Textur- und Mikrostrukturrentwicklung bei der ionenstrahlunterstützten Laserdeposition von MgO

Dissertation
zur Erlangung des akademischen Grades
Doctor rerum naturalium
(Dr. rer. nat.)

vorgelegt
der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von
Dipl.-Phys. Ruben Hühne
geboren am 06.05.1970 in Frauenstein

Dresden 2001
Eingereicht am: 03.08.2001
Tag der Verteidigung: 03.12.2001

Gutachter: Prof. Dr. W. Skrotzki
 Prof. Dr. L. Schultz
 Prof. Dr. H.C. Freyhardt
Inhaltsverzeichnis

1 Einleitung .. 1

2 Ionenstrahlunterstütztes Schichtwachstum ... 5
 2.1 Grundlagen des Schichtwachstums ... 5
 2.1.1 Heterogene Keimbildung und Wachstumsmoden 6
 2.1.2 Struktur- und Texturausbildung in dünnen Schichten 7
 2.1.3 Besonderheiten des Wachstums mittels Laserdeposition 12
 2.2 Ionen-Festkörper-Wechselwirkungen ... 12
 2.2.1 Bremsung und Ionenreichweite ... 14
 2.2.2 Channeling ... 16
 2.2.3 Schädigungsprozesse durch den Ionenstrahl 16
 2.3 Modellvorstellungen zum IBAD-Prozeß ... 18
 2.3.1 Einfluß des Ionenstrahls auf die Keimbildung 19
 2.3.2 Ionenstrahlunterstütztes Wachstum .. 19
 2.4 Texturentwicklung beim IBAD-Prozeß in ausgewählten
 Materialsystemen ... 22

3 Versuchsaufbau und Charakterisierungsmethoden .. 25
 3.1 Aufbau der IBALD-Anlage ... 25
 3.2 Hochenergetische Elektronenbeugung (RHEED) 28
 3.3 Röntgenbeugung .. 31
 3.4 Schichtdickenmessung .. 32
 3.5 Mikrostrukturuntersuchungen .. 34

4 Grundcharakteristika von MgO .. 35
 4.1 Wachstumseigenschaften von MgO ... 35
 4.2 Ionenbeschüß von MgO ... 37
 4.3 Ablationsprozeß von MgO .. 37
 4.4 Wachstum von MgO mittels Laserdeposition 39
 4.4.1 Wachstum auf amorphen Substraten .. 39
 4.4.2 Homoeptaktisches Wachstum auf {001} MgO-Flächen 41

5 Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO 43
 5.1 Wachstum auf amorphen Substrat ... 43
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>Einfluß der Substrattemperatur</td>
<td>44</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Einfluß der Ionenstrahlparameter</td>
<td>47</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Einfluß der Ablationsparameter</td>
<td>52</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Substratabhängigkeit</td>
<td>54</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Mikrostrukturcharakterisierung</td>
<td>55</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Zusammenstellung der Ergebnisse</td>
<td>56</td>
</tr>
<tr>
<td>5.2</td>
<td>Untersuchungen an MgO-Einkristallen</td>
<td>57</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Sputteruntersuchungen</td>
<td>57</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Ionenstrahlunterstütztes Wachstum</td>
<td>63</td>
</tr>
<tr>
<td>5.3</td>
<td>Simulation von Strahlenschäden während des Ionenbeschusses</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Wachstum auf IBALD-Schichten</td>
<td>69</td>
</tr>
<tr>
<td>6.1</td>
<td>Wachstum auf würfelorientierten MgO-Keimschichten</td>
<td>69</td>
</tr>
<tr>
<td>6.2</td>
<td>Wachstum auf dicken MgO-Schichten</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>Diskussion und Ausblick</td>
<td>77</td>
</tr>
<tr>
<td>7.1</td>
<td>Keimbildung</td>
<td>77</td>
</tr>
<tr>
<td>7.2</td>
<td>Wachstum</td>
<td>79</td>
</tr>
<tr>
<td>7.3</td>
<td>Verallgemeinerung der Ergebnisse: das Vergleichssystem TiN</td>
<td>81</td>
</tr>
<tr>
<td>7.4</td>
<td>Ausblick</td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>Zusammenfassung</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>Literaturverzeichnis</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>Eigene Veröffentlichungen</td>
<td>95</td>
</tr>
</tbody>
</table>
1 Einleitung

Ein weiteres Anwendungsgebiet dieses Verfahrens ist durch die Möglichkeit einer gezielten Beeinflussung der Schichttextur gegeben. Yu et al. [1985] berichteten im Rahmen ihrer Untersuchungen zur Deposition von Nb-Schichten erstmals davon, daß beim IBAD-Prozeß mit einem unterstützenden Ionenstrahl, der unter einem schrägen Winkel auf die Schicht trifft, eine biaxiale Textur ausgebildet wird (Abbildung 1.1). Dies eröffnete die Möglichkeit, hochtexturierte Funktionsschichten auf beliebig texturierten oder amorphen Substraten herzustellen. Im Gegensatz zu einer Fasertextur, bei der nur eine kristallographische Richtung (meist parallel zur Substratnormalen) ausgezeichnet ist, wird bei der biaxialen Textur zusätzlich eine zweite kristallographische Richtung in der Filmebene festgelegt (Abbildung 1.2). Im Sprachgebrauch der Dünnschichttechnologie bezeichnet dann out-of-plane immer die Richtung parallel zur Substratnormalen, während mit in-plane die Richtungen in der Filmebene gemeint sind.

![Abbildung 1.1: Prinzipskizze der ionenstrahlunterstützten Deposition](image1)

Ein weiteres Anwendungsgebiet dieses Verfahrens ist durch die Möglichkeit einer gezielten Beeinflussung der Schichttextur gegeben. Yu et al. [1985] berichteten im Rahmen ihrer Untersuchungen zur Deposition von Nb-Schichten erstmals davon, daß beim IBAD-Prozeß mit einem unterstützenden Ionenstrahl, der unter einem schrägen Winkel auf die Schicht trifft, eine biaxiale Textur ausgebildet wird (Abbildung 1.1). Dies eröffnete die Möglichkeit, hochtexturierte Funktionsschichten auf beliebig texturierten oder amorphen Substraten herzustellen. Im Gegensatz zu einer Fasertextur, bei der nur eine kristallographische Richtung (meist parallel zur Substratnormalen) ausgezeichnet ist, wird bei der biaxialen Textur zusätzlich eine zweite kristallographische Richtung in der Filmebene festgelegt (Abbildung 1.2). Im Sprachgebrauch der Dünnschichttechnologie bezeichnet dann out-of-plane immer die Richtung parallel zur Substratnormalen, während mit in-plane die Richtungen in der Filmebene gemeint sind.

![Abbildung 1.2: Schematische Darstellung der Texturvarianten: (a) regellos, (b) fasertexturiert, (c) biaxial texturiert](image2)

schon texturierten IBALD-Schichten, soll abschließend das Szenario der Mikrostruktur- und Texturbildung während der ionenstrahlunterstützten Laserdeposition zusammenfassend diskutiert und die Verbindung zu anderen Materialsystemen hergestellt werden.
2 Ionenstrahlunterstütztes Schichtwachstum

2.1 Grundlagen des Schichtwachstums

Werden Atome oder Moleküle aus einer Verdampfungsquelle auf einer Oberfläche deponiert, müssen mehrere grundlegende Prozesse betrachtet werden (Abbildung 2.1). Zunächst können die entsprechenden Teilchen beim Auftreffen auf die Oberfläche einen Teil ihrer Energie an das Substrat abgeben und dadurch gebunden werden (Adsorption – (a)). Auf der Oberfläche können diese Atome oder Moleküle nun eine Vielzahl von äquivalenten Positionen einnehmen und unter Aufwand einer Aktivierungsenergie zum nächsten Platz diffundieren (c). Der Weg, den sie dabei zurücklegen, ist abhängig von der Diffusionskonstanten D, die wiederum mit der Temperatur skaliert. Während des Diffusionsprozesses kann das Teilchen mit einer bestimmten Wahrscheinlichkeit die Oberfläche wieder verlassen (Desorption – (b)). Die Desorptionsrate steigt dabei sowohl mit der Substrattemperatur als auch mit der Dichte der adsorbierten Teilchen. Neben der Desorption gibt es weitere Prozesse, die die Diffusion eines Atoms oder Moleküls an der Oberfläche stoppen können und damit das Schichtwachstum beeinflussen. Zum einen können sie an Stufen (d), Kinken (e) oder Ecken (g) des Substrates oder eines schon deponierten Filmes angelagert und damit fester gebunden werden. Zum anderen besteht die Möglichkeit der Agglomeration von mehreren Teilchen zu einer Insel (f). Letzterer Prozeß wird als Keimbildung bezeichnet und soll im folgenden näher beleuchtet werden. Dabei wird sich auf den heterogenen Fall beschränkt, bei dem das Substrat und die Schicht aus unterschiedlichem Material bestehen.

