
</tr>
<tr>
<td>Over-Parameterization</td>
<td>Non-unique solution with good misfit</td>
<td></td>
</tr>
</tbody>
</table>

Minimum Trust Region is the zone in which we have simplest probable model considering geological prior information and reservoir engineering decision. As a hint; in terms of geological information we could take into consideration the location of the faults and the regions bounded between faults and for reservoir information selection, this could be the number of pore volume regions or the regions bounded between wells. However we don’t have concrete procedure to count and decide for the complexity of this part.
Suitable-Parameterization could be considered as our optimum solution which satisfies the principle of parsimony and fulfils the necessary and sufficient condition of model selection. This is the solution which we are looking for and solves our problem of non-uniqueness.

In Over-Parameterization region, we have a model solution with good misfit but also the solution is not unique. In this region we may have a lot of different models with the same small misfit; however none of these models is the exact solution and could not be used for further forecasting.

4.2. Penalization (POF)

From the principle of parsimony we know that the model which is going to be selected should be as simple as possible and as complex as necessary. This means that we have to avoid over-parameterization and under-parameterization. Hence the penalization of the objective function is a way to stop over-parameterization; we have to think of the penalization method.

From theory of Akaike, we know that the penalization term is the number of parameter (EQ. 16). This theory is applicable for stochastic model in which ranges of values for each variable (in the form of probability distribution) are used for simulation. This is in different from deterministic model in which outcomes are precisely determined through known relationships among states and events, without any room for random variation. In such models, a given input will always produce the same output, such as in a known reservoir fluid flow model.

Since in real reservoir simulation, the models are deterministic, the theoretical method of Akaike is not directly applicable; consequently the penalization method has been developed to be applicable in general deterministic system. The application of this new method of penalization will be shown later for packer test system and also for a field case gas reservoir.

4.2.1. Development of POF

The penalization should be starting from the point that we have minimum trustable information for the model (minimum trust region as it is shown in Fig. 26). Here is a region where we have range of possible model with simplest complexity. This could be defined from prior geological information (The boundary of the reservoir, the location of the fault, transmissibility of the layers,...) and the reservoir engineering decision and intuition (number of wells, number of measurement points, kinds of identifying parameters, number of observable zones, ...).

New formulation has been named POF which stands for Penalized Objective Function. As described, this penalization or scaling should be starting in minimum trust region and regulate the objective function value. For this reason the scaling factor has been defined
by \(\frac{\text{OF}}{\text{OF}_{\text{tr}}} \times \left(\frac{K}{K_{\text{tr}}} - 1\right) \), in which the \(\text{OF}_{\text{tr}} \) is the value of OF in average number of parameters in trust region (\(K_{\text{tr}} \)).

Fig. 26: Penalization concept and region definition considering model complexity

\(\text{OF}_{\text{tr}} \) is a reference point for OF which all values of OF will be normalized with respect to this value and the penalization is started from this point. If there are different types of observation, (Bottom Hole Pressure, Water Cut, Gas Oil Ratio…), this penalization should be calculated for each types.

POF is formulated adding the OF divided by standard deviation (so that we have dimensionless term) with penalization term for the number of parameters more than the average number of parameters in trust region (\(K_{\text{tr}} \)).

\[
\text{POF} = \begin{cases}
\sum_{i=1}^{m} \frac{\text{OF}_i}{\sigma_i}, & \text{, } K \leq K_{\text{tr}} \\
\sum_{i=1}^{m} \left[\frac{\text{OF}_i}{\sigma_i} + \frac{\text{OF}_i}{(\text{OF}_{\text{tr}})_i} \times \left(\frac{K}{K_{\text{tr}}} - 1\right) \right], & \text{, } K > K_{\text{tr}}
\end{cases}
\]

EQ. 24
In which i is the type of measurement data, m maximum number of measurement data types, OF is the objective function, K is the number of parameters, \bar{r} is the average trust region and σ is the measurement error or standard deviation.

The penalized objective function shows new trend for objective function which is going to show the suitable parameterization and most probable unique solution. This could be found in the minimum value of POF. This corresponds to the principle of parsimony and is a way of trading off between the complexity of the model (Number of parameters) and how well the model fits the data (Objective Function value).

4.2.2. Verification of POF strategy in packer test system

To make sure that how reliable and valid the general formulation of penalization (POF), we tried to use the history matching result of packer test system. For this reason we need to find out and define different parameter values in EQ. 24.

As could be remembered from section 3.3, for packer test we have three observation points to measure the cell pressure of injection chamber and two nearby empty chambers. In this model we have only cell pressure as the type of measurement data, therefore in EQ. 24 m is equal to 1. The standard deviation for measuring pressure of the cells was also considered to be equal 1 bar (σ=1).

![Fig. 27: Minimum Trust Region for packer test system](image)

From physical point of view, since we have only three measurement points, we can identify minimum 3+1 regions. This means that, it is possible to find out 4 unknown parameters (3 parameters near these three measurement points and 1 far from the packer tool) as it has been shown in Fig. 27. We will consider this as the maximum number of parameter in minimum trust region.
Despite the fact that we have no geological information to count for the minimum number of parameters in minimum trust region, we consider these 4 regions as the average number of trust region parameters and therefore we have $K_{tr} = 4$. The more the information we have, the more the number of trust region will be.

Accordingly for packer test system in our experiment, the EQ. 24 could be used for uniqueness analysis of the packer test.

Using above equation, we can calculate the value of POF for packer test system. These results have been shown in Fig. 28 for both identification with starter modifier 1 and 100. It can be seen once again that POF could find minimum value for the model with 5 regions. This has been proved and discussed previously to be the model with unique solution and it is following of our expectation.

Fig. 28: Application of POF in packer test system
Chapter 5. Field Case Model Study

This section describes main results of the history matching and predictions for the gas producing wells in the North Hannover area field. The initial static and dynamic input data for the ECLIPSE simulation study are provided by DGMK\(^1\) as a result of previous study on this field (DGMK-research project 587). The main history matching was reviewed and reconstructed taking into consideration the material balance calculation and well test analysis using available buildup pressure for different wells in different measurement periods.

5.1. Model description

For simulation of the model, ECLIPSE software package was used. The model is based on 36×95 blocks horizontally with 14 layers vertically, with average grid block size of 250×250m.

5.1.1. Static Data

The porosity model is with constant and homogenous porosity of 6.57% for all cells. This has been used to compare with material balance calculation and to fix pore volume multiplier with respect to material balance calculation which will be explained later. In other try the initial existing non-homogenous porosity distribution was used as initial static data for porosity (average Porosity = 6.98%). For this case the pore volume multipliers were changed with respect to material balance calculation.

\(^{1}\) German Society for Petroleum and Coal Science and Technology (Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V.)
Chapter 5: Field Case Model Study

The model consists of three geological formations with 14 layers. The simulation grid contains 8 vertical layers for the Wustrow formation (model layer 1 to 8), 1 for Ebstorf formation (model layer 10), and 2 for Dethlingen formation (layer 12 and 13). These 3 main units are separated by an inactive layer. The vertical length of the grid cells is up to approximately 10 m for each layer of Wustrow and Ebstorf, the average thickness of 30 m for the Dethlingen layers. The simulation model also including active and inactive cells has been shown in Fig. 29.

5.1.2. Measurement Data

The simulation starting from August 21st 1982 and continue up to December 31st 1998. The model is fully gas reservoir including initial water saturation. The distribution of Gas and Water saturation is varying through the entire reservoir. The field includes 11 wells which the production history starting from June 26th 1984 till 30th December 1998.

If we look in detail and focus on different production periods, we have:

- **Drawdown period in which:**
 - Production rate is not constant
 - Discrepancy between production response after simulation and measurement data points

- **Buildup period in which:**
 - There is no flow
 - Congruency between simulation response and observation is assured

An example of this production scenario and the response of bottom hole pressure for Well VIII could be seen in Fig. 30.

![Fig. 30: Example of production rate and BHP measurement data with simulation response in Well VIII](image-url)
To fix this discrepancy in Drawdown period, there is no concrete decision whether the response pressure data should shift to the right or left (±1 day shift). As it could be seen in Fig. 31, if we shift the pressure data to the left (-1 day: green curve) we have good congruency between simulation response and measurement data in Drawdown period (days: 3620-3623) but this will be affected in Buildup time; however if we shift the data to the right (+1 day: orange curve) the congruency in Drawdown period will be affected.

