Arsen und Cadmium in Winterweizen
Schriftenreihe, Heft 23/2012
Untersuchungen zur Bestimmung der Pflanzenverfügbarkeit von Arsen und Cadmium für den Anbau von Winterweizen

Dr. Ralf Klose
Inhaltsverzeichnis

1 Hintergrund ... 7
 1.1 Projektziele .. 10
 1.2 Getreideanbau Sachsen .. 10
 1.3 Auswahl der Extraktionsmethoden .. 11
2 Material und Methoden .. 12
 2.1 Auswahl der Untersuchungsflächen und Probenahme ... 12
 2.2 Probenahme .. 13
 2.3 Elementbestimmung .. 13
 2.3.1 Herstellung der Bodenextrakte ... 13
 2.3.2 Aufschluss des pflanzlichen Materials .. 14
 2.3.3 Bestimmung der Elementgehalte in den Extrakten/Aufschläüssen 14
 2.3.4 Statistische Auswertung ... 14
3 Ergebnisse ... 15
 3.1 Böden ... 15
 3.2 Komproben ... 15
 3.3 Beziehungen zwischen Gehalten in Bodenextrakten und im Korn 17
 3.3.1 Cadmium ... 17
 3.3.1.1 Extraktion mit Königswasser .. 17
 3.3.1.2 Extraktion mit Ammoniumnitrat ... 19
 3.3.1.3 Extraktion mit Calcium-Ammonium-Laktat (CAL) .. 20
 3.3.1.4 Extraktion mit 0,01 m CaCl₂ (Cd-CaCl₂-A) ... 21
 3.3.1.5 Extraktion mit 0,01 m CaCl₂ und 0,01 m Ascorbinsäure (Cd-CaCl₂-B) 23
 3.3.1.6 Extraktion mit 0,02 m Ammoniumoxalat und 0,05 m Ascorbinsäure (OX1) 24
 3.3.1.7 Extraktion mit 0,02 m Ammoniumoxalat und 0,01 m Ascorbinsäure (OX2) 25
 3.3.1.8 Einfluss des Boden-pH-Wertes ... 26
 3.3.1.9 Sorteneinfluss .. 27
 3.3.1.10 Diskussion Cadmium .. 30
 3.3.2 Arsen ... 32
 3.3.2.1 Extraktion mit Königswasser .. 32
 3.3.2.2 Extraktion mit Ammoniumnitrat ... 34
 3.3.2.3 Extraktion mit Calcium-Ammonium-Laktat (CAL) .. 35
 3.3.2.4 Extraktion mit 0,01 m CaCl₂ (CaCl₂-A) ... 37
 3.3.2.5 Extraktion mit 0,01 m CaCl₂ und 0,01 m Ascorbinsäure (CaCl₂-B) 38
 3.3.2.6 Extraktion mit 0,02 m Ammoniumoxalat/0,05 m Ascorbinsäure (OX1) 40
 3.3.2.7 Extraktion mit 0,02 m Ammoniumoxalat/0,01 m Ascorbinsäure (OX2) 41
 3.3.2.8 Einfluss des Boden-pH-Wertes ... 42
 3.3.2.9 Diskussion Arsen .. 43
4 Schlussfolgerungen .. 44
5 Literaturverzeichnis ... 46
6 Anhang .. 47
Abbildungsverzeichnis

Abbildung 1: Cd-Gehalte im mineralischen Oberboden (Quelle: /3/) ... 9
Abbildung 2: Ausgewählte Dauertestflächen .. 12
Abbildung 4: KW-Extraktion – Boden-Pflanze-Beziehung, alle NSTE ... 18
Abbildung 5: AN-Extraktion – Boden-Pflanze-Beziehung, alle NSTE .. 19
Abbildung 6: CAL-Extraktion – Boden-Pflanze-Beziehung, alle NSTE ... 21
Abbildung 7: CaCl₂-A-Extraktion – Boden-Pflanze-Beziehung, alle NSTE .. 22
Abbildung 8: CaCl₂-B-Extraktion – Boden-Pflanze-Beziehung, alle NSTE .. 23
Abbildung 9: OX1-Extraktion – Boden-Pflanze-Beziehung, alle NSTE ... 25
Abbildung 10: OX2-Extraktion – Boden-Pflanze-Beziehung, alle NSTE ... 26
Abbildung 11: KW-Extraktion – Boden-Pflanze-Beziehung, Sorteneinfluss .. 28
Abbildung 12: CAL-Extraktion – Boden-Pflanze-Beziehung, Sorteneinfluss .. 28
Abbildung 13: AN-Extraktion – Boden-Pflanze-Beziehung, Sorteneinfluss .. 29
Abbildung 14: CaCl₂-A-Extraktion – Boden-Pflanze-Beziehung, Sorteneinfluss .. 29
Abbildung 15: CaCl₂-B-Extraktion – Boden-Pflanze-Beziehung, Sorteneinfluss .. 30
Abbildung 16: OX2-Extraktion – Boden-Pflanze-Beziehung, Sorteneinfluss .. 30
Abbildung 17: KW-Extraktion – Boden-Pflanze-Beziehung, alle NSTE ... 33
Abbildung 18: AN-Extraktion – Boden-Pflanze-Beziehung, alle NSTE ... 35
Abbildung 19: CAL-Extraktion – Boden-Pflanze-Beziehung, alle NSTE ... 36
Abbildung 20: Extraktion mit 0,01 m CaCl₂ – Boden-Pflanze-Beziehung, alle NSTE 38
Abbildung 21: Extraktion mit 0,01 m CaCl₂/ 0,01 m Ascorbinsäure (CaCl₂-B) Boden-Pflanze-Beziehung, alle NSTE ... 39
Abbildung 22: Extraktion mit 0,02 m Ammoniumoxalat/0,05 m Ascorbinsäure (OX1) Boden-Pflanze-Beziehung, alle NSTE ... 40
Abbildung 23: Extraktion mit 0,02 m Ammoniumoxalat/0,01 m Ascorbinsäure Boden-Pflanze-Beziehung, alle NSTE ... 42
Abbildung 24: Mittlere Streuung der Elementkonzentrationen der vier Probenahmepunkte eines Schlages ... 45
Tabellenverzeichnis

Tabelle 1: Prüf- und Maßnahmenwerte nach BBodSchV für den Pfad Boden – Nutzpflanze (in mg/kg TM); königswasserlöslich, außer AN (ammoniumnitratlöslich) ... 8
Tabelle 2: Überschreitungen von Prüf- und Maßnahmenwerten im Freistaat Sachsen (Quelle: /2/) ... 8
Tabelle 3: Höchstgehalte an unerwünschten Stoffen in Futtermitteln in mg/kg FM ... 9
Tabelle 4: Höchstgehalte an Kontaminanten in Lebensmitteln in mg/kg Frischgewicht .. 9
Tabelle 5: Vor-Ernte-Untersuchungen 2009 und 2010, Bleigehalt in Getreidekorn (Quelle: BFUL 2010) ... 10
Tabelle 6: Probenahmen nach natürlichen Standorteinheiten (NSIE), Winterweizen .. 13
Tabelle 7: Verwendete Analytmassen und Korrekturen ... 14
Tabelle 8: Bestimmungsgrenzen .. 14
Tabelle 9: Boden - Elementgehalte und pH-Werte .. 15
Tabelle 10: Korn - Elementgehalte .. 16
Tabelle 11: Eingesetzte Sorten 2009, 2010 ... 16
Tabelle 12: Cd-Konzentration im KW-Extrakt - deskriptive Statistik ... 17
Tabelle 13: KW-Extraktion – lineare Regression .. 18
Tabelle 14: Cd-Konzentrationen im AN-Extrakt - deskriptive Statistik ... 19
Tabelle 15: Cd im AN-Extrakt – lineare Regression .. 20
Tabelle 16: Cd-Konzentration im CAL-Extrakt - deskriptive Statistik ... 20
Tabelle 17: CAL-Extraktion – lineare Regression.. 21
Tabelle 18: Cd-Konzentration im CaCl2-A-Extrakt - deskriptive Statistik .. 22
Tabelle 19: CaCl2-A-Extraktion – lineare Regression .. 22
Tabelle 20: Cd-Konzentration im CaCl2-B-Extrakt - deskriptive Statistik .. 23
Tabelle 21: CaCl2-B-Extraktion – lineare Regression .. 24
Tabelle 22: Cd-Konzentration im OX1-Extrakt - deskriptive Statistik ... 24
Tabelle 23: Cd-Konzentration im OX2-Extrakt - deskriptive Statistik ... 25
Tabelle 24: OX2-Extraktion – lineare Regression .. 26
Tabelle 25: Multiple lineare Regression, Extraktionsvarianten, Boden-pH. ... 27
Tabelle 26: Einsatz hoch- und niedrigaufnehmender Sorten auf NSTE (Anzahl) .. 27
Tabelle 27: Schwellenwerte für bestehenden Cd-Höchstgehalt in Brotweizen von 0,20 mg/kg ... 31
Tabelle 28: Schwellenwerte für erwarteten Cd-Höchstgehalt in Brotweizen von 0,10 mg/kg ... 32
Tabelle 29: As-Gehalte im Korn .. 32
Tabelle 30: As-Konzentration im KW-Extrakt - deskriptive Statistik ... 33
Tabelle 31: KW-Extraktion – lineare Regression .. 34
Tabelle 32: As-Konzentration im AN-Extrakt - deskriptive Statistik ... 34
Tabelle 33: AN-Extraktion – lineare Regression .. 35
Tabelle 34: As-Konzentration im CAL-Extrakt - deskriptive Statistik ... 36
Tabelle 35: CAL-Extraktion – lineare Regression .. 37
Tabelle 36: As-Konzentration im CaCl2-A-Extrakt - deskriptive Statistik .. 37
Tabelle 37: CaCl2-A-Extraktion – lineare Regression .. 38
Tabelle 38: As-Konzentration im Extrakt mit CaCl2-B - deskriptive Statistik ... 39
Tabelle 39: CaCl2-B-Extraktion – lineare Regression .. 39
Tabelle 40: As-Konzentration im Extrakt mit 0,02 m Ammoniumoxalat/0,05 m Ascorbinsäure (OX1) – deskriptive Statistik .. 40
Tabelle 41: OX1-Extraktion – lineare Regression .. 41
Tabelle 42: As-Konzentration im Extrakt mit 0,02 m Ammoniumoxalat/0,01 m Ascorbinsäure (OX2) – deskriptive Statistik .. 41
Tabelle 43: OX2-Extraktion – lineare Regression .. 42
Tabelle 44: Multiple lineare Regression: Extraktionsvarianten, Boden-pH. ... 43
Tabelle 45: Vergleich der Extraktionsvarianten .. 44
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Ausdruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>Ammoniumnitrat</td>
</tr>
<tr>
<td>BBodSchV</td>
<td>Bundesbodenschutzverordnung</td>
</tr>
<tr>
<td>BFUL</td>
<td>Betriebsgesellschaft für Umwelt und Landwirtschaft</td>
</tr>
<tr>
<td>bSW</td>
<td>Schwellenwert für bisherigen Cd-Höchstgehalt in Brotweizen</td>
</tr>
<tr>
<td>CAL</td>
<td>Calcium-Ammonium-Lactat</td>
</tr>
<tr>
<td>DTF</td>
<td>Dauertestfläche</td>
</tr>
<tr>
<td>eSW</td>
<td>Schwellenwert für erwarteten Cd-Höchstgehalt in Brotweizen</td>
</tr>
<tr>
<td>FM</td>
<td>Frischmasse</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Massenspektrometer mit induktiv gekoppeltem Plasma</td>
</tr>
<tr>
<td>iSW-200</td>
<td>Schwellenwert (informell) für Überschreitung einer As-Konzentration von 200 µg/kg im Korn</td>
</tr>
<tr>
<td>KW</td>
<td>Königswasser</td>
</tr>
<tr>
<td>NSTE</td>
<td>Natürliche Standorteinheit</td>
</tr>
<tr>
<td>OX</td>
<td>Extraktionsvarianten mit Ammoniumoxalat und Ascorbinsäure</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluorethylen</td>
</tr>
<tr>
<td>VDLUFA</td>
<td>Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten</td>
</tr>
<tr>
<td>ZEBS</td>
<td>Zentrale Erfassungs- und Bewertungsstelle für Umweltchemikalien</td>
</tr>
</tbody>
</table>
1 Hintergrund