Abbildung 2.1: Grundprozesse beim Wachstum dünner Schichten
2.1.1 Heterogene Keimbildung und Wachstumsmoden

Bilden mehrere Atome oder Moleküle einen Keim auf einem Substrat, kommt es durch die Bindungen, die sie untereinander eingehen, zu einer Änderung der Freien Enthalpie ΔG des Systems. Diese kann mit einer Änderung des chemischen Potentials $\Delta \mu = \mu_c - \mu_f$ beim Phasenübergang zwischen gasförmigem und kondensiertem Zustand der Adatome wie auch durch den Energiegewinn oder -verlust bei der Bildung neuer Oberflächen A_i mit spezifischen Oberflächenenergien γ_i und Grenzflächen A_g mit einer spezifischen Grenzflächenenergie γ_g beschrieben werden. Diese Bilanz läßt sich somit darstellen als

$$
\Delta G = -n \Delta \mu + \sum_i \gamma_i A_i + (\gamma_g - \gamma_s) A_g
$$

wobei γ_s die spezifische Oberflächenenergie des Substrates ist. Unter der Annahme eines Adsorbates mit isotroper Grenzflächenenergie γ_a bildet sich ein sphärischer Keim mit einem Kontaktwinkel θ, der wiederum der Bedingung

$$
\gamma_a \cos \theta = \gamma_s - \gamma_g
$$

genügt (Abbildung 2.2). Auf der Grundlage dieses Zusammenhanges läßt sich die notwendige Änderung der freien Enthalpie ΔG_c über die Beziehung

$$
\Delta G_c = \frac{16 \pi \Omega^2 \gamma_a^3}{3(\Delta \mu)^2} \cdot \frac{(1 - \cos \theta)^2 (2 + \cos \theta)}{4}
$$

ermitteln, wobei Ω das Atomvolumen bezeichnet. Diese Änderung ist notwendig, um einen thermodynamisch stabilen Keim mit dem kritischen Keimradius r_c zu erzeugen und stellt somit eine Potentialbarriere dar, die bei der heterogenen Keimbildung überwunden werden muß. Durch eine äquivalente Betrachtung läßt sich auch für den anisotropen Fall die Größe eines kritischen Keims berechnen, auf der Oberfläche bilden sich in diesem Fall Parallelepipede aus [Givargizov 1991].

Hat ein Keim die kritische Größe erreicht, kann er durch Anlagerung neuer Adatome bis hin zur Koaleszenz mit anderen Keimen wachsen. In diesem Zusammenhang wird zwischen verschiedene Wachstumsmoden unterschieden (Abbildung 2.3) [Bauer 1958]:

Abbildung 2.2: Oberflächenspannungen für die Berechnung der kritischen Keimgröße eines sphärischen Keimes
2. Ionenstrahlunterstütztes Schichtwachstum

- **Lagenwachstum** (*Frank-van-der-Merwe-Wachstum*): Die Wechselwirkung zwischen Substrat und Adsorbat ist gleich oder größer als zwischen den Adsorbatatomen untereinander, daraus ergibt sich als Bedingung für diese Wachstumsmoden:

\[
\gamma_s \geq \gamma_a + \gamma_g
\] \hspace{1cm} (2.4)

- **Inselwachstum** (*Vollmer-Weber-Wachstum*): In diesem Fall sind die Verhältnisse genau umgekehrt zum Lagenwachstum, es bilden sich von Anfang an bevorzugt Inseln. Die Bedingung für diese Wachstumsmoden lautet:

\[
\gamma_s < \gamma_a + \gamma_g
\] \hspace{1cm} (2.5)

- **Stranski-Krastanov-Wachstum**: Bei dieser Mode wachsen zunächst eine oder mehrere geschlossene Lagen auf dem Substrat auf, danach erfolgt ein Übergang zu dreidimensionalen Inseln, da das Kräftegleichgewicht durch zusätzliche elastische Verzerrungsentnergie verschoben wird.

2.1.2 Struktur- und Texturausbildung in dünnen Schichten

2. Ionenstrahlunterstütztes Schichtwachstum

- **Keimbildung**

Der Prozeß der heterogenen Keimbildung wurde im vorangehenden Kapitel schon im Detail diskutiert. Entscheidend für die Struktur ist dabei die Größe der kritischen Keime. Eine hohe Übersättigung in der Dampfphase (d.h. hohes $\Delta \mu$) führt zu einem kleineren kritischen Radius der Keime und erhöht auf diese Weise die Wahrscheinlichkeit der Keimbildung und damit die Keimdichte. Die Keimbildungstextur ist dagegen vor allem von den Ober- und Grenzflächenenergien abhängig. Ist die spezifische Oberflächenenergie γ_s des Substrates isotrop (wie im Fall einer amorpheren Unterlage), so ist auch die spezifische Grenzflächenenergie γ_g gegen Drehung um die Substratnormalen isotrop. Bei senkrechter Deposition weisen die Keime deshalb keine Vorzugsrichtung in der Substratebene auf. Ist weiterhin die Wechselwirkung zwischen Substrat und Schicht gering (wie im Fall des Inselwachstums), bilden die Keime sogenannte Gleichgewichtsformen auf der Oberfläche aus, um ihre Oberflächenenergie zu minimieren. Für diese gilt die Bedingung:

$$\sum_i \gamma_i A_i = \text{min} \text{ bei } V = \text{const.}$$ (2.6)

Wichtig ist dabei, daß die Diffusionsprozesse entsprechend schnell sein müssen, um diesen Gleichgewichtszustand zu erreichen. Ein weiteres Problem liegt darin, daß die spezifischen Oberflächenenergien zum einen experimentell nur schwer zugänglich sind, zum anderen sehr stark von Faktoren wie Verunreinigungen oder Hintergrundgasen im Depositionsprozeß abhängen [Givargizov 1991]. Eine Möglichkeit, die Oberflächenenergien abzuschätzen, wurde von Zhao et al. [1997] unter Verwendung der Anzahl offener Bindungen pro Atom auf den Flächen angegeben. Für kubisch flächenzentrierte Metalle wie Kupfer ergibt sich daraus:

$$\gamma_{100} > \gamma_{110} > \gamma_{111}$$ (2.7)

Dagegen gilt für die NaCl-Struktur:

$$\gamma_{100} < \gamma_{110} < \gamma_{111}$$ (2.8)

Aus dieser Beziehung kann geschlußfolgert werden, daß in zweiten Fall Keime mit {100}-Oberflächen energetisch bevorzugt werden. In diese allgemeinen Betrachtungen können noch weitere Charakteristika der Oberflächen einbezogen werden. Unter anderem stellen {100}- und {110}-Oberflächen der NaCl-Struktur im Gegensatz zu {111} ladungsneutrale Flächen dar und sollten deshalb bevorzugt werden. Berechnungen der elektronischen Struktur für das MgO bestätigen die diskutierte Abhängigkeit. Dabei wurde für eine {100}-Oberfläche eine Oberflächenenergie von 2,64 Jm$^{-2}$ ermittelt, für eine O- bzw. Mg-belegte {111}-Oberfläche dagegen ein Wert von 12,80 bzw. 13,02 Jm$^{-2}$ gefunden [Gibson et al. 1992].

- **Koaleszenz**

Wenn einzelne Keime durch Anlagerung neuer Adatome wachsen, kommt es schließlich zur Berührung vorher isolierter Körner, zur Koaleszenz. Tritt dieser Fall ein, werden bisher freie

- **Wachstum**

Abbildung 2.4:
Strukturzonenmodell nach Thornton [1977]

Zone 1: Hier wird eine poröse, teilweise amorphe oder nanokristalline Struktur beobachtet, die durch ungenügende Diffusion der Adatome erklärt werden kann. Dadurch kommt es unter anderem zu Abschattungseffekten, die bei der Strukturbildung eine entscheidende Rolle spielen [Smith und Srolovitz 1996].

Zone T: Diese Übergangszone wird vor allem bei höheren Teilchenenergien (z.B. beim Sputtern) beobachtet. Durch die zusätzlich eingetragene Energie entsteht eine dichte Faserstruktur ohne Poren [Gilmore und Sprague 1991, Smith und Srolovitz 1996].

Zone 2: Sie wird von einer kolumnaren Struktur und ausgeprägten Korngrenzen ohne Leerräume gekennzeichnet. Entscheidender Prozeß ist die Oberflächendiffusion.

Zone 3: Es wird eine dichte Struktur mit größeren Körnern beobachtet. Kornwachstum und Rekristallisation werden durch Volumendiffusionprozesse möglich.

In Abhängigkeit von den Mechanismen, die in den einzelnen Bereichen aktiv sind, wurden für die Texturausbildung während des Wachstums mehrere analytische Modelle entwickelt. Daneben wurde versucht, mit Hilfe molekular-dynamischer Simulationen die experimentell gefundenen Texturen zu reproduzieren. Oft liegen den Modellen ähnliche physikalische Mechanismen...
zugrunde, allerdings wird die Signifikanz einzelner Teilprozesse auf die gesamte Texturentwicklung kontrovers diskutiert. Die wichtigsten Vorstellungen sollen im folgenden kurz skizziert werden:

(a) Schnellste Wachstumsrichtung \([\text{van der Drift 1967, Thijssen 1995, Carter 2000a}]\)

(b) Minimierung der Oberflächenenergie

In diesem Ansatz werden neben der Oberflächenenergie \(S_{hk\ell} \) auch die inneren Spannungen der einzelnen Körner berücksichtigt. Dies spielt insbesondere eine Rolle, wenn die deponierten Teilchen eine höhere kinetische Energie aufweisen (z.B. Sputtern, Laserdeposition). Grundlage ist die elastische Anisotropie aller kristallinen Materialien, die zu einer Richtungsabhängigkeit der elastischen Verzerrungsenergie \(U_{hk\ell} \) führt. Körner, die einen niedrigeren Spannungszustand haben, werden während des Wachstums bevorzugt, da dadurch die Gesamtenergie des Systems minimiert werden kann. Eine einfache Betrachtung führt für den Fall der NaCl-Struktur zu folgender Orientierungsabhängigkeit der elastischen Verzerrungsenergie:

\[
U_{111} < U_{110} < U_{100}
\]

(Zhao et al. 1997). Entscheidend für die Vorzugsorientierung der Schichten ist nun die resultierende Gesamtenergie:

\[
W_{hk\ell} = S_{hk\ell} + U_{hk\ell}
\]

(Zhao et al. 1997).