Table 7: Effect of pressure adjustment in field case

<table>
<thead>
<tr>
<th>TIME (DAYS)</th>
<th>Simulation (BARSA)</th>
<th>OBS(-1 day) (BARSA)</th>
<th>OBS (BARSA)</th>
<th>OBS(+1 day) (BARSA)</th>
<th>BuildUp (BARSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3620</td>
<td>296.24</td>
<td>425.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3621</td>
<td>171.41</td>
<td>303.74</td>
<td>425.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3622</td>
<td>258.23</td>
<td>447.80</td>
<td>303.74</td>
<td>425.20</td>
<td></td>
</tr>
<tr>
<td>3623</td>
<td>248.34</td>
<td>454.59</td>
<td>447.80</td>
<td>303.74</td>
<td></td>
</tr>
<tr>
<td>3624</td>
<td>420.15</td>
<td>458.88</td>
<td>454.59</td>
<td>447.80</td>
<td>454.59</td>
</tr>
<tr>
<td>3625</td>
<td>427.53</td>
<td>462.05</td>
<td>458.88</td>
<td>454.59</td>
<td>458.88</td>
</tr>
<tr>
<td>3626</td>
<td>432.87</td>
<td>464.60</td>
<td>462.05</td>
<td>458.88</td>
<td>462.05</td>
</tr>
<tr>
<td>3627</td>
<td>437.09</td>
<td>466.69</td>
<td>464.60</td>
<td>462.05</td>
<td>464.60</td>
</tr>
<tr>
<td>3628</td>
<td>440.58</td>
<td>468.54</td>
<td>466.69</td>
<td>464.60</td>
<td>466.69</td>
</tr>
<tr>
<td>3629</td>
<td>443.50</td>
<td>470.20</td>
<td>468.54</td>
<td>466.69</td>
<td>468.54</td>
</tr>
<tr>
<td>3630</td>
<td>446.21</td>
<td>471.66</td>
<td>470.20</td>
<td>468.54</td>
<td>470.20</td>
</tr>
<tr>
<td>3631</td>
<td>448.48</td>
<td>473.01</td>
<td>471.66</td>
<td>470.20</td>
<td>471.66</td>
</tr>
<tr>
<td>3632</td>
<td>450.41</td>
<td>474.27</td>
<td>473.01</td>
<td>471.66</td>
<td>473.01</td>
</tr>
<tr>
<td>3633</td>
<td>452.05</td>
<td>475.44</td>
<td>474.27</td>
<td>473.01</td>
<td>474.27</td>
</tr>
<tr>
<td>3634</td>
<td>453.48</td>
<td>477.15</td>
<td>475.44</td>
<td>474.27</td>
<td>475.44</td>
</tr>
<tr>
<td>3635</td>
<td>454.74</td>
<td>477.15</td>
<td>475.44</td>
<td>474.27</td>
<td>477.15</td>
</tr>
<tr>
<td>3636</td>
<td>455.87</td>
<td>477.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Squared missfit | 121617.16 | 114454.88 | 38035.30 | 8187.60 |
RMS | 90.0433828 | 87.3517351 | 50.35560074 | 26.12086734 |

Fig. 31: Uncertainty in draw down period data measurement
Table 7 shows the effect of pressure adjustment in field case. The calculated value of RMS for this period after first simulation run shows a large difference in value when we take original measurement data for history matching or when we adjust measurement time with ±1 day shift. i.e. from 90.04 Bars for -1 day shift to 50.35 Bars for +1 day shift. These effects have been seen in all wells and in different measurement periods.

Consequently because of mentioned reason, we decided to ignore all the Drawdown measurement data and continue the history matching with only Buildup data. This will promise the congruency between the observed data and simulation response and make us sure for the exact value of objective function. The calculated value of RMS in Buildup period of mentioned wells has been shown in Table 7.

5.2. Material Balance calculation

The model consists of 6 faults which all have been considered as closed faults. The top view of the model including the faults could be seen in Fig. 32. To prove that the faults are closed, the material balance calculation has been done for 5 regions bounded between the faults.

Knowing material balance relation for Gas reservoirs [5],[2]; the graphs of p/z vs. cumulative gas production (G_p) have been plotted for all these 5 regions.

\[
\frac{P}{z} = \frac{P_i}{z_i} - \left(\frac{P_{sc}}{T_{sc}}\right)G_p \quad \text{or} \quad \frac{P}{z} = \frac{P_i}{z_i} \left(1 - \frac{G_p}{IGIP}\right)
\]

EQ. 25

In which p is static pressure in bars (considered as the maximum Buildup pressure after shut-in), z is gas deviation factor, G_p is total cumulative gas production in sm³, IGIP is Initial Gas In Place in sm³ and i stands for initial reservoir condition.
Above equation is valid for volumetric depletion and when the aquifer is not active; this proves that the plot of \(p/z \) versus \(G_p \) is a straight line with the slope of \(-P_i/(z_i \times IGIP)\). Fig. 33 shows this plot for each well.
Since the water influx is not so active in this model we expect to have linear behavior in plotting with mentioned criteria for each wells. This shows that the assumption of closed fault could be right and there is no flow between the selected regions. The IGIP for each of 5 regions could also be investigated by adding the calculated values of each well. Table 8 shows the calculated GIP for each region. These data will consider as the initial GIP value for reservoir model using pore volume multiplier. The GIP values are shown here in percentage because of the confidentially of data.

Table 8: Material balance calculation for different wells and regions

<table>
<thead>
<tr>
<th>Well Name</th>
<th>Material Balance</th>
<th>Calculated GIP (%)</th>
<th>Region GIP (%)</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well I</td>
<td></td>
<td>14.44%</td>
<td>59.88%</td>
<td>5</td>
</tr>
<tr>
<td>Well II</td>
<td></td>
<td>14.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well III</td>
<td></td>
<td>22.77%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well IV</td>
<td></td>
<td>8.69%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well V</td>
<td></td>
<td>9.73%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well VI</td>
<td></td>
<td>4.41%</td>
<td>16.47%</td>
<td>4</td>
</tr>
<tr>
<td>Well VII</td>
<td></td>
<td>2.33%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well VIII</td>
<td></td>
<td>6.90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well IX</td>
<td></td>
<td>7.54%</td>
<td>14.44%</td>
<td>2</td>
</tr>
<tr>
<td>Well X</td>
<td></td>
<td>7.48%</td>
<td>7.48%</td>
<td>1</td>
</tr>
<tr>
<td>Well XI</td>
<td></td>
<td>1.61%</td>
<td>1.61%</td>
<td>3</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>100.00%</td>
<td></td>
</tr>
</tbody>
</table>

5.3. Well test analysis

Well test analysis provides information on the reservoir and on the well. Well test responses characterize the ability of the fluid to flow through the reservoir and to the well. Tests provide a description of the reservoir in dynamic conditions. As the investigated reservoir volume is relatively large, the estimated parameters are average values (such as permeability) in a distance from the wells.

In this case we have used the available pressure build up period to investigate and predict permeability in the region near of each well. Since we have different build up period for each well, we take the longest test period time to analyze well data.

5.3.1. Buildup analysis

General gas flow equation through reservoir is as follow [1],[14],[42]:

\[
\frac{p_w^2 - p_w^{*2}}{p_w^{*2}} = \frac{99.03 \times Q_w \mu_w T_z}{khT_{st}} \left(\log(t) + \log \left(\frac{a}{r_w^{2}} \right) - 0.797 \right)
\]

EQ. 26
Chapter 5: Field Case Model Study

Where \(a = \frac{k}{\phi \mu c_t}\) and \(p_w\) is the well flow bottom hole pressure [barsa], \(p_{w0}\) is the initial reservoir pressure [barsa], \(Q_{st}\) is the gas flow rate at standard or surface condition \([\text{sm}^3/\text{day}]\), \(p_{st} = 1\) bara and \(T_{st} = 15^\circ\text{C}\), \(\mu\) is the viscosity [cp], \(k\) is the permeability [mD], \(T\) is the temperature [K], \(z\) is the Gas compressibility factor, \(\phi\) is the porosity [fraction], \(h\) is the reservoir thickness [m], \(c_t\) is the total compressibility [1/bar], \(t\) is the time [days] and \(r_{wb,eff}\) is the effective wellbore radius [m].

Considering well test concept for build up pressure, this equation shows that the plot of well flow squared pressure \((p_w^2)\) versus \(\log(t)\) in late time should be a straight line with dip:

\[
m = \frac{99.03 \times Q_{st} \mu p_{st} T z}{kh T_{st}}\]

EQ. 27

This equation will be used to calculate flow capacity \((kh)\) of the formation around the wellbore.

Thus for each well we have plotted (s. Fig. 34) the graph of \((p_w^2)\) versus \(dt\) (time period after shut-in) for the period of longest buildup time and tried to pass straight line for late time and for each well. Since the flow rate is not constant before shut-in we take

\[Q_{st} = \frac{q_{cum}}{t_p}\]

where \(q_{cum}\) is the cumulative gas production in drawdown period before shut-in and \(t_p\) is the last draw down period time before shut-in [21].

5.3.2. Well test result

With this method we could estimate permeability through pressure buildup analysis for the region around the wellbore. Knowing \(h\) as the effective reservoir thickness, in which for our case is the layer thickness times Net to Gross ratio (N/G), we can calculate permeability after \(kh\). The calculation of permeability has been shown in Table 9.