Tabelle 1: Prüf- und Maßnahmenwerte nach BBodSchV für den Pfad Boden – Nutzpflanze (in mg/kg TM); königswasserlöslich, außer AN (ammoniumnitratlöslich)

<table>
<thead>
<tr>
<th>Element</th>
<th>Prüfwert</th>
<th>Maßnahmenwert Acker</th>
<th>Maßnahmenwert Grünland</th>
<th>Prüfwert Acker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsen</td>
<td>200 (50 red. Bed.)(^2)</td>
<td>50</td>
<td>0,4 AN</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0,10 AN bzw. 0,04 AN(^3)</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blei</td>
<td>0,1 AN</td>
<td>1200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>0,1 AN</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quecksilber</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kupfer</td>
<td>1300 (200 Schafe)</td>
<td>1,0 AN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>1900</td>
<td>1,5 AN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zink</td>
<td>2,0 AN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) im Hinblick auf Wachstumsbeeinträchtigungen bei Kulturpflanzen
\(^2\) für Böden mit zeitweise reduzierenden Bedingungen
\(^3\) für Brotweizen und stark cadmiumanreichernde Gemüsearten

Tabelle 2: Überschreitungen von Prüf- und Maßnahmenwerten im Freistaat Sachsen (Quelle: /2/)

<table>
<thead>
<tr>
<th>Nutzung</th>
<th>P-M-Wert BBodSchV</th>
<th>Überschreitung (ha)</th>
<th>Anteil an landwirtschaftlicher Nutzfläche dieser Nutzung (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grünland</td>
<td>As > 50 mg/kg</td>
<td>47 000</td>
<td>11</td>
</tr>
<tr>
<td>Acker</td>
<td>Cd > 40 µg/kg</td>
<td>31 000</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td>Cd > 100 µg/kg</td>
<td>13 000</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>Pb > 100 µg/kg</td>
<td>45 000</td>
<td>7,1</td>
</tr>
<tr>
<td></td>
<td>Cd > 40 µg/kg</td>
<td>63 000</td>
<td>9,9</td>
</tr>
<tr>
<td></td>
<td>Pb > 100 µg/kg</td>
<td>48 000</td>
<td>7,6</td>
</tr>
</tbody>
</table>
Tabelle 3: Höchstgehalte an unerwünschten Stoffen in Futtermitteln in mg/kg FM

<table>
<thead>
<tr>
<th>Erzeugnis</th>
<th>As</th>
<th>Pb</th>
<th>Cd</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Futtermittel-Ausgangserzeugnisse, ausgenommen:</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grünmehl, Luzernegrünmehl, Kleegrünmehl</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Futtermittel-Ausgangserzeugnisse pflanzlichen Ursprungs</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Futtermittel-Ausgangserzeugnisse, ausgenommen:</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grünfutter</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Futtermittel-Ausgangserzeugnisse</td>
<td></td>
<td></td>
<td></td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tabelle 4: Höchstgehalte an Kontaminanten in Lebensmitteln in mg/kg Frischgewicht

<table>
<thead>
<tr>
<th>Erzeugnis</th>
<th>Pb</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getreide, Hülsenfrüchte</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td>Getreide, ausgenommen Kleie, Keime, Weizen, Reis</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>Kleie, Keime, Weizen, Reis</td>
<td>0,20</td>
<td></td>
</tr>
</tbody>
</table>

Seit 2009 wurde in Vor-Ernte-Untersuchungen auf Praxisschlägen auch der Bleigehalt in Nahrungsgetreide ermittelt. Von über 300 untersuchten Proben wurde nur in zwei Sommergersten die Beanstandungsgrenze von 0,23 mg Pb/kg Korn überschritten (Tab. 5).

1.1 Projektziele

- Überprüfung der Schwellenwerte an einem wesentlich größeren Probenpool als es bisher möglich war und ggf. Aktualisierung und Anpassung der Schwellenwerte unter Berücksichtigung von Boden- oder Pflanzeneigenschaften
- Überprüfung der Aussagekraft der in der BBodSchV vorgegebenen Extraktionen und Abwägung gegeneinander
- Entwicklung einer im Vergleich zu den etablierten Methoden (Königswasserextraktion und NH₄NO₃-Extraktion) aussagekräftigeren Methode
- Ermöglichung einer belastungsfähigen Übersicht über Elementgehalte in sächsischem Weizen durch im Rahmen des Projekts zu erhebende Daten

1.2 Getreideanbau Sachsen

Getreide wird in Sachsen auf mehr als der Hälfte der Ackerlandfläche angebaut (2008: 399.083 ha von 721.373 ha /12/). Winterweizen ist mit 175.776 ha die dominierende Kultur, gefolgt von Wintergerste (98.634 ha). Winterroggen und Sommergerste werden auf ca. je 5 % der Ackerfläche angebaut.

1.3 Auswahl der Extraktionsmethoden

Für die Bestimmung des pflanzenverfügbaren Anteils an P und K liefert die CAL-Methode sehr gute Ergebnisse. Phosphor liegt im Boden als Phosphation vor (H₂PO₄⁻, HPO₄²⁻ oder PO₄³⁻). Es war zu erwarten, dass für Arsen, im Boden ebenfalls als Oxo-Anion vorkommend (AsO₄³⁻ und As₂O₅³⁻), eine ähnliche gute Relation zwischen extrahiertem Anteil im Boden und dem Gehalt in der Pflanze gefunden werden kann.

Schriftenreihe des LfULG, Heft 23/2012 | 11
Für die Aufnahme von Arsen durch die Pflanzenwurzel spielt das Redoxpotenzial im Boden vermutlich eine wesentliche Rolle. Durch Luftabschluss (Überschwemmungen, Staunässe) können im Boden reduzierende Bedingungen entstehen, die das Vorkommen von As$^{3+}$-enthaltenden Verbindungen gegenüber As$^{5+}$ begünstigen. Die Aufnahmemechanismen für As-Spezies in die Pflanze sind unterschiedlich, wahrscheinlich werden As$^{3+}$-Verbindungen leichter aufgenommen. Mit Mischungen aus Ammoniumoxalat und Ascorbinsäure werden in der Extraktionslösung unterschiedliche Redoxpotenziale (-123 mV bzw. -184 mV) eingestellt. Damit werden die bei Luftabschluss herrschenden Bedingungen modelliert und die Reduktion von As$^{5+}$ zu As$^{3+}$ ermöglicht (PATIL et al. /11/).

Insgesamt kann eingeschätzt werden, dass bei einzelnen Pflanzenarten für Cadmium mittels verschiedener Extraktionen auf der Basis von Neutralsalzen, zum Teil gepuffert, oder konzentrierter Säuren Beziehungen Boden – Pflanze mit Bestimmtheitsmaßen bis 0,80 gefunden wurden. Insbesondere der Königswasserextrakt und die Extraktionen mit NH$_4$NO$_3$ und CaCl$_2$ sind hier zu nennen, ohne dass eine besonders geeignete Methode auszumachen ist. Ein Einfluss des Boden-pH oder des Feinanteils im Boden führte nur in seltenen Fällen zu einer Verbesserung der Beziehung.

2 Material und Methoden

2.1 Auswahl der Untersuchungsflächen und Probenahme

2.2 Probenahme

<table>
<thead>
<tr>
<th>NStE</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lö</td>
<td>205</td>
</tr>
<tr>
<td>D</td>
<td>69</td>
</tr>
<tr>
<td>Al</td>
<td>150</td>
</tr>
<tr>
<td>V</td>
<td>216</td>
</tr>
<tr>
<td>Gesamt</td>
<td>640</td>
</tr>
</tbody>
</table>

2.3 Elementbestimmung

2.3.1 Herstellung der Bodenextrakte

Die Aufarbeitung der Bodenproben (Trocknen, Sieben) erfolgte nach DIN ISO 11464. Alle verwendeten Chemikalien und Verbrauchsmaterialien wurden vor dem Gebrauch auf ihre Eignung für die Spurenanalyse getestet. Die folgenden Extraktionen wurden durchgeführt:

- Extraktion mit Königswasser nach DIN ISO 11466 (KW)
- Extraktion mit 0,01 m CaCl₂ (CaCl₂-A) \(/9/ \)
 Herstellung der Extraktionslösung: 2,92 g CaCl₂*2H₂O werden in 2 l destilliertem Wasser gelöst.
 10 g Boden werden mit 50 ml einer 0,01 molaren CaCl₂-Lösung zwei Stunden über Kopf geschüttelt. Der Extrak wird über einen Papierfilter gegeben.
- Extraktion mit 0,01 m CaCl₂ und 0,01 m Ascorbinsäure (CaCl₂-B)
 Herstellung der Extraktionslösung: 2,92 g CaCl₂*2H₂O und 3,52 g Ascorbinsäure werden in 2 l destilliertem Wasser gelöst.
 10 g Boden werden mit 50 ml einer jeweils 0,01 molaren CaCl₂- und Ascorbinsäure-Lösung zwei Stunden über Kopf geschüttelt. Der Extrak wird zentrifugiert.
- Extraktion mit Ammoniumnitrat nach DIN 19730 (AN)
- Extraktion mit Calcium-Ammonium-Lactat (CAL) \(/10/ \)
- Extraktion mit 0,02 m Ammoniumoxalat und 0,05 m Ascorbinsäure (OX1) \(/11/ \)
 Herstellung der Extraktionslösung: 2,84 g di-Ammoniumoxalat-Monohydrat und 8,80 g Ascorbinsäure werden in 1 l Wasser gelöst.
 5 g Boden werden mit 50 ml der Extraktionslösung bei Raumtemperatur über Kopf geschüttelt. Nach Absetzen des Extraktes wird durch einen Papierfilter filtriert.
- Extraktion mit 0,02 m Ammoniumoxalat und 0,01 m Ascorbinsäure (OX2) \(/11/ \)
 Herstellung der Extraktionslösung: 2,84 g di-Ammoniumoxalat-Monohydrat und 1,76 g Ascorbinsäure werden in 1 l Wasser gelöst.
5 g Boden werden mit 50 ml der Extraktionslösung bei Raumtemperatur über Kopf geschüttelt. Nach Absetzen des Extraktes wird durch einen Papierfilter filtriert.

2.3.2 Aufschluss des pflanzlichen Materials
Die entnommenen Ähren wurden getrocknet und in einer Laborbodenmaschine gedroschen. Das Korn wurde anschließend in einer Cyclotec-Mühle gemahlen, wobei die Schale mit vermahlen wurde.

Alle Komproben wurden doppelt aufgeschlossen und analysiert. Für die Auswertung wurde der Mittelwert der Bestimmungen verwendet.