Mit Hilfe dieses Modells ist es möglich, spannungsinduzierte Texturänderungen bei wachsender Schichtdicke zu beschreiben. In Abbildung 2.6 sind die Verhältnisse dargestellt, wie sie im TiN zu finden sind. In dünnen Schichten wird die Gesamtenergie von der Oberflächenenergie \(S_{hk\ell} \) bestimmt. Dabei wird die \(\{100\} \) -Orientierung energetisch bevorzugt. Mit wachsender Schichtdicke nimmt nun die Verzerrungsenergie zu, während die Oberflächenenergien in etwa konstant bleiben. Da aber die Verzerrungsenergie für \(\{111\} \) -orientierte Körner kleiner ist, existiert eine kritische Dicke, bei der eine Texturänderung zu einer energetisch günstigeren Struktur führt. Dies wurde auch experimentell beobachtet (Oh und Je 1993, Zhao et al. 1997).

nach Abschluß der Deposition

Zusammenfassend kann gesagt werden, daß viele Faktoren während der Deposition Einfluß auf die Struktur und die Textur nehmen können. Oft kommt es zur Überlagerungen von Einzel- effekten. Weiterhin können unterschiedliche Mechanismen zu ähnlichen Ergebnissen führen, so
2. Ionenstrahlunterstütztes Schichtwachstum

2.1.3 Besonderheiten des Wachstums mittels Laserdeposition

Im Rahmen dieser Arbeit wird die gepulste Laserdeposition (PLD) verwendet, deren Besonderheiten an dieser Stelle kurz zusammengefaßt werden sollen. Bei diesem Verfahren wird ein hochenergetischer, gepulster Laserstrahl (meist eines Excimerlasers) mit einem optischen System auf das zu verdampfende Target abgebildet. Wird dabei eine materialspezifische Energiedichte auf der Targetoberfläche überschritten, schmilzt diese innerhalb der kurzen Pulsdauer (20 – 50 ns) auf und verdampft. Da der Energieeintrag meist wesentlich höher ist, als er für das thermische Verdampfen des Materials benötigt wird, entsteht über der Oberfläche ein Plasma, das normal zur Targetoberfläche wegbeschleunigt wird.

2.2 Ionen-Festkörper-Wechselwirkungen

soll lediglich eine qualitative Diskussion der einzelnen Effekte erfolgen. Außerdem wird sich im folgenden auf den niederenergetischen Bereich der Ionen beschränkt, der für die ionenstrahlunterstützte Deposition interessant ist. Für eine darüber hinausgehende analytische Behandlung soll auf die einschlägige Literatur verwiesen werden, vor allem auf Nastasi et al. [1996], der auch die Grundlage für die folgenden Ausführungen ist.

Um die Stoßprozesse mathematisch beschreiben zu können, müssen die dafür notwendigen interatomaren Potentiale bekannt sein. Der einfachste Ansatz ist, die Wechselwirkung zwischen den Atomkernen von Ion und Festkörperatom mit Hilfe eines Couloumbpotentials \(V_c(r) \) darzustellen:

\[
V_c(r) = -\left(\frac{Z_1 Z_2 e^2}{r} \right)
\]

\((Z_1, Z_2 \) Kernladungszahlen des Ions und des Festkörperatoms). Dabei wird allerdings die Elektronenhülle vernachlässigt. Diese hat jedoch vielfach einen entscheidenden Einfluß, da die negative Ladung der Elektronen die positive Kernladung in einem bestimmten Abstand \(r \) von Ort des Kernes abschirmt. Um dies quantitativ zu beschreiben, werden abgeschirmte Couloumbpotentiale \(V_{sc}(r) \) eingeführt:

\[
V_{sc}(r) = \left(\frac{Z_1 Z_2 e^2}{r} \right) \chi(r)
\]

Da es sich bei der Elektronenhülle um ein komplexes quantenmechanisches Vierteilchensystem handelt, wird versucht, die Abschirmfunktion \(\chi(r) \) mit Hilfe von Näherungen analytisch zu beschreiben. Dazu kommen in der Literatur sowohl einfache statistische Modelle (z.B. Thomas-Fermi Modell), als auch komplexerer Beschreibungen zum Einsatz, die zusätzlich die Schalenstruktur der Elektronen wiedergeben.
2.2.1 Bremsung und Ionenreichweite

\[
B = B_n + B_e
\]

\((B_n \ldots \text{nukleare Bremsung}, \ B_e \ldots \text{elektronische Bremsung})\). Die beiden Beiträge haben charakteristische Eigenschaften, auf die im folgenden näher eingegangen werden soll.

- **Nukleare Bremsung \(B_n \)**

- **Elektronische Bremsung \(B_e \)**

 In diesem Fall werden Prozesse betrachtet, in denen Energie vom Ion nur auf die Elektronenhülle des Targetatoms oder auf das freie Elektronengas des Festkörpers übertragen wird. Dabei können die Elektronen angereg oder aus der Hülle herausgeschlagen werden. Dadurch erfolgt ein wesentlich geringerer Energieverlust als bei der nuklearen Bremsung. Außerdem ist durch die geringe Masse des Elektrons die Winkelablenkung des Ions weitgehend vernachlässigbar und es werden kaum Gitterbaufehler erzeugt. Bei hohen Ionenenergien kommt

Am Beispiel einer Simulationsrechnung zum Ionenbeschluß von MgO (eine nähere Beschreibung des Simulationsverfahrens erfolgt in Kapitel 5.3) wird deutlich, in welchen Energiebereichen die einzelnen Bremsvorgänge wirksam werden (Abbildung 2.8). Bei den, in dieser Arbeit für die ionenstrahlunterstützte Deposition verwendeten Energien (d.h. 0,1 keV), spielt der elektronische Anteil nur eine untergeordnete Rolle. Der entscheidende Beitrag kommt statt dessen von der Bremsung durch Kernstöße, die wie bereits erwähnt vor allem mit Schädigungsvorgängen im Festkörper verbunden sind.

Nach einer entsprechenden Anzahl von Stößen sind die einfallenden Ionen soweit abgebremst worden, daß sie zur Ruhe kommen. Im Detail bedeutet dies, daß das Ion nicht mehr in der Lage ist, ein Atom von seinem Gitterplatz zu entfernen (d.h. bei einer Energie von 10 - 30 eV), Diffusionsprozesse sind aber weiterhin möglich. Der dabei im Festkörper zurückgelegte Weg wird als Ionenreichweite R bezeichnet. In der Praxis ist oft nur die sogenannte projizierte Reichweite R_p interessant. Sie beschreibt, in welcher Tiefe relativ zum Eintrittspunkt das Ion zur Ruhe gekommen ist. Da es sich um einen weitgehend stochastischen Prozeß handelt, kommt es zu einer typischen Reichweitenverteilung, die in Abbildung 2.9 schematisch angedeutet ist.

Abbildung 2.8:
Bremsung von Ar und O-Ionen in MgO (Resultat einer Simulationsrechnung aus [Biersack 1987a])

Abbildung 2.9: Reichweitenverteilung der Ionen
2.2.2 Channeling

Treffen Ionen auf einkristalline Bereiche eines Festkörpers, so ist es möglich, daß sie entlang niedrigindizierter Gitterrichtungen (z.B. \(\langle 110 \rangle\)) in den Kristall eindringen und dabei kaum durch Kernstöße abgebremst werden (Abbildung 2.10). Dieser Fall wird als Channeling bezeichnet und führt dazu, daß Ionen im Gegensatz zum ungeordneten Fall ein mehrfaches an Reichweite erreichen können. Dazu muß das Ion möglichst parallel zu der Channelrichtung auftreffen. Der Öffnungswinkel \(\psi_c\) beschreibt dabei die Winkelabweichung der Ionentrajektorie in Bezug auf die Achse dieses Kanals, bei der ein Channeling noch möglich ist. Für den Fall hochenergetischer Ionen kann dieser kritische Winkel unter Beachtung der Kernladungszahlen \(Z_1\) und \(Z_2\) des Ions und des Targetatoms und dem Abstand \(d\) benachbarter Atome entlang der Channelrichtung berechnet werden [Gemmell 1974]. Dabei wird eine gute Übereinstimmung mit experimentellen Ergebnissen erreicht. Für niederenergetische Ionen werden durch diese Betrachtung jedoch sehr große Winkel ermittelt, die physikalisch nicht sinnvoll sind. Außerdem gibt es nur wenige experimentelle Daten für diesen Energiebereich, so daß auf molekulardynamische Simulationen zurückgegriffen werden muß (siehe Kapitel 5.2).