The permeability value is varying from 0.1828 mD to 414.6610 mD with average permeability of 60.5523 mD. These valued will be used later on to compare with the identification through history matching and model selection.
Table 9: Calculation of Permeability by pressure Buildup analysis in field case

<table>
<thead>
<tr>
<th>Well Name</th>
<th>(p) static (bars)</th>
<th>(\text{Depth (M)})</th>
<th>(z)</th>
<th>(\mu) (cp)</th>
<th>(T(K))</th>
<th>(Tp) (days)</th>
<th>(q) (sm³/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well X</td>
<td>388.15</td>
<td>4650.00</td>
<td>1.1466</td>
<td>0.02471</td>
<td>436.60</td>
<td>3.83458</td>
<td>103916.04</td>
</tr>
<tr>
<td>Well VIII</td>
<td>317.45</td>
<td>4662.30</td>
<td>1.0956</td>
<td>0.02266</td>
<td>437.01</td>
<td>2.16929</td>
<td>153298.61</td>
</tr>
<tr>
<td>Well XI</td>
<td>251.30</td>
<td>4674.41</td>
<td>1.0584</td>
<td>0.02077</td>
<td>437.41</td>
<td>3.77975</td>
<td>47130.50</td>
</tr>
<tr>
<td>Well IX</td>
<td>327.06</td>
<td>4652.33</td>
<td>1.1033</td>
<td>0.02293</td>
<td>436.68</td>
<td>4.23722</td>
<td>107765.34</td>
</tr>
<tr>
<td>Well VI</td>
<td>356.65</td>
<td>4662.30</td>
<td>1.1228</td>
<td>0.02379</td>
<td>437.01</td>
<td>2.12421</td>
<td>153952.31</td>
</tr>
<tr>
<td>Well VII</td>
<td>384.40</td>
<td>4662.30</td>
<td>1.1439</td>
<td>0.02460</td>
<td>437.01</td>
<td>2.45009</td>
<td>393788.47</td>
</tr>
<tr>
<td>Well V</td>
<td>351.07</td>
<td>4661.15</td>
<td>1.1192</td>
<td>0.02363</td>
<td>436.97</td>
<td>3.33214</td>
<td>374981.31</td>
</tr>
<tr>
<td>Well III</td>
<td>400.96</td>
<td>4654.25</td>
<td>1.1551</td>
<td>0.02508</td>
<td>436.74</td>
<td>2.78248</td>
<td>606159.25</td>
</tr>
<tr>
<td>Well IV</td>
<td>388.15</td>
<td>4674.41</td>
<td>1.1466</td>
<td>0.02471</td>
<td>437.41</td>
<td>3.48402</td>
<td>125025.95</td>
</tr>
<tr>
<td>Well I</td>
<td>386.51</td>
<td>4656.14</td>
<td>1.1454</td>
<td>0.02466</td>
<td>436.80</td>
<td>1.48127</td>
<td>157072.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Well Name</th>
<th>(m) (bars²/period)</th>
<th>(Kh) (mD.m)</th>
<th>(h) (m)</th>
<th>(k) (mD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well X</td>
<td>6079</td>
<td>72.4498</td>
<td>10.58</td>
<td>6.8478</td>
</tr>
<tr>
<td>Well VIII</td>
<td>2432</td>
<td>234.3401</td>
<td>35.69</td>
<td>6.5669</td>
</tr>
<tr>
<td>Well XI</td>
<td>9466</td>
<td>16.4028</td>
<td>89.73</td>
<td>0.1828</td>
</tr>
<tr>
<td>Well IX</td>
<td>432</td>
<td>943.5002</td>
<td>14.17</td>
<td>66.5726</td>
</tr>
<tr>
<td>Well VI</td>
<td>6166</td>
<td>99.8819</td>
<td>35.69</td>
<td>2.7990</td>
</tr>
<tr>
<td>Well VII</td>
<td>3908</td>
<td>424.5721</td>
<td>35.69</td>
<td>11.8978</td>
</tr>
<tr>
<td>Well V</td>
<td>1574</td>
<td>943.4494</td>
<td>25.72</td>
<td>36.6815</td>
</tr>
<tr>
<td>Well III</td>
<td>371</td>
<td>7078.2629</td>
<td>17.07</td>
<td>414.6610</td>
</tr>
<tr>
<td>Well IV</td>
<td>6470</td>
<td>82.0535</td>
<td>89.73</td>
<td>0.9145</td>
</tr>
<tr>
<td>Well I</td>
<td>1324</td>
<td>501.4106</td>
<td>20.92</td>
<td>23.9722</td>
</tr>
<tr>
<td>Well II</td>
<td>297</td>
<td>3829.3400</td>
<td>40.32</td>
<td>94.9796</td>
</tr>
</tbody>
</table>

...
Fig. 34 : Buildup pressure test analysis for field case in each well
5.4. History Matching

History matching is the most important part of this work. In this part the history matching criteria and the ways to achieve the best match has been explained in details. With history matching the attempt was to minimize the misfit using any types of minimization methods. These minimized values of Objective Functions could be used for further investigations in model selection analysis.

5.4.1. Methodology

Two different methods have been used for history matching; history matching using gradient technique which has been done with SIMOPT and history matching using evolutionary strategy by implementation of MEPO technology.

5.4.1.1. SIMOPT application

The first option for history matching was to use SIMOPT tool of ECLIPSE. In this case SIMOPT uses Levenberg-Marquardt algorithm to find minimum misfit value for defined objective function. This method is fully automated toward finding minimum value for OF. For this reason the history matching criteria has been implemented starting with simplest case to identify the permeability of reservoir model in which initial permeability guess is \(k_x = 2.5 \text{ mD} \) and \(k_x = k_y, k_z = 0.1k_x \) in the entire reservoir.

![Fig. 35: Example of model selection region in field case model (model with 5 and 60 regions)](image)

The model with one region parameter of permeability stands for simplest case. The complexity is increasing with increasing the number of permeability region. This has been done for the model with 2, 5, 8, 11, 15, 22, 33 and 60 permeability regions. The mentioned assumption of isotropy \((k_x = k_y, k_z = 0.1k_x) \) and fault transmissibility \((T_{\text{fault}} = 0) \) were applied for all selected model. (Two top views of selected model with 5 and 60 regions have been shown in Fig. 35.

The attempt was to find minimum of the OF which is defined as RMS (as described in section 2.5.2.1 for all models. Table 10 shows the minimum of the OF for different selected model. This is for the case when we have initial homogeneous porosity (Porosity= 6.57%) in the entire reservoir model.
Table 10: History matching result of the model with homogeneous porosity

<table>
<thead>
<tr>
<th>No. Of Parameters</th>
<th>OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.1490</td>
</tr>
<tr>
<td>5</td>
<td>22.6932</td>
</tr>
<tr>
<td>8</td>
<td>21.5211</td>
</tr>
<tr>
<td>11</td>
<td>20.8160</td>
</tr>
<tr>
<td>15</td>
<td>18.7736</td>
</tr>
<tr>
<td>22</td>
<td>18.0950</td>
</tr>
<tr>
<td>33</td>
<td>17.7756</td>
</tr>
<tr>
<td>60</td>
<td>17.9175</td>
</tr>
</tbody>
</table>

The OF is following the decline trend and is going to be on very low fix decreasing development after increasing the number of regions. This trend is also similar when we have non-homogenous porosity (average Porosity=6.98% as described in section 5.1.1) in the reservoir model. This could be seen in Table 11.

Table 11: History matching result of the model with non-homogeneous porosity

<table>
<thead>
<tr>
<th>No. Of Parameters</th>
<th>OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.9000</td>
</tr>
<tr>
<td>5</td>
<td>22.9690</td>
</tr>
<tr>
<td>8</td>
<td>21.2360</td>
</tr>
<tr>
<td>11</td>
<td>19.9789</td>
</tr>
<tr>
<td>15</td>
<td>18.7560</td>
</tr>
<tr>
<td>22</td>
<td>18.5670</td>
</tr>
<tr>
<td>33</td>
<td>18.0790</td>
</tr>
<tr>
<td>44</td>
<td>17.9530</td>
</tr>
<tr>
<td>60</td>
<td>17.796</td>
</tr>
</tbody>
</table>

5.4.1.2. MEPO application

In this case, a global history matching was carried out using MEPO for three selected models with 1, 11 and 22 number of parameters. The objective function was composed by bottom hole buildup pressure as before.