2.3.3 Bestimmung der Elementgehalte in den Extrakten/Aufschlüssen

<table>
<thead>
<tr>
<th>Analyt</th>
<th>Masse</th>
<th>Korrektur</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>91AsO</td>
<td>-0.218 * 90Zr</td>
</tr>
<tr>
<td>Cd</td>
<td>114Cd</td>
<td>-0.02725 * 116Sn</td>
</tr>
</tbody>
</table>

Bestimmungsgrenzen
Tabelle 8 enthält die für die Elementbestimmungen in den einzelnen Extrakten/Aufschlüssen geltenden Bestimmungsgrenzen nach DIN 32645 (Nullwertmethode).

<table>
<thead>
<tr>
<th>Analytmasse</th>
<th>BG (ug/l)</th>
<th>KW-Extrakt (mg/kg)</th>
<th>CaCl₂-Extrakte (ug/kg)</th>
<th>CAL-Extrakt (ug/kg)</th>
<th>AN-Extrakt (ug/kg)</th>
<th>OX-Extrakte (ug/kg)</th>
<th>Pflanzenaufschluss (ug/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einwaage/Volumen</td>
<td>3g/100ml</td>
<td>10g/50ml</td>
<td>5g/100ml</td>
<td>20g/50ml</td>
<td>5g/50ml</td>
<td>0.5g/15ml</td>
<td></td>
</tr>
<tr>
<td>91AsO</td>
<td>0,25</td>
<td>0,02</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>114Cd</td>
<td>0,10</td>
<td>0,01</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

2.3.4 Statistische Auswertung
Liegten Transferuntersuchungen Ergebnisse aus Freilandmessungen zu Grunde, ist häufig die Normalverteilung der Werte nicht gegeben. Der Wertepool ist zumeist zu kleinen Werten hin verschoben (linksschiefe Verteilung). Auf die Durchführung von Regressionsrechnungen, welche eine Normalverteilung voraussetzen, wird in der Literatur jedoch trotzdem häufig nicht verzichtet. Dieses Vorgehen ist mathematisch nicht korrekt, weil wenige hohe Werte die Regressionsgerade in eine bestimmte Richtung

Im vorliegenden Bericht wird deshalb ein anderer Weg beschritten. Es werden möglichst äquidistante Klassen der unabhängigen Größe (Bodenparameter) gebildet und die Mittelwerte dieser Klasse und der zugehörigen Werte des abhängigen Parameters (Gehalt im Korn) berechnet. Die linksschiefe Verteilung der Messwerte wird damit stark reduziert und eine Normalverteilung der Daten erreicht. Beziehungen zwischen unabhängigen und abhängigen Parametern werden anschließend durch Regression der die Klassen repräsentierenden Mittelwerte untersucht.

3 Ergebnisse

3.1 Böden

Die Arsenbelastung der Böden reichte von 3 bis über 400 mg/kg (KW-Extraktion), der Median lag bei 12 mg/kg. 10 Prozent der Werte lagen über 95 mg/kg (Tab. 9).

Im Mittel waren die Böden mit 0,66 mg Cd/kg (KW-Extraktion) belastet, der Median lag bei 0,36 mg/kg. Die Gehalte reichten von der Bestimmungsgrenze bis über 7 mg Cd/kg Boden, wobei das 90. Perzentil bei 1,46 mg/kg lag. Der Kalkversorgungszustand der Böden war mehrheitlich gut, nur wenige Proben wiesen pH-Werte außerhalb des angestrebten Optimalbereichs von 5,8 bis 6,5 auf. Werte über pH 7 sind vermutlich auf miterfasste Rückstände durchgeführter Kalkungsmaßnahmen zurückzuführen.

<table>
<thead>
<tr>
<th>Tabelle 9: Boden - Elementgehalte und pH-Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>As\textsubscript{kw} (mg/kg)</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Mittelwert</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>10. Perzentil</td>
</tr>
<tr>
<td>90. Perzentil</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
</tbody>
</table>

3.2 Kornproben

Der Median der As-Konzentration im Weizenkorn betrug 14 ug/kg, das 90. Perzentil lag bei 77 ug/kg (Tab.10). Die As-Belastung ist damit als gering einzustufen. Die Belastung der Kornproben mit Cadmium ist dagegen deutlich problematischer zu sehen. Mit 54 ug/kg lag der Median bei der Hälfte des aktuell diskutierten Grenzwertes für Nahrungsgetreide von 100 ug/kg. Es wurden auch stark erhöhte Gehalte gemessen, die im Einzelfall den Höchstgehalt für Futtermittel überschritten.
Tabelle 10: Korn - Elementgehalte

<table>
<thead>
<tr>
<th></th>
<th>(\text{As}_{\text{korn}}) (ug/kg)</th>
<th>(\text{Cd}_{\text{korn}}) (ug/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>454</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>32,3</td>
<td>107</td>
</tr>
<tr>
<td>Median</td>
<td>14,0</td>
<td>54,0</td>
</tr>
<tr>
<td>Minimum</td>
<td>8,00</td>
<td>5,00</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>9,00</td>
<td>28,0</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>77,0</td>
<td>236</td>
</tr>
<tr>
<td>Maximum</td>
<td>408</td>
<td>1409</td>
</tr>
</tbody>
</table>

Eingesetzte Sorten

Tabelle 11: Eingesetzte Sorten 2009, 2010

<table>
<thead>
<tr>
<th>Sorte</th>
<th>(\Sigma)</th>
<th>NSTE</th>
<th>Sorte</th>
<th>(\Sigma)</th>
<th>NSTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Löh</td>
<td>D</td>
<td>Al</td>
<td>V</td>
<td>Löh</td>
</tr>
<tr>
<td>Akteur</td>
<td>119</td>
<td>60</td>
<td>8</td>
<td>40</td>
<td>11</td>
</tr>
<tr>
<td>Brilliant</td>
<td>72</td>
<td>20</td>
<td>4</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Chevalier</td>
<td>42</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Torres</td>
<td>36</td>
<td>20</td>
<td>0</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Potential</td>
<td>25</td>
<td>13</td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Türkis</td>
<td>24</td>
<td>16</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cubus</td>
<td>20</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Herrmann</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Skalmeje</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Ludwig</td>
<td>11</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Tabasco</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Tommi</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Ballistik</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3.3 Beziehungen zwischen Gehalten in Bodenextrakten und im Korn

3.3.1 Cadmium

3.3.1.1 Extraktion mit Königswasser

<table>
<thead>
<tr>
<th>CdKW</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>ug/kg</td>
<td>656</td>
<td>313</td>
<td>266</td>
<td>1262</td>
</tr>
<tr>
<td>Median</td>
<td>ug/kg</td>
<td>363</td>
<td>286</td>
<td>238</td>
<td>451</td>
</tr>
<tr>
<td>Minimum</td>
<td>ug/kg</td>
<td>3</td>
<td>16</td>
<td>110</td>
<td>138</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>ug/kg</td>
<td>190</td>
<td>139</td>
<td>177</td>
<td>236</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>ug/kg</td>
<td>1465</td>
<td>503</td>
<td>411</td>
<td>3719</td>
</tr>
<tr>
<td>Maximum</td>
<td>ug/kg</td>
<td>7653</td>
<td>1308</td>
<td>494</td>
<td>7653</td>
</tr>
</tbody>
</table>

Bis zu einer geprüften Cd-Konzentration von 7.600 ug/kg im Boden steigt die Konzentration im Korn linear an (Abb. 4).

Tabelle 13 enthält neben den Faktoren der linearen Gleichungen auch die sich ergebenden Schwellenwerte im Boden, bei denen entweder der bestehende Höchstgehalt für Lebensmittelweizen (bisheriger Schwellenwert bSW - 200 ug/kg) oder die Hälfte dieses Grenzwertes im Mittel überschritten wird (Schwellenwert für erwarteten Cd-Höchstgehalt in Brotweizen eSW – 100 ug/kg).

Tabelle 13: KW-Extraktion – lineare Regression

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung $y = mx+b$</th>
<th>$B (r^2)$</th>
<th>bSW</th>
<th>eSW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x (ug/kg)</td>
<td>b</td>
<td>mg/kg</td>
<td>mg/kg</td>
</tr>
<tr>
<td>KW, alle Standorte</td>
<td>0,162</td>
<td>-1,0918</td>
<td>0,95</td>
<td>1,24</td>
</tr>
<tr>
<td>KW, Al-Standorte</td>
<td>0,174</td>
<td>-1,8</td>
<td>0,98</td>
<td>1,16</td>
</tr>
<tr>
<td>KW, V-Standorte</td>
<td>0,131</td>
<td>11,7</td>
<td>0,96</td>
<td>1,44</td>
</tr>
<tr>
<td>KW, Lö-Standorte</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td>KW, D-Standorte</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
</tbody>
</table>
3.3.1.2 Extraktion mit Ammoniumnitrat

Mittels NH₄NO₃-Extraktion wird nur eine geringe Menge des bodenbürtigen Cadmiums extrahiert. Im Unterschied zum Königs-

wasserextrakt liegt eine wesentliche Anzahl von Messwerten in der Nähe der Bestimmungsgrenze von 1 ug/kg (Tab. 14). Damit

verbunden ist eine größere Streuung der Analysenwerte in diesem Konzentrationsbereich.

Tabelle 14: Cd-Konzentrationen im AN-Extrakt - deskriptive Statistik

<table>
<thead>
<tr>
<th>CdAN</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>444</td>
<td>129</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>ug/kg</td>
<td>17</td>
<td>6</td>
<td>6</td>
<td>38</td>
</tr>
<tr>
<td>Median</td>
<td>ug/kg</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Minimum</td>
<td>ug/kg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>ug/kg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>ug/kg</td>
<td>36</td>
<td>13</td>
<td>15</td>
<td>67</td>
</tr>
<tr>
<td>Maximum</td>
<td>ug/kg</td>
<td>579</td>
<td>61</td>
<td>42</td>
<td>579</td>
</tr>
</tbody>
</table>

Bei Einbeziehung aller verfügbaren Wertepaare Boden-Korn wird ein linearer Zusammenhang zwischen Cd-Konzentration im

AN-Extrakt und Cd-Konzentration im Korn gefunden (Abb. 5).

Die höhere Cd-Verfügbarkeit in Auenböden wird mit der AN-Extraktion gut erfasst. V-, D- und Lö-Standorte weisen eine gerin-
gere Verfügbarkeit auf (Abb. 5a und b im Anhang).

Das Bestimmtheitsmaß für Beziehungen auf der Grundlage der AN-Extraktion ist schlechter als für KW-Extraktionen. Der

Höchstgehalt für Nahrungsweizen wird im Mittel bei einer Cd-Konzentration von 34 ug/kg überschritten, der halbe Wert bei

14 ug/kg (Tab. 15).
Tabelle 15: Cd im AN-Extrakt – lineare Regression

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung y = mx+b</th>
<th>B (r²)</th>
<th>bSW (ug/kg)</th>
<th>eSW (ug/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x (ug/kg)</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN, alle Werte</td>
<td>5,04</td>
<td>27,0</td>
<td>0,71</td>
<td>34</td>
</tr>
<tr>
<td>AN, Al-Standorte</td>
<td>5,925</td>
<td>37,1</td>
<td>0,84</td>
<td>27</td>
</tr>
<tr>
<td>AN, V-Standorte</td>
<td>1,579</td>
<td>53,3</td>
<td>0,7</td>
<td>93</td>
</tr>
<tr>
<td>AN, Lö-Standorte</td>
<td>1,593</td>
<td>48,2</td>
<td>0,85</td>
<td>95</td>
</tr>
<tr>
<td>AN, D-Standorte</td>
<td>2,103</td>
<td>41,5</td>
<td>0,84</td>
<td>75</td>
</tr>
</tbody>
</table>

3.3.1.3 Extraktion mit Calcium-Ammonium-Lactat (CAL)

Die Extraktion mit CAL-Lösung ist eine häufig angewendete Standardmethode der Bodenanalytik zur Bestimmung des pflanzenverfügbaren Phosphors und Kaliums.