2.2.3 Schädigungsprozesse durch den Ionenstrahl

In Kapitel 2.2.1 wurde dargelegt, daß einfallende Ionen bei niedrigen Energien hauptsächlich durch Stoße mit den Targetatomen abgebremst werden. Ist der Energietransfer bei diesem Stoßprozeß groß genug, kann sich das Atom von seinem Gitterplatz bewegen und danach, je nach Größe der übertragenen Energie, selbst weitere Stoßprozesse durchlaufen. Dadurch bildet
sich eine Stoßkaskade aus, wie sie in Abbildung 2.12 schematisch dargestellt ist. In der Literatur unterscheidet man in Abhängigkeit von der eingebrachten Energie drei Fälle:

- **Einzelstoßregime**: Hier kommt es nur zu einzelnen, unabhängigen Stößen zwischen dem Ion und den Gitteratomen. Nach wenigen Stößen stoppt das Ion, es entwickelt sich keine räumlich ausgedehnte Kaskade

- **Lineare Kaskade**: Es finden nur Stöße zwischen energiereichen, sich bewegenden Teilchen (Ion oder aus seinem Platz herausgeschlagenes Gitteratom) und ruhenden Gitteratomen statt. Dies ist der Standardfall.

- **Wärmpuls („thermal spike“)**: Hierbei handelt es sich um eine sehr dichte Kaskade. Die Stöße zwischen energiereichen Teilchen untereinander können nicht mehr vernachlässigt werden. Der Wärmpuls tritt insbesondere bei schweren und hochenergetischen Ionen auf und ist mathematisch schwierig zu behandeln

gefunden, währenddessen für die \langle 111 \rangle -Richtung 76 eV ermittelt wurden [Nastasi et al. 1996].

Durch die beschriebenen Stoßprozesse können oberflächen nahe Atome auch ganz aus dem Festkörper herausgeschlagen werden. Dies wird als Zerstäubung oder Sputtern bezeichnet. Detaillierte Untersuchungen haben gezeigt, daß die gesputterten Teilchen hauptsächlich aus der obersten Monolage durch sekundäre Stoßprozesse (d.h. von Atomen, die durch das einfallende Ion aus ihrem Gitterplatz herausgestoßen wurden) herausgeschlagen werden. Quantitativ wird der Prozeß durch die Sputterausbeute

\[Y = \frac{n_s}{n_i} \]

(2.14)

Neben den bisher erwähnten Schädigungsprozessen können weitere strukturelle Änderungen durch den Ionenstrahl hervorgerufen werden. Einige Beispiele sind:

- **Ionenmischen:** Bei Einwirkung des Ionenstrahls auf eine Schichtstruktur aus unterschiedlichen Einzelschichten kommt es innerhalb einer Stoßkaskade zu einer Verlagerung von Atomen einer Schicht in eine andere.

- **Phasenumwandlungen:** Im Gitter eingebaute Ionen erzeugen Spannungen und können dazu führen, daß das Gitter in eine thermodynamisch günstigere Struktur übergeht.

- **Erzeugung von Verbindungen:** Nutzt man als Ionenstrahl ein reaktives Medium (Stickstoff, Sauerstoff...), können die Ionen mit dem Targetmaterial Verbindungen eingehen (z.B. TiN).

2.3 Modellvorstellungen zum IBAD-Prozeß

Während der ionenstrahlunterstützten Deposition werden die grundlegenden Wachstumsprozesse, die in Kapitel 2.1 beschrieben wurden, auf Grund der Ionen-Festkörper-Wechselwirkungen modifiziert. Dabei handelt es sich um ein komplexes Szenario, das stark materialspezifisch
ist. Deshalb ist es schwierig, die ablaufenden Prozesse im Detail theoretisch zu beschreiben und zu modellieren. Im folgenden werden einige grundlegende Ergebnisse der letzten Jahre zusammengestellt, die die Beeinflussung des Schichtwachstums und dabei insbesondere der Mikrostruktur- und Texturentwicklung durch den Ionenstrahl aufzeigen.

2.3.1 Einfluß des Ionenstrahls auf die Keimbildung

Der Ionenstrahl hat einen entscheidenden Einfluß auf die ersten Phasen des Schichtwachstums, d.h. auf die Keimbildung und die anschließende Koaleszenz. Im folgenden sollen die wichtigsten Effekte kurz aufgeführt werden [Greene et al. 1989, Carter 1999]:

- Schädigungsprozesse durch die einfallenden Ionen können zu Defekten an der Substratoberfläche führen, die wiederum als bevorzugte Adsorptionsplätze für die deponierten Atome dienen. Dies führt insbesondere zu einer Erhöhung der Inseldichte auf Einkristallflächen.

- Durch den Ionenstrahl können Atome oder Moleküle wieder abgesputtert werden. Am meisten sind dabei einzelne Adatome betroffen, da sie nur relativ schwach an das Substrat gebunden sind. Dadurch verringert sich die Adatomdichte und damit die Wahrscheinlichkeit der Keimbildung.

- Allgemein wird durch den Energieeintrag über die Ionen die Oberflächendiffusion von adsorbierten Atomen und Molekülen erhöht. Außerdem können durch Schädigungsprozesse Leerstellen erzeugt werden, die die Wachstumskinetik der Keime stark beeinflussen können.

- Es kommt zu Durchmischungseffekten zwischen deponierten Atomen und dem Substratmaterial.

2.3.2 Ionenstrahlunterstütztes Wachstum

Nach der Koaleszenz der Keime und der Bildung einer geschlossenen Schicht spielen sich die Ionen-Festkörper-Wechselwirkungen, wie sie in Kapitel 2.2 diskutiert wurden, fast ausschließlich in der wachsenden Schicht ab. Dies gilt im besonderen für die Schädigungsprozesse. Außerdem wird durch die Ionen Energie in die wachsende Schicht eingetragen. Ähnlich wie bei der

Neben diesen allgemeinen Effekten kann bei der Ionenergieunterstützung mit einem Einfallswinkel \(\alpha > 0^\circ \) bezüglich der Substratnormalen die Ausbildung einer biaxialen Textur beobachtet werden. Zur Erklärung dieses Vorganges wurden in den letzten Jahren eine Reihe von Wachstumsmodellen entwickelt, die im folgenden kurz besprochen werden. Wie in Abbildung 2.13 schematisch dargestellt wird dabei zunächst die Ausbildung der \textit{out-of-plane} Orientierung beobachtet. Im weiteren Verlauf wird eine fortschreitende \textit{in-plane} Texturierung über eine Wachstumsauslese erzielt. Als Quelle für diesen Auslesemechanismus werden verschiedene Ansätze diskutiert:

- \textit{Anisotrope Sputterrate}

- \textit{Anisotrope Ionenschädigung}

2.4 Texturentwicklung beim IBAD-Prozeß in ausgewählten Materialsystemen

Abschließend sollen nun noch ausgewählte Materialsysteme kurz vorgestellt werden, in denen in den vergangenen Jahren die Texturentwicklung während des IBAD-Prozesses detailliert untersucht worden ist.

- **IBAD von Nb**

- **IBAD von YSZ**

- **Ionenstrahlunterstütztes Sputtern**

Dzick [2000] berichtet bei einem niedrigem I/A-Verhältnis und einer Ionenenergie von 300 eV von der Existenz einer spannungsinduzierten \(\langle 011 \rangle \)-Fasertextur in der Keimphase. Je nach Ausrichtung der \(\langle 011 \rangle \)-orientierten Körner in dieser Keimschicht induziert der unterstützende Ionenstrahl die Bildung epitaktischer \(\langle 001 \rangle \)-orientierter Körner oder führt zum Weiterwachsen der \(\langle 011 \rangle \)-Körner. Die so neu gebildeten epitaktischen \(\langle 001 \rangle \)-Körner weisen schon zu Beginn eine Vorzugsrichtung in der Ebene auf. Durch eine anisotrope Ätzrate werden Körner mit einer \(\langle 111 \rangle \)-Richtung parallel zum Ionenstrahl bevorzugt, so daß diese alle anders orientierten Körner (d.h. sowohl fehlorientierte \(\langle 001 \rangle \)-Körner, als auch bisher überlebende \(\langle 011 \rangle \)-Körner) überwachsen können. Mit wachsender Schichtdicke kommt es auf diese Art und Weise zu einer Verbesserung der in-plane Textur.

Bei einem höheren I/A-Verhältnis und gleicher Ionenenergie beobachten Iijima et al. [1998] eine regellose Keimbildung. Innerhalb der ersten 100 nm erfolgt allerdings eine gute

Ionenstrahlunterstützte Laserdeposition [Betz 1998]

In diesen Experimenten wurde bei einer Ionenenergie von 300 eV zunächst eine polykristalline Keimbildung beobachtet, aus der sich in der ersten Wachstumsphase eine \(\langle 100\rangle\)-Fasertextur herausbildet. Parallel dazu kommt es immer wieder zur erneuten Keimbildung. In der zweiten Wachstumsphase ist eine kolumnare Struktur zu beobachten, die von Körnern mit einer \(\langle 100\rangle\)-Richtung parallel zur Substratnormalen bestimmt wird. Mit wachsender Schichtdicke kommt es zu einer Verbesserung der *in-plane* Ausrichtung. Als Ursache für diese *in-plane* Texturierung werden Channelingeffekte diskutiert, durch die die kinetische Energie der Ionen in unterschiedliche Tiefe deponiert wird. Dadurch werden, abhängig von der Orientierung, die obersten atomaren Lagen erwärmt und können so zu einer Minimierung der gesamten Oberflächenenergie führen. Im Gegensatz dazu spielt eine anisotrope Sputterausbeute auf Grund der geringen experimentell gemessenen Absputterraten von ca. 5% nur eine untergeordnete Rolle.