The models and region definition are exactly the same as for history matching using SIMOPT. For history matching the Evolution Strategy (2+4) has been used and this remained unchanged in all further processing. This has been done only for the case that we have homogeneous porosity in the entire model. (Porosity=6.57%)

The comparison between SIMOPT (with initial OF value of 56.1763) and MEPO (with initial OF of 39914.4805) results for three different models with 1, 11 and 22 region has been shown in Table 12. The quality of match for both softwares is quite the same. Since the definitions of OF in SIMOPT and MEPO are not the same, in this table the equivalent value of OF for both softwares has been given for the same identification.
As could be seen for same model and same parameter identification in such a complex reservoir, both SIMOPT and MEPO could find a minimum value regardless of the method, and the hope of finding global minimum for both is alike.

Table 12: Comparison of SIMOPT vs. MEPO for 3 different models

<table>
<thead>
<tr>
<th></th>
<th>1-Region</th>
<th>11-Regions</th>
<th>22-Regions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIMOPT</td>
<td>MEPO</td>
<td>SIMOPT</td>
</tr>
<tr>
<td>initial</td>
<td>56.176292</td>
<td>39914.4805</td>
<td>56.1762919</td>
</tr>
<tr>
<td>final</td>
<td>33.149126</td>
<td>10480.7765</td>
<td>20.81601212</td>
</tr>
<tr>
<td>equivalency</td>
<td>MEPO</td>
<td>SIMOPT</td>
<td>MEPO</td>
</tr>
<tr>
<td></td>
<td>10488.967</td>
<td>32.2764399</td>
<td>4932.686194</td>
</tr>
</tbody>
</table>

5.4.2. Result of History Matching

The quality of history matching based on BHP has been evaluated in previous section as the result of the OF, considering the increase in the number of parameters. However the goodness of match is not similar for different periods of buildup measurement and for different wells.

In some cases these matches have been remarkably improved, but in other cases these matches are not good enough. All history matching result for BHP of the model with 22-regions has been shown in Appendix B.

Together the identified value of permeability has been verified and evaluated carefully. For three models with 5, 11 and 22 regions these permeability values including region definitions of the model are shown Fig. 36, Fig. 37 and Fig. 38.

These values could be used to check the sensitivity of different regions for a model with 22 regions. For this we have compared the equivalent permeability values for the model with 5 and 11 regions with respect to the model with 22 regions. This method has been explained in section 3.3 for packer test sensitivity.

As could be seen in Fig. 39, the sensitivity is highly varying in different regions. In the region that we could get the same permeability after identification, the sensitivity is high, however in the regions that the identified permeabilities are different, we have low sensitivity.

The challenge is to find the most unique solution. The model with very low number of parameters and high number of parameters are under-parameterize and over-parameterize models and they are non-unique. Consequently for this we may have different parameter set with the same value of objective function. This has been explained in section 4.2 in development of POF strategy.

5.4.3. Application of POF strategy in field case

To overcome to the mentioned challenge, we use the general POF strategy for the identified result. For applying POF in field case, few parameters should be specified properly considering reservoir engineering decision and some prior information.
Since we have used only BHP with measurement error of 1 bar ($\sigma=1$) as the matching parameter, therefore in EQ. 24, m is equal to 1.

The selection of minimum and maximum number of trust region is not easy and needs some engineering decision based on the model and some prior geological information we have.

![Fig. 36: Identified permeability values for the model with 5 regions](image)

![Fig. 37: Identified permeability values for the model with 11 regions](image)

![Fig. 38: Identified permeability values for the model with 22 regions](image)

To set minimum trust region value, we have to look for the minimum possibility of rejoining in terms of geological separation. As long as having 5 separate pore volume regains (which has been proved in material balance calculation), we could take these 5...
regions as the minimum number of trust region. This means that we can find at least 5 pore volume multiplier to identify pore volume using static BHP.

Knowing that having 11 wells in the reservoir, it is possible to find and identify 11 different regions around wellbore. These identifying parameters could be permeability because of the flow effect of the wells and it is promising to use these 11 regions as the maximum number of trust region. Therefore it is simply possible to calculate the average trust region value with $K_{tr} = (5+11)/2 = 8$ and penalization in EQ. 24 will start from this point.

The POF has been calculated using EQ. 24 for two different cases of history matching; first for the model with homogenous porosity for the entire reservoir and second for the model with non-homogenous porosity.

The result comparing the minimized OF and POF has been shown in Fig. 40 and Fig. 41. As described before in history matching section, the more parameter (K) we have the less minimum of the OF function could be obtained; However using POF shows us different trends for this changing.

![Fig. 39: Sensitivity analysis of field case with model of maximum 22 parameter regions](image)

![Fig. 40: Comparison of OF and POF for the model with homogenous porosity](image)
Discussion of the results: As in previous cases (like packer test system), the value of OF get smaller with increasing the number of parameters; however OF could not find a model with suitable parameterization and stays constant.

Here the application of POF shows (in Fig. 40 and Fig. 41) that we have minimum value for POF in a model with 15-22 permeability regions. This model could be considered as the optimum solution for our case. As an example in Fig. 42, we could see significant changes in the match of BHP from the initial case to the final case with the model with 22-regions.

The comparison of identified permeability from history matching with 22-regions with the result of pressure buildup analysis has also been given in Fig. 43. In some wells we have pretty good match between History Matching result and buildup analysis. However in some others like Well XI, IV or I the difference is more than one order of magnitude. This
is the result of uncertainty in welltest result due to short buildup period and difficulty to find the exact dip of graph of p_{wb} vs. dt as shown in Fig. 34.

![Comparison between pressure buildup analysis and history matching for a model with 22 regions](image)

Fig. 43: Comparison between pressure buildup analysis and history matching for a model with 22 regions

For field Case study the following general conclusion could be made:

Application of POF in this field shows that the model with 15-22 number of parameters lays on suitable-parameterization region of model selection. However OF remains constant when the number of parameters increasing.

There is no need to have a model with more than 22 permeability region and this will cause over-parameterization

The identified parameters after history matching with 22-permeability regions, in most cases are in good congruency with pressure buildup test results.

POF could be applied generally in different deterministic model concerning reservoir engineering decision. This is an proficient way of finding most probable unique solution in model selection.
Chapter 6. Development of a helpful software for automatic model selection

In this section the development of software to use the available model selection criteria has been explained. First there an introduction to the necessity of having such software has been explained and then we have an overview of the package that we have developed.

6.1. Concept of helpful software for model selection

Reservoir history matching is a difficult inverse problem arising in the petroleum industry. The aim of history matching is to find a model such that the difference between the performance of the model and the history of a reservoir is minimized. Traditionally, this is done by hand. But the task of varying the parameters of a reservoir description by hand until a satisfactory match is obtained is extremely difficult and time-consuming. Therefore, optimization techniques are increasingly adopted by the oil industry for computer-aided history matching. (Such as Levenberg-Marquardt algorithm in SIMOPT).

This is because of the great time-saving benefits, they can offer over conventional trial-and-error approaches. Starting with an initial reservoir description, these optimization techniques automatically vary reservoir parameters until stopping criteria are achieved and a history match of field performance is obtained. This mechanistic activity is referred to as “automatic history matching.”

Researchers have been building tools for automatic history matching of permeability and porosity distributions to honor production data for many years. In most of the studies, independent of the method used for the history matching, there is usually an assumption that there exists a simple unique solution at the “true” model. They therefore neglect the non-uniqueness of the solution of this inverse problem. This, consequently, leads to the assumption that a good history-matched model is a good representation of the reservoir and therefore gives a good forecast, but this assumption is not proved and often misleading.

6.2. AKAIKI software

After regression and getting RMS as an OF from SIMOPT, the calculation of result of different criteria is our goal. This should be done fully automatically by use of a software which should read, calculate and process, select the best model between different sets of models and finally export the best selected model data to be used for future forecasting.

Therefore it seems to be necessary the development of helpful software to do:

Automatic reading of all values, parameters and results of SIMOPT matches.
Sensitivity analysis of the results and AIC computation.
Select “best and most reliable” parameter set.

AKAIKI has been developed in FORTRAN programming language in Windows and can be run as an executable program on any system.
6.2.1. Input & Reading

In SIMOPT the minimization process for each parameter set is done automatically. This process is written in a log file which could be saved as an import file for AKAIIKI software. The file depends on the number of regression processes which have been done. This shows all information about the regression process, evaluation process and gradient process. Detail information on Total RSM as an OF, modifier value, changes, activeness, parameter name and domain, could be find in this file. A part of this file could be seen in Fig. 44. AKAIIKI will read completely this file and extract all necessary information which is needed for further processing.

![Fig. 44: part example of SIMOPT Logfile](image)

The important fact on how to use AKAIIKI is to define the directory of log file in separate file call akaiki.path (Fig. 45) which is in the same folder as AKAIIKI executable program exists. The first line showing the working directory (the corresponding output file will write in this folder). The consequent lines are the location of logfiles which could be more than one after different identification with SIMOPT. The last line is the location of equivalent REGION file. This file should be with the extension *.REG.