Tabelle 16: Cd-Konzentration im CAL-Extrakt - deskriptive Statistik

<table>
<thead>
<tr>
<th>CdCAL</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>139</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>ug/kg</td>
<td>328</td>
<td>143</td>
<td>120</td>
<td>718</td>
</tr>
<tr>
<td>Median</td>
<td>ug/kg</td>
<td>159</td>
<td>129</td>
<td>111</td>
<td>225</td>
</tr>
<tr>
<td>Minimum</td>
<td>ug/kg</td>
<td>33</td>
<td>34</td>
<td>33</td>
<td>43</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>ug/kg</td>
<td>84</td>
<td>77</td>
<td>62</td>
<td>88</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>ug/kg</td>
<td>712</td>
<td>225</td>
<td>208</td>
<td>2290</td>
</tr>
<tr>
<td>Maximum</td>
<td>ug/kg</td>
<td>4104</td>
<td>373</td>
<td>257</td>
<td>4104</td>
</tr>
</tbody>
</table>

Unter Einbeziehung aller verfügbaren Werte wurde ein sehr guter linearer Zusammenhang zwischen den Cd-Gehalten im Extrakt und im Korn festgestellt (Abb. 6).

Der Höchstgehalt für Nahrungsweizen wird im Mittel ab einer Cd-Konzentration im CAL-Extrakt von 670 ug/kg erreicht (Tab. 17).

Tabelle 17: CAL-Extraktion – lineare Regression

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung y = mx+b</th>
<th>B (r²)</th>
<th>bSW</th>
<th>eSW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x (ug/kg)</td>
<td>b</td>
<td>mg/kg</td>
<td>mg/kg</td>
</tr>
<tr>
<td>CAL, alle Standorte</td>
<td>0,267</td>
<td>21,3</td>
<td>0,98</td>
<td>0,67</td>
</tr>
<tr>
<td>CAL, Al-Standorte</td>
<td>0,261</td>
<td>31,4</td>
<td>0,96</td>
<td>0,65</td>
</tr>
<tr>
<td>CAL, V-Standorte</td>
<td>0,146</td>
<td>34,9</td>
<td>0,94</td>
<td>1,13</td>
</tr>
<tr>
<td>CAL, Lö-Standorte</td>
<td>0,125</td>
<td>37,7</td>
<td>0,59</td>
<td>n.b.</td>
</tr>
<tr>
<td>CAL, D-Standorte</td>
<td>n.b</td>
<td>n.b</td>
<td>n.b</td>
<td>n.b</td>
</tr>
</tbody>
</table>

3.3.1.4 Extraktion mit 0,01 m CaCl₂ (Cd-CaCl₂-A)

Die ursprüngliche Methode (CaCl₂-A) extrahiert sehr wenig Cadmium aus dem Boden, die Hälfte der Werte liegen unter 6 ugCd/kg und damit nahe der Bestimmungsgrenze des Verfahrens (Tab. 18). Die gefundenen Beziehungen zwischen Cd_{CaCl₂} und Cd_{Pflanze} weisen eine recht große Streuung auf.
Ab 31 ug Cd/kg Boden im CaCl₂-A-Extrakt ist im Mittel mit einer Überschreitung des aktuellen Höchstgehalts für Nahrungsgeweben zu rechnen (Tab. 19). Für Al-Standorte liegt diese Schwelle deutlich niedriger (Abb. 7; Abb. 7a und b im Anhang).

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung</th>
<th>B (r²)</th>
<th>bSW</th>
<th>eSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (ug/kg)</td>
<td>b</td>
<td>ug/kg</td>
<td>ug/kg</td>
<td></td>
</tr>
<tr>
<td>CaCl₂-A, alle Standorte</td>
<td>6,408</td>
<td>-0,775</td>
<td>0,95</td>
<td>31</td>
</tr>
<tr>
<td>CaCl₂-A, Al-Standorte</td>
<td>10,08</td>
<td>74,99</td>
<td>0,89</td>
<td>12</td>
</tr>
<tr>
<td>CaCl₂-A, V-Standorte</td>
<td>1,578</td>
<td>53,33</td>
<td>0,7</td>
<td>93</td>
</tr>
<tr>
<td>CaCl₂-A, Lö-Standorte</td>
<td>1,451</td>
<td>51,83</td>
<td>0,51</td>
<td>n.b.</td>
</tr>
<tr>
<td>CaCl₂-A, D-Standorte</td>
<td>2,606</td>
<td>34,51</td>
<td>0,88</td>
<td>64</td>
</tr>
</tbody>
</table>
3.3.1.5 Extraktion mit 0,01 m CaCl₂ und 0,01 m Ascorbinsäure (Cd-CaCl₂-B)

Bei der Variante CaCl₂-B wurde der Extraktionslösung 0,01 m Ascorbinsäure zugesetzt. Dadurch wird der pH-Wert der Lösung erniedrigt, ohne dass eine Pufferung erfolgt. Die extrahierten Gehalte sind erwartungsgemäß höher als ohne Säurezusatz (Tab. 20). Auch hier ist ein linearer Zusammenhang der Cd-Konzentrationen im Boden und im Korn sowohl unter Einbeziehung aller NSTE als auch für Al-Standorte feststellbar (Abb. 8).

Für D- und Lö-Standorte ist ein linearer Zusammenhang Boden – Pflanze nicht zu erkennen. Überschreitungen des Höchstgehalts für Nahrungsweizen sind jedoch nur in Ausnahmefällen zu beobachten (Abb. 8a und b im Anhang). Der Höchstgehalt für Nahrungsweizen wird ab einem Gehalt von 130 µgCd/kg überschritten (Tab. 21).

Tabelle 20: Cd-Konzentration im CaCl₂-B-Extrakt - deskriptive Statistik

<table>
<thead>
<tr>
<th>Cd₁₃₃₇₅₈</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>139</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>ug/kg</td>
<td>67</td>
<td>34</td>
<td>41</td>
<td>139</td>
</tr>
<tr>
<td>Median</td>
<td>ug/kg</td>
<td>36</td>
<td>32</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td>Minimum</td>
<td>ug/kg</td>
<td>1</td>
<td>3</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>ug/kg</td>
<td>14</td>
<td>13</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>ug/kg</td>
<td>111</td>
<td>57</td>
<td>79</td>
<td>385</td>
</tr>
<tr>
<td>Maximum</td>
<td>ug/kg</td>
<td>894</td>
<td>76</td>
<td>102</td>
<td>894</td>
</tr>
</tbody>
</table>

Abbildung 8: CaCl₂-B-Extraktion – Boden-Pflanze-Beziehung, alle NSTE
Tabelle 21: CaCl₂-B-Extraktion – lineare Regression

<table>
<thead>
<tr>
<th>Variante</th>
<th>x (ug/kg)</th>
<th>b</th>
<th>B (r²)</th>
<th>bSW</th>
<th>eSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCl₂-B, alle Standorte</td>
<td>1,421</td>
<td>11,56</td>
<td>0,99</td>
<td>133</td>
<td>62</td>
</tr>
<tr>
<td>CaCl₂-B, Al-Standorte</td>
<td>1,375</td>
<td>18,48</td>
<td>0,96</td>
<td>132</td>
<td>59</td>
</tr>
<tr>
<td>CaCl₂-B, V-Standorte</td>
<td>1,109</td>
<td>23,58</td>
<td>0,86</td>
<td>159</td>
<td>69</td>
</tr>
<tr>
<td>CaCl₂-B, Lö-Standorte</td>
<td>0,555</td>
<td>38,43</td>
<td>0,46</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td>CaCl₂-B, D-Standorte</td>
<td>0,49</td>
<td>28,82</td>
<td>0,6</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
</tbody>
</table>

3.3.1.6 Extraktion mit 0,02 m Ammoniumoxalat und 0,05 m Ascorbinsäure (OX1)

Diese Variante der Extraktion mit Ammoniumoxalat und Ascorbinsäure führt zu sehr geringen Cd-Konzentrationen, die häufig im Bereich der Bestimmungsgrenze liegen (Tab. 22). Durch lineare Regression kann in keinem Fall ein ausreichend gesicherter Zusammenhang Boden - Pflanze ermittelt werden (Abb.9).

Tabelle 22: Cd-Konzentration im OX1-Extrakt - deskriptive Statistik

<table>
<thead>
<tr>
<th>CdOX1</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>139</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>ug/kg</td>
<td>7</td>
<td>4</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>Median</td>
<td>ug/kg</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Minimum</td>
<td>ug/kg</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>ug/kg</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>ug/kg</td>
<td>21</td>
<td>7</td>
<td>37</td>
<td>7</td>
</tr>
<tr>
<td>Maximum</td>
<td>ug/kg</td>
<td>78</td>
<td>43</td>
<td>67</td>
<td>38</td>
</tr>
</tbody>
</table>
3.3.1.7 Extraktion mit 0,02 m Ammoniumoxalat und 0,01 m Ascorbinsäure (OX2)

Obwohl der pH-Wert der Extraktionslösung durch die verringerte Konzentration an Ascorbinsäure gegenüber der Extraktionsvariante OX1 höher ist (pHOX2 4,4; pHOX1 3,7), wird mit OX2 deutlich mehr Cadmium aus dem Boden extrahiert, insbesondere auf Al- und V-Standorten (Tab. 23).

Tabelle 23: Cd-Konzentration im OX2-Extrakt - deskriptive Statistik

<table>
<thead>
<tr>
<th>CdOX2</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>139</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>ug/kg</td>
<td>25</td>
<td>15</td>
<td>17</td>
<td>48</td>
</tr>
<tr>
<td>Median</td>
<td>ug/kg</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Minimum</td>
<td>ug/kg</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>ug/kg</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>ug/kg</td>
<td>39</td>
<td>22</td>
<td>29</td>
<td>152</td>
</tr>
<tr>
<td>Maximum</td>
<td>ug/kg</td>
<td>336</td>
<td>36</td>
<td>38</td>
<td>336</td>
</tr>
</tbody>
</table>
Abbildung 10: OX2-Extraktion – Boden-Pflanze-Beziehung, alle NSTE

Ab 50 µg Cd/kg Boden ist mit einer Überschreitung des Höchstgehalts für Nahrungsweizen zu rechnen (Tab. 24).