In allen Fällen wird deutlich, daß es sich um eine Wachstumsauslese handelt, d.h. mit wachsender Schichtdicke strebt die *in-plane* Halbwertsbreite der Würfeltextur einem Minimum zu.

IBAD von TiN

2. Ionenstrahlunterstütztes Schichtwachstum
3 Versuchsaufbau und Charakterisierungsmethoden

Im Rahmen dieser Arbeit soll die Textur- und Mikrostrukturentwicklung in MgO-Schichten bei der ionenstrahlunterstützten Laserdeposition (IBALD) untersucht werden. Im folgenden wird die dazu genutzte Depositionsanlage vorgestellt. Anschließend werden die verwendeten Charakterisierungsmethoden beschrieben, wobei insbesondere auf die hochenergetische Elektronenbeugung eingegangen wird.

3.1 Aufbau der IBALD-Anlage

Die Ergebnisse dieser Arbeit wurden in zwei Depositionskammern gewonnen, die beide eine Depositionsgeometrie aufwiesen, wie sie in Abbildung 3.1 schematisch dargestellt ist. Der Hauptunterschied bestand darin, daß bei Kammer 1 der Einfallswinkel α des Ionenstrahls auf 55° festgelegt war, während er in Kammer 2 in einem Bereich zwischen 35 und 75° geändert werden konnte, ohne daß alle anderen Depositionsparameter geändert werden müssen. Dies ging jedoch mit einer Vergrößerung des Abstandes zwischen Ionenquelle und Substrat einher, was vor allem eine Verringerung der Ionenstromdichte j zur Folge hatte.

Im folgenden sollen nun anhand von Abbildung 3.2 die wichtigsten Elemente der Depositionsanlage vorgestellt und dabei die standardmäßig verwendeten Parameter aufgeführt werden:

- Die Anlage weist durch einen Turbomolekularpumpstand (a) einen Basisdruck von ca. 1×10^{-6} mbar auf. Durch eine geregelte Gaszufuhr über die Ionenquelle wurde während der ionenstrahlunterstützten Deposition ein Arbeitsdruck von $5 - 8 \times 10^{-4}$ mbar verwendet, was einem Fluß von jeweils 5 sccm Argon und Sauerstoff entspricht.

- Für die Deposition wurde ein Excimer-Laser mit einer KrF-Gasfüllung ($\lambda = 248$ nm) verwendet. Der Laserstrahl wurde mit einer Blende im Querschnitt verkleinert und durch ein
optisches System (c) auf einem aufgerauhten MgO-Einkristalltarget (b) abgebildet. Auf der Oberfläche wurde dabei eine Energiedichte von $2 - 4 \text{ J/cm}^2$ erreicht. Standardmäßig wurde mit einer Pulsfrequenz von 5 Hz bei einer Pulsdauer von ca. 30 ns gearbeitet, wobei Pulsfrequenzen bis zu 50 Hz möglich waren. Zur gleichmäßigen Abtragung wurde das Target mit Hilfe des Targethalters um zwei verschiedene Achsen bewegt.

- Das Substrat mit der Größe $10 \times 10 \text{ mm}^2$ wurde mit Leitsilber auf die Substratplatte aufgeklebt und direkt gegenüber dem Target in einem Abstand von ca. 6 cm angeordnet. Mit Hilfe eines speziellen Widerstandsheizers (d) konnte es bis auf eine Temperatur von 700°C gebracht werden. Die Temperaturmessung erfolgte dabei mit einem Thermoelement direkt in der Substratplatte. Über einen Manipulator war das Substrat dreh- und positionierbar, was insbesondere für die \textit{in-situ} RHEED-Untersuchungen notwendig war.

- Der unterstützende Ionenstrahl wurde von einer Plasmastrahlungsquelle mit Hochfrequenzanregung (e) erzeugt, die mit einem Gemisch aus Argon und Sauerstoff betrieben wurde. Der Ionenstrahl wird dabei über eine Eingitteroptik ausgekoppelt. Dadurch war es nicht möglich, die Parameter unabhängig voneinander einzustellen. Die Energie konnte zwischen 200 und 1000 eV variiert werden, wobei oberhalb 400 eV eine Strahldivergenz von unter 5° FWHM (Full Width of Half Maximum) beobachtet wurde. Gleichzeitig wurden Ionenstromdichten zwischen 40 und 90 µA/cm² erreicht.

- Als \textit{in-situ} Meßmethode stand an der Kammer eine RHEED-Quelle (f) mit dazugehörigem RHEED-Schirm (g) zur Verfügung. Dabei war die Ebene, die von Elektronenstrahl und Substratnormalen aufgespannt wird, um 90° versetzt gegenüber der Ebene angeordnet, die von Ionenstrahl und Substratnormalen aufgespannt wird. Nähere Details zu dieser Charakterisierungsmethode werden in Kapitel 3.2 dargestellt.
Einige der Depositionsparameter konnten nicht *in-situ* während der Messung bestimmt werden. Vielmehr mußten dafür Meßanordnungen an Stelle des Substrathalters eingebaut werden, um die entsprechenden Werte zu bestimmen. Im folgenden soll kurz darauf eingegangen werden:

- Eine direkte Bestimmung der Depositionsrate erfolgte mit Hilfe eines Schwingquarzes. Damit ist zum einen nur eine Messung bei Raumtemperatur möglich, zum anderen weisen die ermittelten Werte einen relativ hohen Fehler auf. Eine exaktere Bestimmung der effektiven Depositionsrate r erfolgt deshalb über die Messung der Schichtdicke (siehe Kapitel 3.3), aus der der Wert für r zurückgerechnet werden konnte.
3.2 Hochenergetische Elektronenbeugung (RHEED)

In Abbildung 3.4 ist der Grundaufbau der Beugungsanordnung skizziert. Ein Elektronenstrahl mit einer Energie zwischen 10 und 40 kV wird unter einem sehr flachen Winkel \(\theta < 5^\circ \) auf die Probenoberfläche fokussiert. Dieser Strahl wird in den Oberflächenbereichen der Schicht gebeugt, die entsprechenden Reflexe können auf der gegenüberliegenden Seite mit Hilfe eines Fluoreszenzschirmes sichtbar gemacht werden. Die Reflexe werden anschließend mit einer CCD-Kamera aufgenommen und für die Auswertung abgespeichert. Im Rahmen dieser Arbeit kam ein Bestec ee30 RHEED-System zum Einsatz. Typischerweise wurde ein 25 kV-Elektronenstrahl mit einem Strom von 50 – 100 µA unter einem Winkel \(\theta_0 \) von 0,5 – 2° verwendet. Die verwendete CCD-Kamera arbeitete mit einer Aufnahmefrequenz von 20 Hz. Um die Empfindlichkeit zu erhöhen, wurden jeweils 8 Bilder aufaddiert und das resultierende Bild anschließend abgespeichert.

In Abbildung 3.4 ist der Grundaufbau der Beugungsanordnung skizziert. Ein Elektronenstrahl mit einer Energie zwischen 10 und 40 kV wird unter einem sehr flachen Winkel \(\theta < 5^\circ \) auf die Probenoberfläche fokussiert. Dieser Strahl wird in den Oberflächenbereichen der Schicht gebeugt, die entsprechenden Reflexe können auf der gegenüberliegenden Seite mit Hilfe eines Fluoreszenzschirmes sichtbar gemacht werden. Die Reflexe werden anschließend mit einer CCD-Kamera aufgenommen und für die Auswertung abgespeichert. Im Rahmen dieser Arbeit kam ein Bestec ee30 RHEED-System zum Einsatz. Typischerweise wurde ein 25 kV-Elektronenstrahl mit einem Strom von 50 – 100 µA unter einem Winkel \(\theta_0 \) von 0,5 – 2° verwendet. Die verwendete CCD-Kamera arbeitete mit einer Aufnahmefrequenz von 20 Hz. Um die Empfindlichkeit zu erhöhen, wurden jeweils 8 Bilder aufaddiert und das resultierende Bild anschließend abgespeichert.

Durch die soeben beschriebene Geometrie dringen die Elektronen bei der verwendeten Energie nur wenige Nanometer tief in das Material ein [Lagally 1985]. Dadurch steht mit RHEED ein oberflächensensitives Verfahren zur Verfügung. Grundsätzlich unterscheidet man in Abhängigkeit von der Oberflächenbeschaffenheit zwei Beugungsfälle, die mit Hilfe der Ewaldkonstruktion veranschaulicht werden können:

- **Beugung an glatten Oberflächen: RHEED-Reflexe**

An ideal glatten, zweidimensionalen Oberflächen findet die Beugung praktisch nur in der obersten Monolage statt. Das reziproke Gitter entartet deshalb zu einer Anordnung von Linien, die senkrecht zur Substratoberfläche stehen. In Abbildung 3.5a ist die Ewaldkonstruktion für den Fall einer hochsymmetrischen Richtung gegeben, die Reflexe sind dabei auf konzentrischen Lauekreisen angeordnet (Abbildung 3.5b). Ein Beispiel ist in Abbildung 3.5c dargestellt, das die
Beugung an der \{001\}-Oberfläche eines MgO-Einkristalles zeigt, wobei der Elektronenstrahl annähernd parallel zu einer \(\langle 100\rangle\)-Richtung einfällt.