![Fig. 45: sample example of akaiki.path file](image)

Equivalent REGION file is a space delimited file which should be prepared separately (Fig. 46). This file shows the equivalent parameter number with respect to the model parameter set with maximum number of region. As an example, it could be seen in this
Figure that the model with maximum number of parameter is model version 5 with 24 parameters. This should be written in the first column. In the next columns the other versions should be written consequently. The first row of each column is the model version and the other rows are the corresponding parameter number with respect to version 5.

This file will help us to create a tabulated data of modifiers which has been shown in Fig. 47 this table could be used for further uniqueness analysis.

![Table](image)

Fig. 46: equivalent REGION file example

6.2.2. Computation

As long as all necessary information is extracted, the minimum OF function for each model set will be determined. However the calculation of AIC based on proposed equation which has been developed is straight forward. Note that AIC\(_n\) (EQ. 22) and POF (EQ. 24)has been used as a based equation in AKAIKI. This is the development of AIC equation based on packer test system. Other equations like POF could be applied and used instead of this equation.

It should be mentioned that in the case of only gradient run without any identification, the calculated RMS consider as minimum OF for that model parameter set.

One example of this calculation is shown in Fig. 47 which is prepared by AKAIKI as an output of the program.

![Table](image)

Fig. 47: computation result of AKAIKI
6.2.3. Writing & Output

The extracted objective function, modifier value and calculated AIC and POF should be prepared in tabulated format, so that it could be imported in any data processing packages like Excel or Tecplot.

The main outputs of the AKAIKI are *.res file (the computation result of the AKAIKI) and *.lst (tabulated equivalent REGION modifiers). The process will be shown on the screen and will be written separately in *.out file. This includes all the messages and error information as well.
Summary and Conclusion

“History matching” (model calibration, parameter identification) is an established method for determination of representative reservoir properties such as permeability, porosity, relative permeability and fault transmissibility from a measured production history.

Mathematical basis of the process for model selection are:

Minimization of an Objective Function, (OF), which is usually defined as the sum of squared errors between measured values and simulated results (i.e. pressure, flow rate, water cut etc.). The minimization is a necessary condition for model selection, which means the best match of the simulated values and the corresponding measured values.

A sufficient condition for the match process is the uniqueness of the parameter sets after minimization. This means that there is only one (unique) parameter set for the minimum of OF.

The first condition is typically fulfills by a mathematical optimization process, as it is integrated in History Matching softwares like SIMOPT, UCODE or MEPO.

The second condition is the expression of the fact whether there are enough good (exact) measurement data available and if the identifying parameters are also sensitive enough to measurements. In the qualitative sense, this means that the content of information in the measurement data set should be large enough to fulfill the uniqueness of reservoir parameter sets.

Unfortunately, the uniqueness of the problem in single and multiphase flow in reservoirs could not be constructively solved until today, i.e. it could not be fulfilled during the match processes by a mathematical algorithm.

It should be clearly noticed that non-unique parameters are principally incorrect parameters and lead to a wrong reservoir prediction behavior.

Up to now, the uniqueness of history matching results can be assessed in practice only after individual and technical experience and/or by repeating history matching with different reservoir models (different sets of parameters as the starting guess).

The present study has used for the first time the stochastical theory of Kullback & Leibler (KL) and its further development by Akaike (AIC) to solve the uniqueness problem in reservoir engineering. This theory has been used successfully in the 40s of the last century for the identification (decoding) of the coded radio messages.

AIC is based on the “Principle of Parsimony”, which means: a reservoir model should be described as simple as possible but as complex as necessary. AIC in a simple case shows the way of helpful function for model selection, which consists of OF+ K, with K as the number of parameters. It is apparent that this will fulfill the first condition of model selection by a minimum value of OF and second condition with the least number of parameters. K can be also considered as a penalty term.
In the first step several typical models have been used as examples: a synthetic reservoir model (PUNQ), a typical in-situ permeability multi-packer test for measurement of permeability in salt rocks and a laboratory permeability measurement for low permeable plates.

In these simple models, in which unique parameter sets are known or appear to be known from physical point of view, the application of AIC was considered carefully. As a result, it is found out that the AIC (which is based for stochastic systems) is not appropriate for the deterministic partial differential equations in Reservoir Engineering with relatively few parameters. However AIC should be considered precisely in terms of weight definition for OF and the number of parameters.

In the next step based on the AIC principle, the penalty term for OF has been empirically formulated regarding geoscientific and technical considerations. In this case the geoscientific knowledge and prior information leads to a first probable model (trust model with trust region number of parameters), which is usually relatively simple. The number of measurement points and the distribution of measured values in the reservoir leads to a model (regarding the number of parameters), which represents the limit against over-parameterization. The new formulation (Penalized Objective Function POF), which will be used as the basis of the history matching, satisfies the necessary condition of minimization and fulfills the sufficient condition by avoiding the over-parameterization and can find most probable unique solution (suitable-parameterization).

POF has been tested successfully for the verification of the simple models mentioned above. Similarly, POF was used for the history matching of a North German gas field and shows a good model fit compared with other authors, but with a much simpler model - as simple as possible - as complex as necessary!

Since POF could not be involved in commercial software, such as SIMOPT or MEPO, a help program AKAIKI was developed to be used with SIMOPT, which allows the fast evaluation of SIMOPT results.
References

References

[77]
References

References

[54] PUNQ reservoir, TNO web site [http://www.nitg.tno.nl/punq/]
[60] SIMOPT user Guide 2007.1, service marks of Schlumberger, Optimization patent works consistent with ECLIPSE Reservoir Simulation Software.

[79]
Appendices

A. AKAIKI software FORTRAN code

! INCLUDE INPUT
integer*4 iin,iout,ires,ilst,iversionmax,iterationmax,iparmmax,jnamemax,ireg
character rmschar*10,finalrgline*14,version*7,PARMchar*9,status*9,MODifier*8,RESULTchar*7 &
 ,wordv*30,name*200,namereg*200,path*200
common /input1/ iin,iout,ires,ilst,iversionmax,iterationmax,iparmmax,jnamemax,ireg &
 ,rmschar,finalrgline,version,PARMchar,status,MODifier,RESULTchar &
 ,wordv(100),name(10),namereg,path
!c--
!c------Main of AKAIKI, Read of SIMOPT-Results and Stochastics
program AKAIKI
!c--------------------------Data-specification implicit none
 include 'input.com'
 integer*4 ip,kres,i,kregion
 real*8 res,resmax,AIC,POF,modexcel
 character*200 namein,nameout,nameresult,namelst,name1 &
 !,path
 logical*4 lin
 allocatable res(:),resmax(:,:),kres(:,),kregion(:,),AIC(:,,:),POF(:,,:),modexcel(:,,:)
!c------------------------------------ Start data
iin=7;iout=8;ires=9;ilst=10;ip=0;jnamemax=0;name=' ';ireg=0
!c------------------------------------ Start data
 call pstart(0,ip,namein,nameout,nameresult,namelst,path)
 call pstart(iout,ip,namein,nameout,nameresult,namelst,path)
name(1)=namein
 call alloc
!c------ Array-allocation
 if(iversionmax.lt.1.or.iterationmax.lt.1.or.iparmmax.lt.1) then
 write(*,100) iversionmax,iterationmax,iparmmax
write(iout,100) iversionmax,iterationmax,iparmmax
read(*,*)
 endif
iversionmax=max(1,iversionmax)
iterationmax=max(1,iterationmax)
iparmmax=max(1,iparmmax)
allocate (res(iversionmax*iterationmax*(iparmmax+4)), resmax(iversionmax,(iparmmax+4)) &
, kres(3*iversionmax), kregion((iparmmax+1)*iversionmax))
!c---------------------------------Initialization
res=0.d0
resmax=0.d0
kres=0
!c---Read Input data
 call input(res,kres)
!c-- Find minimum RMS
 call maxres(kres,res,resmax)
!c-- AIC and POF calculation
 allocate (AIC(iversionmax,2))
 AIC=0
 allocate (POF(iversionmax,2))
 POF=0
 call criteria(AIC,POF,kres,resmax,res)
!c------------------------------------- Organize Regions, if file "*.reg" existing
 allocate (modexcel(iparmmax+1,iversionmax))
 if(ireg.eq.11) then
 call region(kregion)
 call modifierorder(kregion,kres,resmax,modexcel)
 endif
!c---------------------------------------Print the result
 call output(AIC,POF,kres,resmax,modexcel)
!c---Ende MAIN----------