Tabelle 24: OX2-Extraktion – lineare Regression

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung y = mx + b</th>
<th>B (r²)</th>
<th>bSW</th>
<th>eSW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x (µg/kg)</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OX2, alle Standorte</td>
<td>3,628</td>
<td>15,13</td>
<td>0,98</td>
<td>51</td>
</tr>
<tr>
<td>OX2, Al-Standorte</td>
<td>3,758</td>
<td>35,74</td>
<td>0,97</td>
<td>44</td>
</tr>
<tr>
<td>OX2, V-Standorte</td>
<td>3,379</td>
<td>11,89</td>
<td>0,86</td>
<td>56</td>
</tr>
<tr>
<td>OX2, LÖ-Standorte</td>
<td>1,997</td>
<td>30,59</td>
<td>0,25</td>
<td>n.b.</td>
</tr>
<tr>
<td>OX2, D-Standorte</td>
<td>3,942</td>
<td>-14,59</td>
<td>0,70</td>
<td>54</td>
</tr>
</tbody>
</table>

3.3.1.8 Einfluss des Boden-pH-Wertes

Der Beitrag des pH-Wertes an der vorhergesagten Cd-Kornkonzentration ist bei allen geprüften Varianten mit Werten für den standardisierten Regressionskoeffizienten Beta von 0,02 bis 0,21 gering im Vergleich zum Beitrag der Cd-Konzentration im jeweiligen Extrakt. Auf eine weitere Einbeziehung des Boden-pH-Wertes in die Regression wurde deshalb verzichtet (Tab. 25).
Tabelle 25: Multiple lineare Regression, Extraktionsvarianten, Boden-pH

<table>
<thead>
<tr>
<th>Variante</th>
<th>Extraktion</th>
<th>NSTE</th>
<th>Sorte</th>
<th>m</th>
<th>b</th>
<th>C</th>
<th>Standardisierter Koeffizient Beta für</th>
<th>Extraktion</th>
<th>NSTE</th>
<th>Sorte</th>
<th>m</th>
<th>b</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KW</td>
<td>Al</td>
<td>Akteur</td>
<td>0,226</td>
<td>-140,7</td>
<td>867,3</td>
<td>0,85</td>
<td>-0,21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KW</td>
<td>Al</td>
<td>Tommi, Chevalier, Toras, Brillant</td>
<td>0,103</td>
<td>-2,715</td>
<td>56,3</td>
<td>0,94</td>
<td>-0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AN</td>
<td>Al</td>
<td>Akteur</td>
<td>2,546</td>
<td>-13,6</td>
<td>48,04</td>
<td>0,96</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AN</td>
<td>Al</td>
<td>Tommi, Chevalier, Toras, Brillant</td>
<td>7,24</td>
<td>73,98</td>
<td>444,7</td>
<td>0,98</td>
<td>0,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAL</td>
<td>Al</td>
<td>Akteur</td>
<td>0,293</td>
<td>-120,1</td>
<td>797,7</td>
<td>0,86</td>
<td>-0,178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAL</td>
<td>Al</td>
<td>Tommi, Chevalier, Toras, Brillant</td>
<td>0,169</td>
<td>-14,74</td>
<td>156,7</td>
<td>0,91</td>
<td>-0,03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.1.9 Sorteneinfluss

Für Al-Standorte wurde mit Akteur (hochaufnehmend) und den Sorten Tommi, Brillant, Chevalier (geringaufnehmend) eine solche Kombination gefunden (Tab. 26). Die Daten sind für alle Extraktionsvarianten und die Korngehalte normalverteilt, sodass auf die Klassifizierung verzichtet werden kann.

Tabelle 26: Einsatz hoch- und niedrigaufnehmender Sorten auf NSTE (Anzahl)

<table>
<thead>
<tr>
<th>Sorten/NSTE</th>
<th>Al</th>
<th>V</th>
<th>D</th>
<th>Lö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akteur</td>
<td>40</td>
<td>11</td>
<td>8</td>
<td>179</td>
</tr>
<tr>
<td>Tommi, Brillant, Chevalier,</td>
<td>48</td>
<td>72</td>
<td>18</td>
<td>48</td>
</tr>
</tbody>
</table>

Der Königswasserextrakt spiegelt die unterschiedliche Cd-Aufnahme sehr gut wider. Akteur weist im Korn mehr als die doppelte Cd-Konzentration auf als die Gruppe der niedrig aufnehmenden Sorten. Aus den Regressionsgleichungen ergibt sich für die Sorte Akteur auf Al-Standorten die Überschreitung des in der Diskussion stehenden Höchstgehalts für Nahrungsweizen (0,10 mg/kg) ab einem Cd-Gehalt im KW-Extrakt von 520 ug/kg, für die Gruppe der niedrigaufnehmenden Sorten ab 720 ug/kg (Abb. 11). Im CAL-Extrakt sind die Unterschiede zwischen den Sorten ebenfalls deutlich nachweisbar (Abb. 12).
Abbildung 11: KW-Extraktion – Boden-Pflanze-Beziehung, Sorteneinfluss

Abbildung 13: AN-Extraktion – Boden-Pflanze-Beziehung, Sorteneinfluss

Extraktionen mit 0,01 m CaCl₂ (CaCl₂-A und CaCl₂-B) liefern unterschiedliche Ergebnisse bei der Bestimmung eines Zusammenhangs zwischen Boden und Pflanze. Die Qualität der Beziehung ist für CaCl₂-A im Vergleich mit CaCl₂-B sehr schlecht (Abb. 14 und 15).

Abbildung 14: CaCl₂-A-Extraktion – Boden-Pflanze-Beziehung, Sorteneinfluss

Der Anstieg der Regressionsgeraden für Akteur unterscheidet sich vom der Gruppe der niedrigaufnehmenden Sorten um den Faktor 1,5.
Abbildung 15: CaCl₂-B-Extraktion – Boden-Pflanze-Beziehung, Sorteneinfluss

Auch die Extraktionen mit Oxalat/Ascorbinsäure (OX1 und OX2) weisen unterschiedliche Qualitäten auf. Während OX1 zu keinerlei auswertbaren Beziehungen führt (hier nicht dargestellt), können mit OX2 zum Teil gute Bestimmtheitsmaße (Akteur) erzielt werden (Abb. 16).

Abbildung 16: OX2-Extraktion – Boden-Pflanze-Beziehung, Sorteneinfluss

3.3.1.10 Diskussion Cadmium

Die unterschiedliche Cd-Aufnahme der Sorten wird von der CaCl₂-A-Extraktion und AN-Extraktion nicht richtig wiedergegeben. Die AN-Variante weist bis zur geprüften Cd-Konz. von 100 ug/kg im Extrakt für die niedrig aufnehmenden Sorten eine höhere
Konzentration im Korn aus als für die Sorte Akteur. Das steht im Widerspruch zu den Ergebnissen der Sortenversuche zur Cd-Aufnahme /13/.

Für eine Vermarktung als Brotweizen darf der Cd-Höchstgehalt von 0,20 mg/kg Korn nicht überschritten werden. Durch Anpassungsmaßnahmen wie Sortenwahl oder Kalkung kann auch auf mäßig belasteten Standorten dieses Ziel erreicht werden. Rein rechnerisch ergibt sich für die Einhaltung des Höchstgehalts ein Cd-Schwellenwert im Boden von 1,24 mg Cd$_{KW}$/kg (alle NSTE) bzw. 0,034 mg Cd$_{AN}$/kg (informell 0,67 mg Cd$_{CAL}$/kg) (Tab. 27). Hierbei ist allerdings zu beachten, dass es sich bei diesen Angaben um Schwellenwerte mit einer 50%-igen Wahrscheinlichkeit der Einhaltung handelt. Für Praxisempfehlungen ist ein Sicherheitsniveau von 80 % anzusetzen, wodurch die Schwellenwerte absinken.

Tabelle 27: Schwellenwerte für bestehenden Cd-Höchstgehalt in Brotweizen von 0,20 mg/kg

<table>
<thead>
<tr>
<th></th>
<th>Cd-KW</th>
<th>Cd-CAL</th>
<th>Cd-AN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(in mg/kg)</td>
<td>bSW (50 %)</td>
<td>bSW (50 %)</td>
<td>bSW (80 %)</td>
</tr>
<tr>
<td>alle NSTE</td>
<td>1,24</td>
<td>1,00</td>
<td>0,67</td>
</tr>
<tr>
<td>Al</td>
<td>1,16</td>
<td>0,95</td>
<td>0,65</td>
</tr>
<tr>
<td>V</td>
<td>1,44</td>
<td>1,20</td>
<td>1,13</td>
</tr>
<tr>
<td>Lö</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td>D</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
</tbody>
</table>

Die Einführung eines abgesenkten Cd-Höchstgehalts für Brotweizen würde die Situation deutlich verschärfen. Für eine 80%-ige Wahrscheinlichkeit der Einhaltung des Höchstgehalts reduzierten sich die Schwellenwerte auf 0,40 mg Cd$_{KW}$/kg Boden und 0,002 mg Cd$_{AN}$/kg Boden (informell: 0,22 mg Cd$_{CAL}$/kg) undlagen damit häufig im Bereich der Hintergrundwerte (Tab. 28).

Tabelle 28: Schwellenwerte für erwarteten Cd-Höchstgehalt in Brotweizen von 0,10 mg/kg

<table>
<thead>
<tr>
<th>(in mg/kg)</th>
<th>(\text{Cd}_{\text{KW}})</th>
<th>(\text{Cd}_{\text{CAL}})</th>
<th>(\text{Cd}_{\text{AN}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle NSTE</td>
<td>0,62</td>
<td>0,40</td>
<td>0,30</td>
</tr>
<tr>
<td>Al</td>
<td>0,58</td>
<td>0,38</td>
<td>0,26</td>
</tr>
<tr>
<td>V</td>
<td>0,67</td>
<td>0,42</td>
<td>0,45</td>
</tr>
<tr>
<td>L(\text{ö})</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td>D</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
</tbody>
</table>

3.3.2 Arsen

Tabelle 29: As-Gehalte im Korn

<table>
<thead>
<tr>
<th>As(_{\text{Korn}})</th>
<th>alle NSTE</th>
<th>L(\text{ö})</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>139</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert mg/kg</td>
<td>0,032</td>
<td>0,017</td>
<td>0,014</td>
<td>0,058</td>
<td>0,033</td>
</tr>
<tr>
<td>Median mg/kg</td>
<td>0,014</td>
<td>0,012</td>
<td>0,013</td>
<td>0,018</td>
<td>0,018</td>
</tr>
<tr>
<td>Minimum mg/kg</td>
<td>0,008</td>
<td>0,008</td>
<td>0,008</td>
<td>0,008</td>
<td>0,008</td>
</tr>
<tr>
<td>10. Perzentil mg/kg</td>
<td>0,009</td>
<td>0,009</td>
<td>0,008</td>
<td>0,009</td>
<td>0,009</td>
</tr>
<tr>
<td>90. Perzentil mg/kg</td>
<td>0,077</td>
<td>0,034</td>
<td>0,024</td>
<td>0,163</td>
<td>0,061</td>
</tr>
<tr>
<td>Maximum mg/kg</td>
<td>0,408</td>
<td>0,080</td>
<td>0,038</td>
<td>0,228</td>
<td>0,408</td>
</tr>
</tbody>
</table>

3.3.2.1 Extraktion mit Königswasser

Die niedrigsten Gehalte liegen bei 3 mg/kg, die höchsten über 400 mg/kg. Die höchsten Gehalte werden auf Al- und V-Standorten gemessen, wobei der Median auf V-Standorten höher ist, die Variationsbreite der Werte ist dagegen auf Al-Standorten stärker ausgeprägt (Tab. 30). Der allgemeine As-Prüfwert nach BBodSchV (200 mg/kg) wird auf D-Standorten nicht, auf Löss- und Verwitterungsböden nur im Ausnahmefall erreicht. Auenstandorte überschreiten den Prüfwert für Böden mit zeitweise reduzierenden Bedingungen (50 mg/kg) zum Teil deutlich, auch der allgemeine Prüfwert wird in Einzelfällen überschritten.