- **Beugung an rauhen Oberflächen: Transmissionsreflexe**

Abbildung 3.5: Beugungsbedingungen für RHEED an einer glatten Einkristalloberfläche:
(a) Ewaldkonstruktion; (b) schematische Darstellung des Beugungsbildes auf dem Fluoreszenzschirm; (c) RHEED-Aufnahme einer \{001\} MgO-Einkristallfläche in eine \(\langle 100\rangle\)-Richtung

Abbildung 3.6: Beugungsbedingungen für Transmissionsbeugung an einer rauhen Oberfläche:
(a) Ewaldkonstruktion; (b) schematische Darstellung des Beugungsbildes auf dem Fluoreszenzschirm; (c) RHEED-Aufnahme eines \{001\} MgO-Filmes in eine \(\langle 100\rangle\)-Richtung
Abbildung 3.7: Veränderung der Reflexe entsprechend der Oberflächenstruktur [Lagally et al. 1988]

Die beiden diskutierten Beugungsbedingungen stellen Idealfälle dar. In der Realität werden oft weder ideale Oberflächen beobachtet, noch sind isotrope Inseln oder Rauhigkeiten prägend für die Oberflächenstruktur. Die Realstruktur spiegelt sich vielmehr in Form und Intensität der RHEED-Reflexe wieder. Dies soll zunächst anhand der Abbildung 3.7 näher diskutiert werden [Lagally et al. 1988]. Ausgehend vom Fall der Beugung an rauhen Oberflächen (a), führt die Veränderung der Inselmorphologie zu einer ellipsoiden Entartung der Gitterkugeln und damit zu einer elliptischen Verschmierung der Reflexe (b, c). Bei immer flacher werdenden, ausgedehnten Objekten (c) führt dies schließlich zu den sogenannten „streaks“, zu Linien, die senkrecht zur Schattenkante auftreten. Ist schließlich auf der Oberfläche nur noch ein System von atomaren Stufen zu beobachten, verändern sich die Streaks in der Art und Weise, daß elliptisch verschmierte Reflexe zu beobachten sind, die nun auf den Lauekreisen angeordnet sind (d). Bei glatten Oberflächen sind dann die schon besprochenen RHEED-Reflexe sichtbar (e).

- die Reflexbreite parallel zur Schattenkante ist umgekehrt proportional zu Korngröße L
- die Reflexbreite senkrecht zur Schattenkante ist umgekehrt proportional zur effektiven Eindringtiefe der Elektronen h und damit ein Maß für die Oberflächenrauhigkeit der Schicht
die Reflexbreite tangential an einen Großkreis um den durchgehenden Strahl (0 0 0) ist direkt proportional zur \textit{out-of-plane} Orientierungsverteilung $\Delta \phi_x$ um die Einfallsrichtung des Elektronenstrahles.

die relativen Intensitäten I_{rel} der Reflexe sind umgekehrt proportional zur \textit{in-plane} Orientierungsverteilung $\Delta \phi$ mit Hilfe eines Algorithmus, wie er bei Betz et al. [1997] beschrieben ist, kann dieser Wert aus der Intensitätsverteilung der äußeren Reflexe bei Drehung um die Substratnormale ermittelt werden, allerdings ist zu beachten, daß eine zusätzliche Korngrößenabhängigkeit bei Korngrößen unter 30 nm besteht [Brewer et al. 2001a].

3.3 Röntgenbeugung

Nach Abschluß der Deposition wurden die Schichten mit Standardröntgenmethoden charakterisiert. Dazu können über die bekannte Bragg-Beziehung

$$2d \sin \theta = n \lambda.$$ (3.1)
bei bekannter Wellenlänge \(\lambda \) der verwendeten monochromatischen Röntgenstrahlung und mit Hilfe des Winkels \(2\theta \) zwischen einfallendem und gebeugtem Strahl für einen beobachteten Reflex die entsprechenden Netzebenenabstände \(d \) ermittelt werden. Im Rahmen dieser Arbeit wurden zwei Röntgenbeugungsmethoden angewendet:

- \(\theta-2\theta \)-Scan

- Vierkreisdiffraktometer

3.4 Schichtdickenmessung

Wie in Kapitel 3.1 schon diskutiert wurde, ist die Messung der Depositionsrate mit Hilfe eines Schwingquarztes mit großen Fehlern behaftet. Eine genauere Bestimmung ist über die Ermittlung der Schichtdicke möglich, aus der dann eine effektive Depositionsrate \(r \) rückgerechnet werden kann. Für die Schichtdickenbestimmung kamen zwei Methoden zum Einsatz:
3. Versuchsaufbau und Charakterisierungsmethoden

- **Schichtdickenmessung an einer Stufe**

 Bei dieser Methode wird während der Deposition ein Teil der Probe abgedeckt und damit nicht beschichtet. Anschließend wird die so entstandene Stufe mit einem \(\alpha \)-stepper ausgemessen. Die Funktionsweise ist dabei ähnlich der eines Atomkraftmikroskops (siehe Kapitel 3.5). Mit dieser Vorgehensweise kann zusätzlich die Homogenität der Schichtdicke entlang der Stufe kontrolliert werden. Nachteilig ist, daß dieses Verfahren speziell präparierte Proben benötigt und es dadurch zur Kollision mit der RHEED-Charakterisierung kommt.

- **Schichtdickenbestimmung am Ellipsometer**

 Aus den so gemessenen Spektren können mit Hilfe eines umfangreichen mathematischen Formalismus sowohl die optische Konstanten als auch die Schichtdicke ermittelt werden [Azzam und Bashara 1987]. In der Praxis erfolgt die Auswertung über die Simulation der Spektren. Dazu wird ein Schichtpaket konstruiert, das aus übereinanderliegenden Multilagen mit glatten Grenzflächen besteht. In den einzelnen Lagen können sowohl die Schichtdicke als auch verschiedene optische Konstanten als freie Parameter fungieren. Diese werden so durch eine Fitprozedur angepaßt, daß die Differenz zwischen gemessenen und simulierten Spektren minimal wird. Im Rahmen dieser Arbeit wurden gute Ergebnisse mit folgendem Schichtaufbau erzielt: Si-Substrat / Si\(_2\)O\(_2\) / Si\(_3\)N\(_4\) / MgO / Oberflächenrauhigkeit (entspricht Schicht mit 50 % MgO und 50 % Luft). Als optische Konstanten der Substratbestandteile wurden die Literaturwerte der einzelnen Materialien verwendet. Für die MgO-Schicht wurden sowohl die Literaturwerte als auch ein numerisches Modell mit freien optischen Konstanten gewählt. Beide Modelle führten (unter Verwendung einer Oberflächenrauhigkeit) fast immer zu guten Ergebnissen, wobei die Schichtdicken um ca. 5% variieren. Vergleiche mit Ergebnissen aus der Messung an einer Stufe bestätigten die

![Abbildung 3.9: Meßprinzip eines Ellipsometers (E: Vektor des elektrischen Feldes)](image)

3.5 Mikrostrukturuntersuchungen

Zur Charakterisierung der Mikrostruktur wurden mehrere Standardmethoden verwendet, die im folgenden kurz angesprochen werden:

- **Atomkraftmikroskopie (AFM)**

\[R_{rms} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (Z_i - \bar{Z})^2} \]

wobei \(Z_i \) die gemessenen Höhenwerte, \(\bar{Z} \) deren Mittelwert und \(N \) die Anzahl der Meßpunkte im Meßgebiet ist.

- **Rasterelektronenmikroskopie (REM)**

4 Grundcharakteristika von MgO

In Rahmen dieses Kapitels sollen die Eigenschaften des Magnesiumoxides zusammengestellt werden, die für das Verständnis der Teilprozesse bei der ionenstrahlunterstützten Laserdeposition wichtig sind. Anschließend werden die Ergebnisse der Untersuchungen zum Wachstum von MgO-Dünnschichten ohne Ionenstrahlunterstützung präsentiert, die Grundlage für die folgenden IBALD-Experimente sind.

MgO weist im Einzelmolekül eine Bindungsenergie von ca. 10 eV bei einer Bindungslänge von 0,176 nm auf, so daß sich bei der Verdampfung schon in der Gasphase Moleküle aus den Einzelelementen bilden [Yadavalli et al. 1990]. In der festen Phase kristallisiert MgO in der NaCl-Struktur (Abbildung 4.1) mit einer Gitterkonstanten \(a_0 \) von 0,421 nm (bei 25°C). Die Struktur besteht aus zwei kubisch flächenzentrierten Untergittern für die Magnesium- und die Sauerstoffionen, die gegeneinander um \(a_0/2 \) in \(\langle 100 \rangle \)-Richtung verschoben sind. Die Bindungen haben einen stark ionischen Charakter, was sich auch in der Schmelztemperatur von ca. 2800°C widerspiegelt. Die Dichte eines MgO-Kristalls beträgt 3,576 g/cm³, der thermische Ausdehnungskoeffizient wurde im Bereich von 20 bis 1000°C mit \(1,4\times10^{-5} \, \text{K}^{-1} \) bestimmt [Landolt-Börnstein 1975]. Ein weiteres Charakteristikum ist sein hygroskopisches Verhalten, so daß Einkristalle oder deponierte Schichten immer unter Feuchtigkeitsabschluß gelagert werden müssen.