100 format(1x,'WARNING: Version-, Iteration- or Parameter number < 1 !',3i4)
close (iout)
write (*,*) 'Press Enter...!'
read(*,*)
end
subroutine pstart(iik, ip, namein, nameout, nameresult, namelst, path1)
implicit none
include 'input.com'
integer*4 iik, il, ip, iq, il, i, k
logical*4 lin
character*200 namein, nameout, nameresult, namelst, nam, name1, path1

if(iik.eq.0) then
 inquire(file='akaiki.path', exist=lin)
 path1=''
 if(lin) then
 open(1,file='akaiki.path')
 read(1,'(a200)', end=20) path1
 k=0
 do i=1,10
 read(1,'(a200)', end=20) name1
 k=index(name1,'.reg')
 if(k.le.0) then
 name(i)=name1
 else
 !Region-File
 namereg=name1
 ireg=11
 open(ireg,file=namereg)
 endif
 enddo
 endif
 else
 write(*,*) '##### ERROR: File "AKAIKI.path" not existing ! #####'
 write(*,*) '##### ERROR: File "AKAIKI.path" not existing ! #####'
 stop
 endif
endif

!c-------------- OUT-files
20 close(1)
namein=name(1)
ip=-1; iq=-1; il=-1
do i=200,1,-1
 if(path1(i:i).ne.' ' .and.ip.lt.0) then
 ip=i+1
 path1(ip:ip)='\'
 ip=ip+1
 endif
 if(namein(i:i).eq.'\'.and.iq.lt.0) iq=i+1
 if(namein(i:i).ne.' ' .and.il.lt.0) il=i
endo
do
 if(ip.le.0) ip=1
 if(iq.le.0) iq=1
 nam=' '; nam(1:il-iq+1)=namein(iq:il)
i1=0; i1=index(nam,'.')
 if(i1.le.0) i1=il-iq+1
 nameout=path1; nameresult=path1; namelst=path1
 nam(il+1:il+i1+4)='.out'
 nameout(ip:ip+il+i1+4)=nam(1:il+i1+4)
 nam(il+1:il+i1+4)='.res'
 nameresult(ip:ip+il+i1+4)=nam(1:il+i1+4)
 nam(il+1:il+i1+4)='.lst'
 namelst(ip:ip+il+i1+4)=nam(1:il+i1+4)
 open(iin,file=namein) !input file
 open(iout,file=nameout) !output file
 open(ires,file=nameresult) !calculated result
 open(ilst,file=namelst) !modifier region file
 write(*,*)
 write(*,1)
 write(*,2)
 write(*,*) ' path:',path1
 elseif(iik.gt.0) then !Write file names
 write(iik,*)
 write(iik,1)
 write(iik,2)
 write(iik,*) ' path:',path1
endif
!c---------------------------------------Formats
1 format(1x,'######### You are starting program AKAIKI',/ &
 ,5x,'Read S I M O P T - r e s u l t s',/ &
 ,5x,'M o d e l - S e l e c t i o n - c r i t e r i a ',/ &
 ,5x,'for Reservoir History Matching',/ &
 ,5x,'authors: M.M.Rafiee and F.Haefner, TU Bergakademie Freiberg',/ &
 ,5x,'version 1.0, January 2009',/)
2 format(1x,'---',/)
4 format(1x,'##### ERROR: input file not existing !',/ &
 ,1x,'path + name = ',a200)
!c------------End subroutine PSTART -----------------------------

subroutine criteria(AIC,POF,kres,resmax,res)
!calculation of AIC & POF
! implicit none
! include 'input.com'
 integer*4 k,kres,m,l,ktr
 real*8 res,resmax,AIC,mult,POF,OF,OFtr,Sig
 dimension resmax(iu fersionmax,iparmmax+4),kres(iu fersionmax,3)&
 ,res(i terventionmax,iparmmax+4,iversionmax)&
 ,ktr(10),Sig(10),OF(iu fersionmax),OFtr(10)&
 ,AIC(iu fersionmax,2),POF(iu fersionmax,2)
! column dimension of AIC and POF could be increased,
! increasing the selection criteria method
 !c--
 do k=1,iversionmax
 !AICn based on developed equation for insitu-perm test
 mult=resmax(k,2)*kres(k,2)
 if (mult.le.0) then
 write(*,*) '##### Warning : minimum RMS is less equal than 0! #####'
 write(*,*) '##### AIC could not be calculated, set AIC=0'
 write(8,*), '##### Warning : minimum RMS is less equal than 0! #####'
 write(8,*), '##### AIC could not be calculated, set AIC=0'
 else
 AIC(k,1)=log(mult)
 endif
 enddo

[84]
enddo

! POF calculation
write(*,*) 'For POF strategy calculation,'
write(*,*) ' Maximum Number of observation types:(m)'
m=1; Sig(:)=1; ktr(:)=1
read(*,*,err=10) m
goto 11
10 write(*,*) 'Error in data input(Default=1)'
write(8,*) 'Error in data input(Default=1)'

11 If (m.gt.1) then
write(*,*) 'm>1, so the trust region OF and OF for each iteration '
write(*,*) 'should be entered for each observation types separately'
write(8,*) 'm>1, so the trust region OF and OF for each iteration '
write(8,*) 'should be entered for each observation types separately'
do l=1,iversionmax
write(*,*) 'Enter measurement error for observation type:',l
read(*,*,err=10) Sig(l)
write(8,*) 'measurement error for observation type',l,'is',Sig(l)
write(*,*) 'Enter Average number of parameters in trust region for observation type:',l
read(*,*,err=10) ktr(l)
write(8,*) 'Average number of parameters in trust region for observation type',l,'is',ktr(l)
write(*,*) 'Enter Average OF in trust region for observation type:',l
read(*,*,err=10) OFtr(l)
write(8,*) 'Average OF in trust region for observation type',l,'is',OFtr(l)
do k=1,m
write(*,*) 'Enter OF for observation type:',l, 'and for iteration',k
read(*,*,err=10) OF(k)
write(8,*) 'OF observation type',k,'and for iteration',l,'is',OF(k)
POF(k,1)=OF(k)/Sig(l)+OF(l)/OFtr(l)*(k/ktr(l)-1)
enddo
enddo
else
 write(*,*) 'Enter measurement error:'
 read(*,*,err=10) Sig(1)
 write(8,*) 'measurement error is',Sig(1)

 write(*,*) 'Enter Average number of parameters in trust region:'
 read(*,*,err=10) ktr(1)
 write(8,*) 'Average number of parameters in trust region is',ktr(1)

 write(*,*) 'Enter Average OF in trust region:'
 read(*,*,err=10) OFtr(1)
 write(8,*) 'Average OF in trust region is',OFtr(1)

 do k=1,iversionmax
 if (k.le.ktr(1)) then
 POF(k,1)=resmax(k,2)/Sig(1)
 else
 POF(k,1)=resmax(k,2)/Sig(1)+resmax(k,2)/OFtr(1)*(k/ktr(1)-1)
 endif
 enddo
endd
endif
return
end !c--END of criteria

subroutine modifierorder(kregion,kres,resmax,modexcel)
!c--------------------- Array with modifier-Ordering
implicit none
include 'input.com'
integer*4 i,j,k,l,kregion,kres,iparmin,no,n,nl
real*8 modexcel ,resmax
dimension kregion(iparmmax+1,iversionmax),modexcel(iparmmax+1,iversionmax),kres(iversionmax,3),
 resmax(iversionmax,iparmmax+4)
!c--
i=0;modexcel=0
! First row contains version number after file
do i=1,iversionmax
 do l=1,iversionmax
 ! [86]
if (kregion(1,i).eq.kres(l,1)) then !search for the right version after file name
 iparmin=kres(l,2)
 do j=1,iparmin
 do k=1,iparmmax
 if (kregion(k+1,i).eq.j) then
 modexcel(1,i)=kregion(1,i)
 modexcel(k+1,i)=resmax(l,j+4)
 endif
 enddo
 enddo
 n1=iversionmax
endif
enddo
dendif
endo return
end
!c---END of modifierorder

!c--output section
subroutine output(AIC,POF,kres,resmax,modexcel)
 implicit none
 include 'input.com'
 character header*200
 integer*4 k,kres,i
 real*8 res,resmax,AIC,POF,mult,modexcel
 dimension resmax(iversionmax,iparmmax+4),kres(iversionmax,3) &
 ,modexcel(iparmmax+1,iversionmax),AIC(iversionmax,2),POF(iversionmax,2)
! column dimension of AIC and POF could be increased,
! increasing the selection criteria method
!c---
!
write(*,*) 'No. Version iteration (K) (RMS) (AIC) (POF)'
write(ires,*)'No. Version iteration (K) (RMS) (AIC) (POF)'
do k=1,iversionmax
 write(*,400) k,kres(k,1),kres(k,3),kres(k,2),resmax(k,2),AIC(k,1),POF(k,1)
 write(ires,400) k,kres(k,1),kres(k,3),kres(k,2),resmax(k,2),AIC(k,1),POF(k,1)
400 format(I3,I6,I10,I10,2F20.15,2F20.15)
endo
close(ires)