Für alle Standorte außer den Lössböden besteht auf der Grundlage des KW-Extraktes eine deutliche lineare Beziehung Boden – Pflanze (Abb. 17; Abb. 17a – c im Anhang).
Tabelle 30: As-Konzentration im KW-Extrakt - deskriptive Statistik

<table>
<thead>
<tr>
<th>As_{Kw}</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>139</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>mg/kg</td>
<td>32,72</td>
<td>12,79</td>
<td>7,70</td>
<td>69,89</td>
</tr>
<tr>
<td>Median</td>
<td>mg/kg</td>
<td>12,32</td>
<td>8,55</td>
<td>5,65</td>
<td>15,88</td>
</tr>
<tr>
<td>Minimum</td>
<td>mg/kg</td>
<td>3,11</td>
<td>3,74</td>
<td>3,11</td>
<td>3,94</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>mg/kg</td>
<td>5,40</td>
<td>5,46</td>
<td>4,00</td>
<td>6,48</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>mg/kg</td>
<td>95,80</td>
<td>13,96</td>
<td>12,24</td>
<td>185,30</td>
</tr>
<tr>
<td>Maximum</td>
<td>mg/kg</td>
<td>405,43</td>
<td>167,79</td>
<td>37,83</td>
<td>405,43</td>
</tr>
</tbody>
</table>

Abbildung 17: KW-Extraktion – Boden-Pflanze-Beziehung, alle NSTE

Eine As-Konzentration im Korn von 200 ug/kg (informeller Schwellenwert iSW-200, ZEBS-Wert) wird ab einer Konzentration im Königswasserextrakt von ca. 270 mg/kg erreicht. Eine Differenzierung nach NSTE ist möglich, wobei für D-Standorte auf niedrigem Konzentrationsniveau der steilste Anstieg der Regressionsgeraden ermittelt wird (Tab. 31).
Tabelle 31: KW-Extraktion – lineare Regression

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung y = mx+b</th>
<th>B (r²)</th>
<th>ISW-200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x (ug/kg)</td>
<td>b</td>
<td>mg/kg</td>
</tr>
<tr>
<td>KW, alle Werte</td>
<td>0,0007</td>
<td>9,89</td>
<td>0,89</td>
</tr>
<tr>
<td>KW, Al-Standorte</td>
<td>0,0007</td>
<td>15,17</td>
<td>0,94</td>
</tr>
<tr>
<td>KW, V-Standorte</td>
<td>0,0005</td>
<td>14,95</td>
<td>0,94</td>
</tr>
<tr>
<td>KW, Lö-Standorte</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
<tr>
<td>KW, D-Standorte</td>
<td>0,0022</td>
<td>0,713</td>
<td>0,93</td>
</tr>
</tbody>
</table>

3.3.2.2 Extraktion mit Ammoniumnitrat

Die BBodSchV enthält für As nur einen Prüfwert im Hinblick auf Wachstumsstörungen bei Kulturpflanzen (0,4 mg/kg), der auf der NH₄NO₃-Extraktion basiert, unter Hinweis auf eine unbefriedigende Datengrundlage in der Datenbank TRANSFER. Die extrahierten As-Gehalte sind generell gering, das 10. Perzentil ist mit 0,003 mg/kg nahe der Bestimmungsgrenze des Verfahrens. Die höchsten Gehalte im Extrakt wurden in Al- und V-Böden gemessen (Tab. 32).

Tabelle 32: As-Konzentration im AN-Extrakt - deskriptive Statistik

<table>
<thead>
<tr>
<th>AsAN</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>139</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>mg/kg</td>
<td>0,010</td>
<td>0,006</td>
<td>0,007</td>
<td>0,020</td>
</tr>
<tr>
<td>Median</td>
<td>mg/kg</td>
<td>0,006</td>
<td>0,004</td>
<td>0,007</td>
<td>0,007</td>
</tr>
<tr>
<td>Minimum</td>
<td>mg/kg</td>
<td>0,002</td>
<td>0,002</td>
<td>0,003</td>
<td>0,002</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>mg/kg</td>
<td>0,003</td>
<td>0,003</td>
<td>0,003</td>
<td>0,003</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>mg/kg</td>
<td>0,018</td>
<td>0,010</td>
<td>0,012</td>
<td>0,055</td>
</tr>
<tr>
<td>Maximum</td>
<td>mg/kg</td>
<td>0,172</td>
<td>0,026</td>
<td>0,016</td>
<td>0,142</td>
</tr>
</tbody>
</table>

Lineare Beziehungen Boden-Pflanze sind für alle NSTE außer D-Standorte gegeben, der Schwellenwert liegt bei Einbeziehung aller Standorte bei 0,054 mg/kg, auf Lössstandorten bei 0,10 mg/kg (Tab. 33, Abb. 18, Abb. 18a und b im Anhang).
3.3.2.3 Extraktion mit Calcium-Ammonium-Laktat (CAL)

Die in der landwirtschaftlichen Grunduntersuchung für die Bestimmung der pflanzenverfügbaren P- und K-Anteile genutzte CAL-Methode extrahiert mehr als die AN-Methode, ca. 2-5 % des mittels Königswasserextraktion bestimmten Gesamtgehalts an Arsen im Boden. Die Bestimmungsgrenze des Verfahrens wird deutlich überschritten. Die durchschnittlich höchsten Gehalte werden in Al- und V-Böden gemessen, alluviale Böden weisen vereinzelte sehr hohe Gehalte auf (Tab. 34).
Tabelle 34: As-Konzentration im CAL-Extrakt - deskriptive Statistik

<table>
<thead>
<tr>
<th>AsCAL</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>139</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>mg/kg</td>
<td>1,066</td>
<td>0,389</td>
<td>0,280</td>
<td>2,388</td>
</tr>
<tr>
<td>Median</td>
<td>mg/kg</td>
<td>0,360</td>
<td>0,288</td>
<td>0,227</td>
<td>0,448</td>
</tr>
<tr>
<td>Minimum</td>
<td>mg/kg</td>
<td>0,030</td>
<td>0,074</td>
<td>0,065</td>
<td>0,030</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>mg/kg</td>
<td>0,148</td>
<td>0,147</td>
<td>0,133</td>
<td>0,113</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>mg/kg</td>
<td>2,233</td>
<td>0,762</td>
<td>0,524</td>
<td>6,835</td>
</tr>
<tr>
<td>Maximum</td>
<td>mg/kg</td>
<td>24,448</td>
<td>3,242</td>
<td>0,809</td>
<td>24,448</td>
</tr>
</tbody>
</table>

Abbildung 19: CAL-Extraktion – Boden-Pflanze-Beziehung, alle NSTE

Ab einem Gehalt von 7,4 mg AsCAL/kg ist mit der Überschreitung des Schwellenwertes zu rechnen (Tab. 35).
Tabelle 35: CAL-Extraktion - lineare Regression

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung y = mx+b</th>
<th>B (r²)</th>
<th>ISW-200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x (ug/kg)</td>
<td>b</td>
<td>mg/kg</td>
</tr>
<tr>
<td>CAL, alle Werte</td>
<td>0.026</td>
<td>8.62</td>
<td>0.92</td>
</tr>
<tr>
<td>CAL, Al-Standorte</td>
<td>0.026</td>
<td>8.11</td>
<td>0.90</td>
</tr>
<tr>
<td>CAL, V-Standorte</td>
<td>0.026</td>
<td>7.53</td>
<td>0.88</td>
</tr>
<tr>
<td>CAL, Lö-Standorte</td>
<td>0.025</td>
<td>9.28</td>
<td>0.61</td>
</tr>
<tr>
<td>CAL, D-Standorte</td>
<td>0.048</td>
<td>5.3</td>
<td>0.66</td>
</tr>
</tbody>
</table>

3.3.2.4 Extraktion mit 0,01 m CaCl₂ (CaCl₂-A)
Ähnlich wie mit Ammoniumnitrat wird auch mit einer 0,01 m CaCl₂-Lösung sehr wenig As aus dem Boden extrahiert. Auch hier werden für V- und besonders Al-Standorte vereinzelt hohe As-Konzentrationen (bis 0,42 mg/kg) ausgewiesen. Diese fehlen bei D- und Lö-Standorten völlig, die Gehalte liegen generell unter 0,06 mg/kg (Tab. 36).

Tabelle 36: As-Konzentration im CaCl₂-A-Extrakt - deskriptive Statistik

<table>
<thead>
<tr>
<th>As_{CaCl2-A}</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>139</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>mg/kg</td>
<td>0,023</td>
<td>0,014</td>
<td>0,011</td>
<td>0,041</td>
</tr>
<tr>
<td>Median</td>
<td>mg/kg</td>
<td>0,010</td>
<td>0,009</td>
<td>0,010</td>
<td>0,010</td>
</tr>
<tr>
<td>Minimum</td>
<td>mg/kg</td>
<td>0,002</td>
<td>0,004</td>
<td>0,003</td>
<td>0,002</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>mg/kg</td>
<td>0,005</td>
<td>0,005</td>
<td>0,004</td>
<td>0,004</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>mg/kg</td>
<td>0,043</td>
<td>0,029</td>
<td>0,018</td>
<td>0,148</td>
</tr>
<tr>
<td>Maximum</td>
<td>mg/kg</td>
<td>0,425</td>
<td>0,058</td>
<td>0,032</td>
<td>0,292</td>
</tr>
</tbody>
</table>

Lineare Beziehungen Boden – Pflanze werden für Al-, V-, und mit Abstrichen auch für D-Standorte gefunden (Tab. 37). Für Auenböden ist der Anstieg des As-Gehaltes im Korn mit steigendem Gehalt im Boden am größten. Der informelle Grenzwert (0,20 mg/kg) für Getreide wird bei ca. 0,10 mg As/kg Boden erreicht (Abb. 20, Abb. 20a und b im Anhang).
Abbildung 20: Extraktion mit 0,01 m CaCl₂ – Boden-Pflanze-Beziehung, alle NSTE

Tabelle 37: CaCl₂-A-Extraktion - lineare Regression

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung y = mx+b</th>
<th>B (r²)</th>
<th>ISW-200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x (ug/kg)</td>
<td>b</td>
<td>ug/kg</td>
</tr>
<tr>
<td>CaCl₂-A, alle Werte</td>
<td>2,005</td>
<td>-12,76</td>
<td>0,95</td>
</tr>
<tr>
<td>CaCl₂-A, Al-Standorte</td>
<td>2,117</td>
<td>7,041</td>
<td>0,93</td>
</tr>
<tr>
<td>CaCl₂-A, V-Standorte</td>
<td>1,468</td>
<td>-3,79</td>
<td>0,94</td>
</tr>
<tr>
<td>CaCl₂-A, Lö-Standorte</td>
<td>0,131</td>
<td>15,24</td>
<td>0,15</td>
</tr>
<tr>
<td>CaCl₂-A, D-Standorte</td>
<td>0,602</td>
<td>7,28</td>
<td>0,71</td>
</tr>
</tbody>
</table>

3.3.2.5 Extraktion mit 0,01 m CaCl₂ und 0,01 m Ascorbinsäure (CaCl₂-B)

Die Linearität der Beziehung Boden-Pflanze ist bis auf diluviale Standorte sehr gut (Abb. 21, Abb. 21a und b im Anhang). Für V- und Al-Standorte ist der Anstieg der Regressionsgeraden ähnlich, auf Lö-Standorten steigt die As-Kornkonzentration deutlich langsamer mit zunehmender As-Konzentration im Extrakt an.