4.1 Wachstumseigenschaften von MgO

36

4. Grundcharakteristika von MgO

10 eV sehr stark gebunden. Chambers et al. [1994] beobachten in ihren MBE-Untersuchungen zum homoeptaktischen Wachstum von MgO mit steigender Temperatur einen Wechsel des Wachstumsmodus. Während bei 450°C ein Inselwachstum gefunden wurde, wird bei 750°C ein step-flow Mechanismus beobachtet, der zu sehr glatten Oberflächen führt. Im letzteren Fall diffundieren die Moleküle so lange auf der Oberfläche, bis sie an energetisch günstige Plätze gelangen (z.B. Kinken in Stufen), an denen sie fest eingebunden werden (Abbildung 4.2b). Deshalb ist es möglich, durch Deposition bei diesen Temperaturen die Qualität von MgO-Einkristallspaltflächen weiter zu verbessern. Aktuelle molekulardynamische Simulationen finden eine ähnliche Temperaturabhängigkeit des Wachstumsmodus [Kubo et al. 1997]. Während bei 300 K die Ausbildung von Inseln beobachtet wird, dominiert bei 1000 K das Lagenwachstum. Als Ursache wird die Temperaturabhängigkeit des Diffusionskoeffizienten für die Oberflächen-Diffusion eines MgO-Moleküls auf einer MgO {001}-Fläche angegeben. Dadurch können die Moleküle im Fall hoher Temperaturen zu energetisch günstigeren Plätzen wandern, was zu dem schon beschriebenen step-flow Mechanismus führt.

4.2 Ionenbeschluß von MgO

4.3 Ablationsprozeß von MgO

Entscheidenden Einfluß auf die Wachstumsprozesse bei der ionenstrahlunterstützten Laserdeposition hat die Kinetik des Depositionsverfahrens (siehe Kapitel 2.1.3). Im Rahmen dieser Arbeit wurde dabei ein MgO-Einkristalltarget mit einem KrF-Laser ($\lambda = 248$ nm) ablatiert. Die Absorption eines perfekten MgO-Einkristalls im sichtbaren wie im ultraviolettlichen Bereich ist sehr gering. Deshalb müssen Gitterstörungen vorhanden sein, die eine Absorption der Energie ermöglichen und zur Ablation des Materials führen. Im MgO spielen insbesondere die F-Zentren (Sauerstoffleerstelle mit zwei Elektronen) und die F$^+$-Zentren (Sauerstoffleerstelle mit einem Elektron) eine entscheidende Rolle (Abbildung 4.3). Diese zeigen eine starke Absorption bei der verwendeten Wellenlänge von 248 nm [Rosenblatt et al. 1989].

Aus dieser Betrachtung wird deutlich, daß die Ablationsrate von der Oberflächenbeschaffenheit abhängig ist. Die untere Ablationsschwelle wurde für polierte MgO-Einkristalltargets mit ca. 2 J/cm² bestimmt [Webb et al. 1993], während sie bei gesinterten MgO-Targets bei 0,7 J/cm² liegt [Lichtenwainer et al. 1993]. Die für die eigenen Versuche verwendeten Einkristalltargets wurden vor Verwendung aufgerauht, um gleich von Beginn an genügend Defekte und damit eine konstante Ablationscharakteristik zu erhalten.

Die in vielen Systemen für die Laserdeposition typischen Tröpfchen spielten in der Deposition von MgO-Schichten nur eine untergeordnete Rolle (vgl. Abbildung 6.6a).
4.4 Wachstum von MgO mittels Laserdeposition

Im letzten Teil dieses Kapitels sollen die Ergebnisse zum Wachstum laserdeponierter MgO-Schichten ohne Ionenstrahlunterstützung dargestellt werden. Sie bilden die Grundlage für die Untersuchungen zur ionenstrahlunterstützten Laserdeposition von MgO, die im folgenden Kapitel präsentiert werden. Für eine ausführlichere Darstellung und Diskussion der Ergebnisse soll dabei auf Beyer [2000] verwiesen werden.

4.4.1 Wachstum auf amorphen Substraten

Bei der Deposition von Magnesiumoxid auf amorphem Siliziumnitrid (Si_3N_4) ist in den Schichten eine Temperaturabhängigkeit der Vorzugsorientierung zu beobachten. Wie aus Abbildung 4.5a ersichtlich ist, wachsen die Schichten unterhalb von 200°C mit einer $\langle 110 \rangle$-Orientierung parallel zur Substratnormalen auf. Der breite Peak in den Röntgendiffraktogrammen weist dabei auf eine nanokristalline oder stark verspannte Struktur hin. Mit steigender Temperatur ändert sich die Vorzugsorientierung von der $\langle 110 \rangle$ zu einer $\langle 100 \rangle$-Richtung. Zusätzlich ist ein $\langle 111 \rangle$-Peak zu sehen, der mit steigender Temperatur intensitätsstärker wird. Texturmessungen ergaben für alle untersuchten Proben Fasertexturen, wie sie exemplarisch in Abbildung 4.5b dargestellt sind. Eine Veränderung der Depositionsrate führte zu keiner qualitativen Änderung der beschriebenen Temperaturabhängigkeit. Es wird lediglich eine leichte Verschiebung der Temperaturbereiche beobachtet, in denen die einzelnen Vorzugsorientierungen stabil sind. Lediglich im Fall höherer Gasdrücke wird bei Raumtemperatur die $\langle 110 \rangle$-Orientierung von der $\langle 111 \rangle$-Orientierung abgelöst. Für die Deposition auf amorphem SiO_2 wurde eine ähnliche Temperaturabhängigkeit wie für das Si_3N_4 gefunden.

Abbildung 4.5: Temperaturabhängigkeit der Vorzugsorientierung von laserdeponierten MgO-Schichten ($r = 2.5 \, \text{Å/s}$): Röntgendiffraktogramme in θ-2θ-Geometrie (a); (200)-Polfiguren einer MgO-Schicht, deponiert bei 25°C (b) und 650°C (c)
Die Textur- und Strukturentwicklung bei der Laserdeposition von MgO wurde eingehender mit RHEED und mit dem AFM untersucht. Dabei lassen sich zwei typische Temperaturbereiche unterscheiden:

- **$T < 250^\circ C$**

 In der Keimbildungsphase zeigen die RHEED-Aufnahmen ein diffuses Bild, was auf eine amorphe oder nanokristalline Struktur hinweist. Mit wachsender Schichtdicke werden aber immer deutlicher Reflexe sichtbar, die einer $\langle 110 \rangle$-Fasertextur zugeordnet werden konnten. Dies legt den Schluß nahe, daß die Textur bei niedrigen Temperaturen durch eine Wachstumsauslese entsteht.

- **$T > 250^\circ C$**

 In diesem Bereich ist ein völlig anderes Bild zu beobachten. In der Keimbildung zeigt das RHEED-Pattern eine $\langle 100 \rangle$-Fasertextur, wobei die Reflexe unscharf sind. Dies weist wiederum auf eine kleine Korngröße oder auf einen hohen Anteil von eingebauten Gitterfehlern hin (Abbildung 4.6a). Mit wachsender Schichtdicke findet ein Texturwechsel statt. Dabei wird ab einer Schichtdicke von 20 nm die Oberflächentextur immer mehr von einer neuen Texturkomponente bestimmt (Abbildung 4.6b+c). Dabei handelt es sich um eine verkippte $\langle 111 \rangle$-Fasertextur, wobei die $\langle 111 \rangle$-Richtung um 5-10° gegenüber der Substratnormalen geneigt ist. Eine ähnliche Textur wurde in den Untersuchungen von Aboelfotoh et al. [1977] gefunden. Bei einer Schichtdicke von 100 nm ist im Oberflächenbereich keine $\langle 100 \rangle$-Fasertexturkomponente mehr zu beobachten (Abbildung 4.6d). Bei weiterer Deposition wird der Übergang zu einer $\langle 111 \rangle$-Fasertextur ohne Verkippung beobachtet. Allgemein werden mit steigender Temperatur die RHEED-Reflexe schärfer, was auf eine perfektere Struktur hinweist. Dies kann mit einer Beschleunigung der Diffusionsprozesse mit wachsender Temperatur erklärt werden, wie sie von Kubo et al. [1997] gefunden wurde. Gleichzeitig geht die Transformation von der $\langle 100 \rangle$-Fasertextur hin zur $\langle 111 \rangle$-Fasertextur schneller vorstatten. Diese Beobachtung stimmt mit der Temperaturabhängigkeit überein, die anhand der Röntgendiffraktogramme dargestellt wurde. Mögliche Ursache für diese Texturänderung mit wachsender Schichtdicke ist eine Minimierung der Gesamtenergie, wie sie

![RHEED-Pattern einer wachsenden PLD-Schicht (T = 500°C, r = 1,5 Å/s) bei einer Dicke von: (a) 5 nm, (b) 30 nm, (c) 60 nm, (d) 120 nm](image)
4. Grundcharakteristika von MgO

auch beim TiN diskutiert wird ([Oh und Je 1993], vgl. Kapitel 2.1.3). Während in der Keimbildungsphase die (100)-Orientierung aufgrund der geringeren Oberflächenenergie bevorzugt wird, wird der Einfluß der Verzerrungsenergie mit wachsender Schichtdicke immer größer, so daß ein Texturübergang zur (111)-Orientierung stattfindet.