! Write modifier regarding maximum number of parameters
header='Parm no. V1 V2 V3...... maximum Version no.'
write(ilst,'(a200)') header
write(ilst,121,err=123) (modexcel(1,k),k=1,iversionmax)
121 format(5x,100(1F10.0,1x))
 do i=1,iparmmax
 write(ilst,122,err=123) i,(modexcel(i+1,k),k=1,iversionmax)
122 format(4x,i4,1x,100(1pe10.3,1x))
 continue
enddo
close(ilst)
return
end
!--end of Output

subroutine alloc
!c--------- Dimensioning of arrays
 implicit none
 include 'input.com'
 integer*4 i,jw,j,k,jres,jvers,jparm, jrms, k1,k2,k3,kend,kend1,ivers,jit,log &
 ,ifile,jname,kw,kww,kk,keof,ikend
 real*8 rmsvalue
 character word*200,word*n30,name1*200,ant*1
 logical*4 logres,logparm,logrms,lin
!c---
 jres=0;jvers=0;jparm=0;jrms=0;ivers=0;jw=0;jit=0;log=0;kend=0;kend1=0;jname=1
 iversionmax=0;iterationmax=0;iparmmax=0;logres=.false.;logparm=.false.;logrms=.false.
 RMSchar='total rms:'; keof=0;ikend=0
 finalrgline='no improvement'

[88]
version='version'
PARMchar='parm type'
status='status'
MODifier='modifier'
RESULTchar='results'
ifile=iin

!c---
99 do 100 i=1,100000
 call lesen(ifile,log,word,wordv,jw)
 if(jw.eq.0.or.log.lt.0) goto 100 ! next row
 if(log.eq.200) then
 keof=1
 goto 201 !End of file
 endif
!c---

Analyzing
 if(.not.logres.and..not.logparm.and..not.logrms) then !Find RESULT
 if(index(word,'results : version').gt.0) then
 kk=0
 do k=2,jw
 kk=k
 kww=0
 do kw=1,30
 ant=wordv(k)(kw:kw)
 if(ichar(ant).ge.48.and.ichar(ant).le.57) kww=kww+1
 enddo
 if(kww.gt.0) goto 133
 enddo
 enddo
 endif
!
133 write(*,*) 'ERROR in version number, set ivers=1 !'
write(8,*) 'ERROR in version number, set ivers=1 !'
read(*,*) !ERROR in version number, set ivers=1 !'
ivers=1
11 goto 11

!c--------
134 read(wordv(kk)(1:kww),*,err=134) ivers
!c-----------------------
11 logres=.true.
 if(ivers.ne.jvers) then
 iversmax=iversmax+1
jrms=0
endif
if(ivers.ne.jvers.and.ivers.gt.0) jvers=ivers
endif
elseif(.not.logparm.and..not.logrms.and.logres) then ! Find Total RMS
k1=index(word,'total rms')
if(k1.gt.0) then
jrms=jrms+1
iterationmax=max(jrms,iterationmax)
logrms=.true.
endif
!c---! READ PARM TYPE ---------
elseif(.not.logparm.and.logrms.and.logres) then
if(index(wordv(2),'parm').gt.0) logparm=.true.
jparm=0
elseif(logparm.and.logrms.and.logres) then
! READ number of parameters
kww=0
do kw=1,30
 ant=wordv(2)(kw:kw)
 if(ichar(ant).ge.48.and.ichar(ant).le.57) then
 kww=kww+1
 endif
endo
do if(kww.eq.0) goto 13
read(wordv(2)(1:kww),*,err=13) k1
jparm=jparm+1
goto 12
!c--- End of PARM numbers
13 logparm=.false.;logres=.false.;logrms=.false.
12 iparmmax=max(iparmmax,jparm)
!c--------------------------
endif
!c--- Find End of Iteration or end of file
kend=index(word,'no improvement')
kendl=index(word,'no more iterations')
200 if(kend.gt.0.or.kendl.gt.0) then
 ikend=ikend+1
 write(*,*) 'filename: ', name(jname)(LEN_TRIM(path)+1:LEN_TRIM(name(jname)))
[90]
write(*,*), 'DIMENSIONING: End of Match, version: ',ivers
write(*,*), 'filename: ', name(jname)(LEN_TRIM(path)+1:LEN_TRIM(name(jname)))
write(*,*), 'DIMENSIONING: End of Match, version: ',ivers
write(*,*)
endif
if(keof.gt.0.and.ikend.eq.0) then ! case of no identification
write(*,*), 'filename: ', name(jname)(LEN_TRIM(path)+1:LEN_TRIM(name(jname)))
write(*,*), 'DIMENSIONING: End of Match, version: ',ivers
write(*,*)
write(8,*), 'filename: ', name(jname)(LEN_TRIM(path)+1:LEN_TRIM(name(jname)))
write(8,*), 'DIMENSIONING: End of Match, version: ',ivers
write(8,*)
goto 201
endif
continue !c-------------------------End of file
201 if(kend.le.0.or.kend1.le.0) then
 if(iversionmax.le.0) iversionmax=iversionmax+1
endif
rewind(ifile) !c----------------------- More than 1 input data file
if(jname.lt.jnamemax) then
 jname=jname+1
 inquire(file=name(jname),exist=lin)
 ifile=jname+100
 if(lin) open(unit=ifile,file=name(jname))
 keof=0; ikend=0
 goto 99
endif
write(*,*)
return
end !c--------------------------- End subroutine alloc

subroutine input(res,kres) !c-------- Read of Inputfile
 implicit none
include 'input.com'
integer*4 i,jw,j,k,jres,jvers,jparm,jrms,k1,k2,k3,kend,kendl,ivers,jit,log,jinvers &
,kres,jname,ifile,kw,kww,kk,keof,ikend
real*8 rmsvalue,resmod,resgrad,res
character word*200,wordn*30,ant*1
logical*4 logres,logparm,logrms
dimension res(iterationmax,iparmmax+4,iversionmax),kres(iversionmax,3)
!
!
!c--------------------------------- ! Structure /Itersave/
! Structure /IERATION/ ITER(10000) !maximum number of parameter
! integer*4 iparm(50) ! character*6 parmtype(50) ! character regname*8,parmstatus*10
! real*8 modifier,gradvalue
! end structure
! real*8 RMS(10000) !maximum number of iteration
! end structure
! record /Itersave/ VERSNO(iversionmax)
!c-----------------------------------

jres=0;jvers=0;jparm=0;jrms=0;ivers=0;jw=0;jit=0;kend=0;kendl=0;jinvers=0
logres=.false.;logparm=.false.;logrms=.false.
RMSchar='total rms:';keof=0;ikend=0
finalrgline='no improvement'
version='version'
PARMchar='parm type'
status='status'
MODifier='modifier'
RESULTchar='results'
jname=1
ifile=iin
!
!

99 do 100 i=1,100000
 call lesen(ifile,log,word,wordv,jw)
 if(jw.eq.0.or.log.lt.0) goto 100 ! next row
 if(log.eq.200) then
 keof=1
 goto 201 !End of file
Analyzing
if(.not.logres.and..not.logparm.and..not.logrms) then !Find RESULT
 if(index(word,'results : version').gt.0) then
 kk=0
 do k=2,jw
 kk=k
 kww=0
 do kw=1,30
 ant=wordv(k)(kw:kw)
 if(ichar(ant).ge.48.and.ichar(ant).le.57) kww=kww+1
 enddo
 if(kww.gt.0) goto 133
 enddo
 endif
134 write(*,*) 'ERROR in version number, set ivers=1 !'
 write(8,*) 'ERROR in version number, set ivers=1 !'
 read(*,*) ivers=1
11 ggoto 11
!c----------
133 read(wordv(kk)(1:kww),*,err=134) ivers
!c-----------------------
1 logres=.true.
 if(ivers.ne.jvers) then
 jinvers=jinvers+1 ! Version number 1, 2 , 3
 jrms=0
 endif
 if(ivers.ne.jvers.and.ivers.gt.0) jvers=ivers !Version Number after file
endif
elseif(.not.logparm.and..not.logrms.and.logres) then ! Find Total RMS
 k1=index(word,'total rms:')
if(k1.gt.0) then
 jrms=jrms+1
 logrms=.true.
 k2=k1+10
 if(k2.gt.0) then
 kww=0
 do kw=k2,k2+30
...
ant=word(kw:kw)
if(ichar(ant).ge.48.and.ichar(ant).le.57) then
 kww=kww+1
endif
enddo
if(kww.le.0) then
 write(*,*)'TOTAL RMS: value not readable, row=',i
 write(8,*),'TOTAL RMS: value not readable, row=',i
 read(*,*)
endif
read(word(k2:k2+kww),*) rmsvalue
res(jrms,1,jinvers)=jvers !Version-Number after file
res(jrms,2,jinvers)=rmsvalue !RMS
 VERSNO(jinvers).RMS(jrms)=rmsvalue !RMS in Structure
 endif
endif
!
!c--! READ PARM TYPE ---------
elseif(.not.logparm.and.logrms.and.logres) then
 if(index(wordv(2),'parm').gt.0) then
 logparm=.true.
jparm=0
 endif
elseif(logparm.and.logrms.and.logres) then
 ! READ number of parameters
 kww=0
 do kww=1,30
 ant=wordv(2)(kww:kww)
 if(ichar(ant).ge.48.and.ichar(ant).le.57) then
 kww=kww+1
 endif
 enddo
 if(kww.le.0) goto 13
 read(wordv(2)(1:kww),*,err=13) k1
 jparm=jparm+1
 read(wordv(5),*) wordn
 ! VERSNO(jinvers).ITER(jrms).parmstatus=wordn !Status
 if(wordn.eq.'active') res(jrms,3,jinvers)=1.
 read(wordv(6),*) resmod
 res(jrms,jparm+4,jinvers)=resmod !Modifier
[94]
if (jw.gt.6) then
 read(wordv(7),*) resgrad
 res(jrms,4,jinvers)=resgrad
endif
! Gradient, if existing
res(jrms,4,jinvers).modifier=resmod