Bei einem Gehalt von ca. 0,75 mg As/kg Boden wird der informelle Höchstgehalt für Weizenkorn erreicht (Tab. 39).
Tabelle 38: As-Konzentration im Extrakt mit CaCl₂-B - deskriptive Statistik

<table>
<thead>
<tr>
<th>AsCaCl₂-B</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>139</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>mg/kg</td>
<td>0,162</td>
<td>0,092</td>
<td>0,120</td>
<td>0,307</td>
</tr>
<tr>
<td>Median</td>
<td>mg/kg</td>
<td>0,085</td>
<td>0,077</td>
<td>0,107</td>
<td>0,097</td>
</tr>
<tr>
<td>Minimum</td>
<td>mg/kg</td>
<td>0,003</td>
<td>0,017</td>
<td>0,036</td>
<td>0,016</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>mg/kg</td>
<td>0,031</td>
<td>0,030</td>
<td>0,058</td>
<td>0,028</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>mg/kg</td>
<td>0,289</td>
<td>0,182</td>
<td>0,206</td>
<td>1,062</td>
</tr>
<tr>
<td>Maximum</td>
<td>mg/kg</td>
<td>4,619</td>
<td>0,327</td>
<td>0,299</td>
<td>2,082</td>
</tr>
</tbody>
</table>

Abbildung 21: Extraktion mit 0,01 m CaCl₂/0,01 m Ascorbinsäure (CaCl₂-B) Boden-Pflanze-Beziehung, alle NSTE

Tabelle 39: CaCl₂-B-Extraktion - lineare Regression

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung $y = mx+b$</th>
<th>B (r^2)</th>
<th>ISW-200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x (ug/kg)</td>
<td>b</td>
<td>ug/kg</td>
</tr>
<tr>
<td>CaCl₂-B, alle Werte</td>
<td>0,281</td>
<td>-10,04</td>
<td>0,98</td>
</tr>
<tr>
<td>CaCl₂-B, Al-Standorte</td>
<td>0,251</td>
<td>0,803</td>
<td>0,98</td>
</tr>
<tr>
<td>CaCl₂-B, V-Standorte</td>
<td>0,309</td>
<td>-3,07</td>
<td>0,85</td>
</tr>
<tr>
<td>CaCl₂-B, Lö-Standorte</td>
<td>0,14</td>
<td>4,49</td>
<td>0,92</td>
</tr>
<tr>
<td>CaCl₂-B, D-Standorte</td>
<td>0,014</td>
<td>11,98</td>
<td>0,11</td>
</tr>
</tbody>
</table>
3.3.2.6 Extraktion mit 0,02 m Ammoniumoxalat/0,05 m Ascorbinsäure (OX1)

In Al- und V-Böden liefert diese Variante As-Konzentrationen im Extrakt, die ca. die Hälfte des Gesamtgehalts ausmachen, auf Lössböden und D-Standorten mehr. Die Konzentrationen in den Extrakten sind weit von der Bestimmungsgrenze entfernt und sicher zu bestimmen (Tab. 40).

Tabelle 40: As-Konzentration im Extrakt mit 0,02 m Ammoniumoxalat/0,05 m Ascorbinsäure (OX1) – deskriptive Statistik

<table>
<thead>
<tr>
<th>AsOX1</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>AI</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert mg/kg</td>
<td>19,37</td>
<td>7,10</td>
<td>6,02</td>
<td>49,08</td>
<td>13,13</td>
</tr>
<tr>
<td>Median mg/kg</td>
<td>7,13</td>
<td>6,60</td>
<td>5,42</td>
<td>8,81</td>
<td>9,57</td>
</tr>
<tr>
<td>Minimum mg/kg</td>
<td>0,63</td>
<td>0,63</td>
<td>3,01</td>
<td>2,58</td>
<td>1,32</td>
</tr>
<tr>
<td>10. Perzentil mg/kg</td>
<td>4,55</td>
<td>4,11</td>
<td>3,43</td>
<td>4,80</td>
<td>4,83</td>
</tr>
<tr>
<td>90. Perzentil mg/kg</td>
<td>33,37</td>
<td>10,70</td>
<td>9,70</td>
<td>161,22</td>
<td>19,86</td>
</tr>
<tr>
<td>Maximum mg/kg</td>
<td>318,35</td>
<td>15,91</td>
<td>12,38</td>
<td>318,35</td>
<td>151,22</td>
</tr>
</tbody>
</table>

Abbildung 22: Extraktion mit 0,02 m Ammoniumoxalat/0,05 m Ascorbinsäure (OX1) Boden-Pflanze-Beziehung, alle NSTE

Dadurch ergeben sich auch unterschiedlich hohe Schwellenwerte für das Erreichen des Lebensmittelgrenzwertes (Tab. 41).
Tabelle 41: OX1-Extraktion - lineare Regression

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung $y = mx+b$</th>
<th>B (r^2)</th>
<th>ISW-200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x (ug/kg)</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>OX1, alle Werte</td>
<td>0,0017</td>
<td>6,87</td>
<td>0,98</td>
</tr>
<tr>
<td>OX1, Al-Standorte</td>
<td>0,0008</td>
<td>19,87</td>
<td>0,97</td>
</tr>
<tr>
<td>OX1, V-Standorte</td>
<td>0,002</td>
<td>3,54</td>
<td>0,93</td>
</tr>
<tr>
<td>OX1, Lö-Standorte</td>
<td>0,0013</td>
<td>7,71</td>
<td>0,72</td>
</tr>
<tr>
<td>OX1, D-Standorte</td>
<td>0,0015</td>
<td>5,67</td>
<td>0,61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung $y = mx+b$</th>
<th>B (r^2)</th>
<th>ISW-200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x (ug/kg)</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>OX1, alle Werte</td>
<td>0,0017</td>
<td>6,87</td>
<td>0,98</td>
</tr>
<tr>
<td>OX1, Al-Standorte</td>
<td>0,0008</td>
<td>19,87</td>
<td>0,97</td>
</tr>
<tr>
<td>OX1, V-Standorte</td>
<td>0,002</td>
<td>3,54</td>
<td>0,93</td>
</tr>
<tr>
<td>OX1, Lö-Standorte</td>
<td>0,0013</td>
<td>7,71</td>
<td>0,72</td>
</tr>
<tr>
<td>OX1, D-Standorte</td>
<td>0,0015</td>
<td>5,67</td>
<td>0,61</td>
</tr>
</tbody>
</table>

3.3.2.7 Extraktion mit 0,02 m Ammoniumoxalat/0,01 m Ascorbinsäure (OX2)
Von der Variante OX1 unterscheidet sich diese Extraktion im pH-Wert (pH_{OX1} 3,7; pH_{OX2} 4,4) und dem Redoxpotenzial (E_{OX1} -123 mV; E_{OX2} -184 mV). Im Gegensatz zum Element Cadmium wird mit dieser Extraktionsvariante weniger extrahiert als mit der Variante OX1. Es werden nur 20 bis 40 % des mit OX1 extrahierbarenArsens im Extrakt gefunden (Tab. 42). Das war auch zu erwarten.

Auch hier werden die höchsten Gehalte bei Al-Standorten und vereinzelt Verwitterungsböden ermittelt, Lössböden und D-Standorte weisen deutlich geringere Gehalte auf. Für alle NSTE werden lineare Beziehungen Boden – Pflanze erhalten (Abb. 23, Abb. 23a und b im Anhang). Der Schwellenwert zur Einhaltung des Lebensmittelgrenzwertes liegt im Mittel bei 25 mg As/kg Boden (Tab. 43).

Tabelle 42: As-Konzentration im Extrakt mit 0,02 m Ammoniumoxalat/0,01 m Ascorbinsäure (OX2) – deskriptive Statistik

<table>
<thead>
<tr>
<th>AsOX2</th>
<th>alle NSTE</th>
<th>Lö</th>
<th>D</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>454</td>
<td>139</td>
<td>50</td>
<td>112</td>
<td>153</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>mg/kg</td>
<td>4,30</td>
<td>2,14</td>
<td>2,23</td>
<td>9,41</td>
</tr>
<tr>
<td>Median</td>
<td>mg/kg</td>
<td>2,07</td>
<td>1,89</td>
<td>1,98</td>
<td>2,04</td>
</tr>
<tr>
<td>Minimum</td>
<td>mg/kg</td>
<td>0,58</td>
<td>0,80</td>
<td>1,20</td>
<td>0,58</td>
</tr>
<tr>
<td>10. Perzentil</td>
<td>mg/kg</td>
<td>1,16</td>
<td>1,20</td>
<td>1,48</td>
<td>0,91</td>
</tr>
<tr>
<td>90. Perzentil</td>
<td>mg/kg</td>
<td>6,05</td>
<td>3,35</td>
<td>3,10</td>
<td>34,31</td>
</tr>
<tr>
<td>Maximum</td>
<td>mg/kg</td>
<td>57,76</td>
<td>4,81</td>
<td>4,76</td>
<td>51,28</td>
</tr>
</tbody>
</table>
Abbildung 23: Extraktion mit 0,02 m Ammoniumoxalat/0,01 m Ascorbinsäure Boden-Pflanze-Beziehung, alle NSTE

Tabelle 43: OX2-Extraktion - lineare Regression

<table>
<thead>
<tr>
<th>Variante</th>
<th>Gleichung $y = mx+b$</th>
<th>R^2</th>
<th>ISW-200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x (ug/kg) $\quad b$</td>
<td></td>
<td>mg/kg</td>
</tr>
<tr>
<td>OX2, alle Werte</td>
<td>0,0076 $\quad 6,38$</td>
<td>0,98</td>
<td>25,5</td>
</tr>
<tr>
<td>OX2, Al-Standorte</td>
<td>0,0064 $\quad 9,19$</td>
<td>0,97</td>
<td>29,8</td>
</tr>
<tr>
<td>OX2, V-Standorte</td>
<td>0,0103 $\quad 0,67$</td>
<td>0,92</td>
<td>19,3</td>
</tr>
<tr>
<td>OX2, Lö-Standorte</td>
<td>0,0075 $\quad 2,98$</td>
<td>0,84</td>
<td>26,2</td>
</tr>
<tr>
<td>OX2, D-Standorte</td>
<td>0,0064 $\quad -0,17$</td>
<td>0,87</td>
<td>31,3</td>
</tr>
</tbody>
</table>

3.3.2.8 Einfluss des Boden-pH-Wertes

Die Variation der Boden-pH-Werte auf den Untersuchungsflächen ist vergleichsweise gering, das 10. Perzentil liegt bei 5,6, das 90. Perzentil bei 6,8 (Tab. 8). Ein zu berücksichtigender Einfluss des Boden-pH-Wertes auf die Boden-Pflanze-Beziehungen konnte in diesem Bereich nicht festgestellt werden (Tab. 44).
Tabelle 44: Multiple lineare Regression: Extraktionsvarianten, Boden-pH