if (jw.gt.6) then
 read(wordv(7),*) resgrad
 res(jrms,4,jinvers)=resgrad
endif
! Gradient, if existing
res(jrms,4,jinvers).modifier=resmod

kres(jinvers,1)=jvers
kres(jinvers,2)=jparm
kres(jinvers,3)=jrms

kend=index(word,'no improvement')
kend1=index(word,'no more iterations')
if (kend.gt.0.or.kend1.gt.0) then
 ikend=ikend+1
 write(*,*) 'filename: ', name(jname)(LEN_TRIM(path)+1:LEN_TRIM(name(jname)))
 write(*,*) 'READING/STORING: End of Match, version: ',ivers
 write(*,*)
 endif
! case of no identification
if (keof.gt.0.and.ikend.eq.0) then
 write(*,*) 'filename: ', name(jname)(LEN_TRIM(path)+1:LEN_TRIM(name(jname)))
 write(*,*) 'READING/STORING: End of Match, version: ',ivers
 write(*,*)
 endif
if (keof.gt.0.and.ikend.eq.0) then
 write(*,*) 'filename: ', name(jname)(LEN_TRIM(path)+1:LEN_TRIM(name(jname)))
 write(*,*) 'READING/STORING: End of Match, version: ',ivers
 write(*,*)
 endif
 goto 201
endif
100 continue
!c-----------------------End of file

!c----------------------- More than 1 input data file
201 close(ifile)
 if(jname.lt.jnamemax) then
 jname=jname+1
 ifile=jname+100
 keof=0; ikend=0
 goto 99
 endif
 return
end
!c----------------------- End subroutine input

subroutine lesen(ifile,log,word,wordv,jw)
!c------------READ and analyze a word
! implicit none
integer*4 ifile,jw,log
character word*200,wordv*30
dimension wordv(100)
!c---
 log=0
 read(ifile,'(a200)',err=100,end=200) word
 call uncapslk(word)
 if(index(word,'manual changes').gt.0) then
 continue
 endif
 jw=0
 call leszeile200(jw,word,wordv) !jw = number of sub-words in a row
 return
!c----------------------------ERROR
100 log=-100
 return
!c----------------------------END
200 log=200
subroutine leszeile200(j,wort,wort1)
!c--
!c---- Routine for reading one character and saving
!c---- Text form part strings
!c---- attention: The parameters must be separated by comma or space
!c--
implicit none
 integer*4 i,j,1w,iii,lww,jmax
 character wort*200,wort1*30
 dimension wort1(100)
!c---
 if(wort.eq.' ') then
 write(*,100)
 write(8,100)
 j=0
 return
 endif
100 format(' ERROR in LESZEILE200: Word is empty !')
 lw=200
 do i=1,100
 wort1(i)=' '
 enddo
 lww=lw
 do i=1,lw
 if(wort(1:1).eq.' '.or.wort(1:1).eq.',') then
 wort(1:lww-1)=wort(2:lww)
 wort(lww:lww)=' '
 lww=lww-1
 else
 exit
 endif
 enddo
!c------------------
 jmax=200
DO WHILE (I.LT.LW.AND.J.LT.JMAX)
 DO WHILE (WORT(I:I).EQ.' '.OR.WORT(I:I).EQ.',')
 I=I+1
 END DO
 IF (I.EQ.LW) RETURN
 III=0
 IF (J.GE.100) EXIT
 J=J+1
 DO WHILE (WORT(I:I).NE.' '.AND.WORT(I:I).NE.',')
 III=III+1
 IF (III.GT.28) THEN
 WRITE(*,*) 'ERROR in LESZEILE100, Wordlength > 30, shorten it!'
 WRITE(*,300) WORT
 READ(*,*)
 FORMAT(' Full row: ',A200)
 RETURN
 GOTO 10
 END IF
 END DO
 WORT1(J)(III:III)=WORT(I:I)
 I=I+1
END DO
GOTO 10
WORT1(J)(III+1:III+1)=',
END DO
RETURN
END

!-----------------------------------Ende Leszeile200

SUBROUTINE UNCAPSLK(TEXT)
!* *
!* uncaps lock
!* *
!* eingabe: text - text mit kleinen und grossen buchstaben
!* ausgabe: text - text, indem grosse in kleinbuchstaben geaendert sind
!* *
!* programmierer: dr.sames (ife) 16.10.89
!* *
character(*) text
integer i, icode, j, lng, len

if (ichar('A') .eq. 65) then
 icode = 1
else
 icode = 2
endif

lng = len(text)
goto (100,120), icode
100 do 110 i = 1, lng
 j = ichar(text(i:i))
 if (65 .le. j .and. j .le. 90) then
 j = j + 32
 text(i:i) = char(j)
 endif
110 continue
goto 140
120 do 130 i = 1, lng
 j = ichar(text(i:i))
 if (193 .le. j .and. j .le. 233) then
 j = j - 64
 text(i:i) = char(j)
 endif
130 continue
140 continue
return
end

!c----------------------End UNCAPSLK--------------------------------

subroutine maxres(kres,res,resmax)
!c------------------------- Array with minimum RMS
 implicit none

include 'input.com'
integer*4 i,j,k,kres,iit,ipar,ixmax
real*8 res,resmax,xmax
dimension res(iterationmax,iparmmax+4,iversionmax),kres(iversionmax,3),resmax(iversionmax,iparmmax+4)
!
c--
do k=1,iversionmax
 iit=kres(k,3) ipar=kres(k,2) xmax=1.d20 ixmax=0
 do j=1,iit
 if(res(j,2,k).lt.xmax) then
 ixmax=j xmax=res(j,2,k)
 endif
 enddo
 do j=1,ipar+4
 resmax(k,j)=res(ixmax,j,k)
 enddo
endo
de
end
!
c--End Resmax
!
subroutine region(kregion)
!
c--------------------- Array with Region-Ordering !c- the file should consist of an array which the first column !c- is the version of identification with maximum number of parameters
implicit none
include 'input.com'
integer*4 i,j,k,kregion
dimension kregion(iparmmax+1,iversionmax)
!
c--
i=0 ! First row contains version number after file
do k=1,iparmmax+1,1 ! READ rows (first column = max. region) of File "*.reg"
 read(ireg,*,err=10,end=11) (kregion(k,j),j=1,iversionmax)
 i=i+1
endo


```
  goto 11
!c-------------------ERROR
10  write(*,*) ' ERROR during READ file "*.reg" !'
    write(*(,*) ' ERROR during READ file "*.reg" !'
    read(*,*)
!c----------------
11  if(i-1.ne.iparmmax) then
    write(*,*) 'Maximum number of regions could not read !'
    write(*,*) ' ERROR during READ file "*.reg" !'
    write(*(,*) 'Maximum number of regions could not read !'
    write(8,*) ' ERROR during READ file "*.reg" !'
    endif
    return
end
!c-----------------------------End kregion
```

[101]
B. History matching result of the field case model with 22 permeability regions

Fig. B.1: History matching result of Well I in a model with 22 permeability regions
Fig. B.2: History matching result of Well II in a model with 22 permeability regions
Fig. B.3: History matching result of Well III in a model with 22 permeability regions
Fig. B.4: History matching result of Well V in a model with 22 permeability regions
Fig. B.5: History matching result of Well VI in a model with 22 permeability regions
Fig. B.6: History matching result of Well VII in a model with 22 permeability regions
Fig. B.7: History matching result of Well VIII in a model with 22 permeability regions
Fig. B.8: History matching result of Well X in a model with 22 permeability regions
Fig. B.9: History matching result of Well XI in a model with 22 permeability regions
Fig. B.10: History matching result of Well IV in a model with 22 permeability regions
Fig. B.11: History matching result of Well IX in a model with 22 permeability regions