<table>
<thead>
<tr>
<th>Extraktion</th>
<th>NSTE</th>
<th>m</th>
<th>b</th>
<th>C</th>
<th>Standardisierter Koeffizient Beta für:</th>
<th>m</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>KW</td>
<td>alle</td>
<td>0,001</td>
<td>3,207</td>
<td>-10,8</td>
<td>0,8</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>KW</td>
<td>Al</td>
<td>0,001</td>
<td>10,7</td>
<td>-58,1</td>
<td>0,89</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td>AN</td>
<td>alle</td>
<td>2,45</td>
<td>-10,9</td>
<td>74,8</td>
<td>0,84</td>
<td>-0,12</td>
<td></td>
</tr>
<tr>
<td>CAL</td>
<td>alle</td>
<td>0,016</td>
<td>-7,28</td>
<td>59,9</td>
<td>0,84</td>
<td>-0,08</td>
<td></td>
</tr>
<tr>
<td>CaCl₂⁻A</td>
<td>alle</td>
<td>0,86</td>
<td>-4,91</td>
<td>43,2</td>
<td>0,76</td>
<td>-0,05</td>
<td></td>
</tr>
<tr>
<td>CaCl₂⁻B</td>
<td>alle</td>
<td>0,11</td>
<td>-3,92</td>
<td>38,1</td>
<td>0,79</td>
<td>-0,04</td>
<td></td>
</tr>
<tr>
<td>OX1</td>
<td>alle</td>
<td>0,001</td>
<td>0,81</td>
<td>8,09</td>
<td>0,83</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>OX2</td>
<td>alle</td>
<td>0,005</td>
<td>0,74</td>
<td>5,36</td>
<td>0,87</td>
<td>0,01</td>
<td></td>
</tr>
</tbody>
</table>

3.3.2.9 Diskussion Arsen

Wie bei Cadmium konnte auch für Arsen kein wesentlicher Einfluss des Boden-pH auf die Beziehung Boden – Pflanze festgestellt werden. Vermutlich ist die Variationsbreite der pH-Werte dafür zu gering; 80 % aller Werte liegen zwischen 5,6 und 6,8. Für eine Untersuchung des Sorteneinflusses fehlt im Datenpool leider die Datengrundlage. Die sortenabhängige As-Aufnahme ist nur von wenigen Sorten bekannt. Es sind nicht genügend Werte für je eine hoch und eine wenig aufnehmende Sorte auf einer NSTE vorhanden, um belastbare Aussagen zu treffen.

4 Schlussfolgerungen

Es wurde nachgewiesen, dass für Winterweizen mit unterschiedlichen Extraktionsvarianten lineare Beziehungen zwischen dem Elementgehalt im Boden und im Korn gefunden werden. Deshalb können auch laborpraktische Gesichtspunkte als Kriterium zur Findung einer „optimalen“ Methode herangezogen werden (Tab. 45).

Unter Berücksichtigung dieser Gesichtspunkte ist die CAL-Methode die optimale der geprüften Varianten.

Tabelle 45: Vergleich der Extraktionsvarianten

<table>
<thead>
<tr>
<th>Methode</th>
<th>Konz. im Extrakt</th>
<th>Chemikalieneinsatz</th>
<th>Arbeitsaufwand</th>
<th>Routinemethode/Bekanntheitsgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>KW</td>
<td>hoch</td>
<td>hoch, starke Säuren</td>
<td>hoch (Rückfluss, Filtration, Verdünnen)</td>
<td>Routine</td>
</tr>
<tr>
<td>AN</td>
<td>sehr niedrig</td>
<td>hoch</td>
<td>hoch (Membranfiltration)</td>
<td>Routine</td>
</tr>
<tr>
<td>CAL</td>
<td>niedrig</td>
<td>ausreichend</td>
<td>gering</td>
<td>Routine</td>
</tr>
<tr>
<td>CaCl₂-A</td>
<td>sehr niedrig</td>
<td>sehr niedrig</td>
<td>gering</td>
<td>Routine</td>
</tr>
<tr>
<td>CaCl₂-B</td>
<td>niedrig</td>
<td>niedrig</td>
<td>mittel (Filtrieren, Zentrifugieren)</td>
<td>wenig bekannt</td>
</tr>
<tr>
<td>OX1</td>
<td>ausreichend</td>
<td>sehr niedrig</td>
<td>gering</td>
<td>wenig bekannt</td>
</tr>
<tr>
<td>OX2</td>
<td>ausreichend</td>
<td>niedrig</td>
<td>gering</td>
<td>wenig bekannt</td>
</tr>
</tbody>
</table>

In Freilandversuchen auf Praxisschlägen und konventioneller Probenahme (Probenahmemuster: „liegendes N“) ist die natürliche Variabilität hoch. Bodenparameter, die die Elementaufnahme durch die Pflanzen beeinflussen, können jedoch kleinräumig sehr variieren. Ursachen dafür können geogenen Ursprungs, aber auch frühere Bewirtschaftungsmaßnahmen sein. Eine Beziehung zwischen Bodenparametern und der Elementaufnahme durch die Pflanze kann dadurch mehr oder weniger überdeckt und
das Bestimmtheitsmaß als Qualitätsparameter verschlechtert werden. Das lässt sich an der Streuung der gemessenen Elementkonzentrationen im Boden und im Korn der vier Probenahmepunkte eines Schlages zeigen (Abb. 24). Die gemessenen Konzentrationen der einzelnen Probenahmepunkte von 127 Schlägen unterscheiden sich im Durchschnitt vom Mittelwert des entsprechenden Schlages um 15 bis 50 %.

Abbildung 24: Mittlere Streuung der Elementkonzentrationen der vier Probenahmepunkte eines Schlages

5 Literaturverzeichnis

/1/ Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) vom 12.7.1999
/2/ RANK, G. et al. (2003): Arsen- und Schwermetallgehalte in den Böden des Freistaates Sachsen unter Berücksichtigung der Auenböden (Vortrag) - Schwermetallkolloquium der LfL
/3/ Landesamt für Umwelt und Geologie (1999): Bodenatlas des Freistaates Sachsen, Teil 3
/4/ Verordnung (EU) Nr. 574/2011
/5/ Verordnung (EG) Nr. 1881/2006 mit Änderungen, Stand 03-2010
/6/ Mitteilung der Kommission über die Ergebnisse der Risikobewertung und über die Risikobegrenzungsstrategien für die Stoffe Cadmium und Cadmiumoxid, Amtsblatt der EU (2008), C 149, S. 6 ff
/9/ HOUBA, V.J.G. et al. (1988): Applicability of 0,01 m CaCl2 as a single extraction solution for the assessment of the nutrient status of soils and other diagnostic purposes. Proc. 7th Intern. Coll. Optimization of the Plant Nutrition
/10/ VDLUFA Methodenbuch I: Die Untersuchung der Böden (1997): 6.2.1.1 Phosphor und Kalium im CAL-Auszug
/12/ Statist. Jahrbuch Sachsen 2008
/19/ GRYSHKO, R. et al. (2005): Soil Extraction of Readily Soluble Heavy Metals and As with 1 M NH4NO3-Solution. J. Soils & Sediments 5 (2) 101-106
6 Anhang

Abb. 4a: KW-Extraktion – Boden-Pflanze-Beziehung, Al-, V-Standorte

Abb. 4b: KW-Extraktion – Boden-Pflanze-Beziehung, Lö-, D-Standorte

Abb. 5a: AN-Extraktion – Boden-Pflanze-Beziehung, Al-, V-Standorte
Abb. 5b: AN-Extraktion – Boden-Pflanze-Beziehung, Lö-, D-Standorte

Abb. 6a: CAL-Extraktion – Boden-Pflanze-Beziehung, Al-Standorte

Abb. 6b: CAL-Extraktion – Boden-Pflanze-Beziehung, Lö-, D-Standorte
Abb. 7a: CaCl₂-A-Extraktion – Boden-Pflanze-Beziehung, Lö-, D-, V-Standorte

Abb. 7b: CaCl₂-A-Extraktion – Boden-Pflanze-Beziehung, Al-Standorte

Abb. 8a: CaCl₂-B-Extraktion – Boden-Pflanze-Beziehung, Lö-, D-, V-Standorte
Abb. 8b: CaCl2-B-Extraktion – Boden-Pflanze-Beziehung, Al-Standorte

Abb. 10a: OX2-Extraktion – Boden-Pflanze-Beziehung, Lö-, D-, V-Standorte

Abb. 10b: OX2-Extraktion – Boden-Pflanze-Beziehung, Al-Standorte
Abb. 17a: KW-Extraktion – Boden-Pflanze-Beziehung, V-Standorte

Abb. 17b: KW-Extraktion – Boden-Pflanze-Beziehung, D-Standorte

Abb. 17c: KW-Extraktion – Boden-Pflanze-Beziehung, Al-Standorte
Abb. 18a: AN-Extraktion – Boden-Pflanze-Beziehung, V-, Al-Standorte

Abb. 18b: AN-Extraktion – Boden-Pflanze-Beziehung, D-, Lö-Standorte

Abb. 19a: CAL-Extraktion – Boden-Pflanze-Beziehung, Al-Standorte
Abb. 19b: CAL-Extraktion – Boden-Pflanze-Beziehung, V-Standorte

Abb. 19c: CAL-Extraktion – Boden-Pflanze-Beziehung, D-, Lö-Standorte

Abb. 20a: Extraktion mit 0,01 m CaCl₂ – Boden-Pflanze-Beziehung, V-, Al-Standorte
Abb. 20b: Extraktion mit 0,01 m CaCl₂ – Boden-Pflanze-Beziehung, D-, Lö-Standorte

Abb. 21a: Extraktion mit 0,01 m CaCl₂/0,01 m Ascorbinsäure Boden-Pflanze-Beziehung, Al-Standorte

Abb. 21b: Extraktion mit 0,01 m CaCl₂/0,01 m Ascorbinsäure Boden-Pflanze-Beziehung, Lö-, D-, V-Standorte
Abb. 22a: Extraktion mit 0,02 m NH₄-Oxalat/0,05 m Ascorbinsäure Boden-Pflanze-Beziehung, Al-Standorte

Abb. 22b: Extraktion mit 0,02 m NH₄-Oxalat/0,05 m Ascorbinsäure Boden-Pflanze-Beziehung, Lö-, V-Standorte

Abb. 22c: Extraktion mit 0,02 m NH₄-Oxalat/0,05 m Ascorbinsäure Boden-Pflanze-Beziehung, D-Standorte
Abb. 23a: Extraktion mit 0,02 m NH₄-Oxalat/0,01 m Ascorbinsäure Boden-Pflanze-Beziehung, Al-Standorte

Abb. 23b: Extraktion mit 0,02 m NH₄-Oxalat/0,01 m Ascorbinsäure Boden-Pflanze-Beziehung, Lö-, D-, V-Standorte
Herausgeber:
Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie
Pillnitzer Platz 3, 01326 Dresden
Telefon: + 49 351 2612-0
Telefax: + 49 351 2612-1099
E-Mail: lfulg@smul.sachsen.de
www.smul.sachsen.de/lfulg

Autor:
Dr. Ralf Klose
Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft
Geschäftsbereich Labore Landwirtschaft
Gustav-Kühn-Str. 8, 04159 Leipzig
Telefon: + 49 341 9174-208
Telefax: + 49 341 9174 211
E-Mail: Ralf.Klose@smul.sachsen.de

Redaktion:
siehe Autor

Redaktionsschluss:
30.04.2012

ISSN:
1867-2868

Hinweis:
Die Broschüre steht nicht als Printmedium zur Verfügung, kann aber als PDF-Datei unter http://www.smul.sachsen.de/lfulg/6447.htm heruntergeladen werden.

Verteilerhinweis
Diese Beschränkungen gelten unabhängig vom Vertriebsweg, also unabhängig davon, auf welchem Wege und in welcher Anzahl diese Informationsschrift dem Empfänger zugegangen ist. Erlaubt ist jedoch den Parteien, diese Informationsschrift zur Unterrichtung ihrer Mitglieder zu verwenden.