4.4.2 Homoepitaktisches Wachstum auf (001) MgO-Flächen

Abbildung 4.8: RHEED-Beugungsbilder (entlang einer (100)-Richtung) und AFM-Aufnahmen (1x1 µm², 50 nm Höhenauflösung) der Oberfläche von 750 nm dicken MgO-Filmen auf {001} MgO-Einkristallflächen, abgeschieden bei einer Depositionstemperatur von: (a) 25°C; (b) 300°C; (c) 600°C
5 Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

Die Struktur- und Texturwicklung bei der ionenstrahlunterstützten Deposition wird von vielen Parametern beeinflußt. Diese können, wie für die Ionenquelle in Kapitel 3.1 beschrieben, zusätzlich voneinander abhängig sein. Um den Einfluß der einzelnen Parameter auf den Wachstumsprozeß besser charakterisieren zu können, wurde bei der Untersuchung meist nur einer von ihnen variiert. Eine zusätzliche Schwierigkeit besteht darin, daß die Texturbeschreibung auf Basis der RHEED-Aufnahmen mangels quantitativ auswertbarer Parameter oft nur qualitativ erfolgen kann. Im folgenden wird zunächst der Wachstumsprozeß bei der ionenstrahlunterstützten Deposition auf amorphen Substraten dargestellt. Anschließend werden ausgewählte Modellexperimente an MgO-Einkristallen diskutiert, die vor allem die Rolle des Ionenstrahls während der Deposition näher beleuchten sollen. Abgerundet werden die Betrachtungen durch die Simulation von Schädigungsprozessen, die durch die Ionen verursacht werden.

5.1 Wachstum auf amorphem Substrat

Der Schwerpunkt der Untersuchungen lag auf der ionenstrahlunterstützten Abscheidung von MgO-Schichten auf amorphem Si$_3$N$_4$. Während der Deposition erfolgte eine detaillierte in-situ RHEED-Charakterisierung. Als Substrat wurden 10x10 mm2 große Teilstücke eines einkristallinen Siliziumwafers verwendet, auf denen eine ca. 40 nm dicke Si$_3$N$_4$-Schicht aufgebracht war. Die Oberfläche wies eine rms-Rauhigkeit von 0,2 nm auf. Sowohl mit Röntgenbeugung, als auch durch RHEED-Aufnahmen wurde die amorphe Struktur der Si$_3$N$_4$-Schicht bestätigt.

Bei der Darstellung der Ergebnisse wird im folgenden zwischen zwei charakteristischen Bereichen unterschieden. Im Bereich der Keimbildung und Koaleszenz unterhalb einer Dicke von 10 nm wurde die gewünschte Würfelorientierung beobachtet. Im Gegensatz dazu wird die anschließende Wachstumsphase von einer Texturänderung bestimmt. Diese führt zu stabilen Endorientierungen, die mit wachsender Schichtdicke erhalten bleiben. Die gefundenen Texturkomponenten sind in Abbildung 5.1 sowohl schematisch als auch anhand einer indizierten RHEED-Aufnahme veranschaulicht. Die Ausrichtung der MgO-Kristallstruktur kann wie folgt beschrieben werden:

- Komponente A: $\langle 110 \rangle ||$ Substratnormal und $\langle 100 \rangle ||$ Ionenstrahl (Abbildung 5.1a)
- Komponente B: $\langle 111 \rangle ||$ Substratnormal und $\langle 100 \rangle ||$ Ionenstrahl (Abbildung 5.1b)
- Würfellage: $\langle 100 \rangle ||$ Substratnormal und $\langle 110 \rangle ||$ Ionenstrahl (Abbildung 5.1c)

Entsprechend dem bei der Deposition verwendeten Ioneneinfallswinkel α können Abweichungen bis zu 10° von den angegebenen Orientierungen auftreten, da die Winkel zwischen einzelnen Richtungen in der kubischen Kristallstruktur des MgO fest vorgegeben sind. Außerdem weisen diese Komponenten typische Intensitätsverteiungen um ihre Maxima auf, wie sie für die RHEED-Aufnahmen in Kapitel 3.2 schon diskutiert wurden.
5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

5.1.1 Einfluß der Substrattemperatur

- $T < 250^\circ C$

Abbildung 5.1: Haupttexturkomponenten in IBALD-MgO Filmen: (a) Komponente A, (b) Komponente B, (c) Würfellation; oben: indizierte RHEED-Aufnahme; unten: schematische Darstellung einer entsprechend orientierten kubischen Gitterzelle auf dem Substrat mit markierter Einfallsrichtung des Ionenstrahls

In diesem Temperaturbereich wurde, im Gegensatz zu den Ergebnissen beim ionenstrahlunterstützten Elektronenstrahlverdampfen [Wang et al. 1997], keine würfelorientierte Keimbildung beobachtet. Bei Raumtemperatur entstand vielmehr in einer Schichtdicke von wenigen Nanometern die Texturkomponente B (Abbildung 5.2a). Wird die Depositionstemperatur auf 200°C erhöht, wurde zusätzlich zu dieser Orientierung die Texturkomponente A gefunden. Beiden Komponenten gemeinsam ist die Ausrichtung der $\langle 100 \rangle$-Richtung parallel zum Ionenstrahl. Im Vergleich zu den Experimenten ohne Ionenstrahlunterstützung, bei denen in diesem Schichtdickenbereich ein amorphes Wachstum beobachtet wurde, führt die Erhöhung der Diffusion durch den Energieeintrag der Ionen dazu, daß schon bei diesen Temperaturen eine kristalline Keimbildung stattfindet. Dabei werden Keime mit einer $\langle 100 \rangle$-Richtung parallel zum Ionenstrahl bevorzugt. Mit wachsender Schichtdicke werden im IBALD-Prozeß lediglich schärfere RHEED-Reflexe der beiden Komponenten beobachtet, ihre Orientierung bleibt jedoch stabil. Dies kann
mit einer wachsenden Korngröße und einer perfekteren Kristallstruktur begründet werden. Röntgenpolfiguren, die an dickeren Schichten gemessen wurden, zeigen eine \textit{in-plane} FWHM von ca. 25°.

\textbf{T > 250°C}

Die RHEED-Aufnahmen einer würfeltexturierten Keimschicht mit scharfen Reflexen wurden einer quantitativen Analyse unterzogen. Mit Hilfe der in Kapitel 3.2 angesprochenen Auswerte-
5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

Die Grenze zwischen den oben beschriebenen Temperaturbereichen ist zusätzlich von den anderen Depositionsparametern abhängig. Bei einem Ioneneinfallswinkel von \(\alpha = 45° \) wird die Ausbildung einer Würfellage in der Keimbildung schon bei einer Temperatur von 200°C beo-
5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

5.1.2 Einfluß der Ionenstrahlparameter

Keimbildung

Der Einfluß des Ioneneinfallswinkels α auf die Texturausbildung wurde im vorhergehenden Abschnitt kurz angesprochen. Bei $\alpha = 45^\circ$ wurde eine scharfe Würfeltextur ab einer Depositions-
Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

Wird ein kleinerer Winkel verwendet (d.h. $\alpha = 35^\circ$), tritt bei Ionenergie von 800 eV ebenfalls eine deutliche Würfelfläche auf. Im Gegensatz dazu weisen die RHEED-Reflexe bei niedrigen Ionenergien auf eine unscharfe Würfeltextur hin. Bei Erhöhung des Ioneneinfallswinkels auf $\alpha = 55^\circ$ wurden in vielen Fällen scharfe Würfflächen beobachtet. Lediglich unter Verwendung niedriger Ionenergien traten Reflexe einer weiteren Orientierung auf. Allgemein ist eine verstärkte Temperaturabhängigkeit zu verzeichnen, erst oberhalb von 400°C wurden deutliche Würfeltexturen mit einer kleinen Streuung um die \emph{out-of-plane} Richtung gefunden. Setzt man den Ioneneinfallswinkel auf $\alpha = 65^\circ$, sind in den RHEED-Aufnahmen zusätzlich zur Würfelfläche weitere Reflexe zu beobachten. Bei niedrigen Ionenergien bleibt dieses Bild bis zu einer Schichtdicke von 100 nm erhalten (Abbildung 5.5a). Dieser Fakt macht es möglich, mit Hilfe von Röntgentexturmessungen zu klären, ob es sich in diesem Fall um eine $\langle 001 \rangle$-Fasertextur oder um zwei unabhängige Würfelorientierungen handelt, die um 45° um die Substratnormale verdreht sind. Die gemessenen Polfiguren (Abbildungen 5.5b+c) zeigen eine gute Ausrichtung der $\langle 001 \rangle$-Richtung parallel zur Substratnormalen. Bezuglich der \emph{in-plane} Textur kann auf Grund der geringen Intensitätsunterschiede keine eindeutige Aussage getroffen werden. Jedoch deutet das Bild auf eine Fasertextur bzw. auf eine Vielzahl um die Substratnormale verdrehter Würfelorientierungen hin. Zusammenfassend kann festgehalten werden, daß der ideale Ioneneinfallswinkel für die Ausbildung einer Würfeltextur bei $\alpha = 45^\circ$ liegt. Der Zusammenhang mit einer Channelrichtung in der MgO-Struktur wurde schon angesprochen und wird in Kapitel 5.2 noch eingehender diskutiert werden. Bei Abweichungen von $\pm 10^\circ$ von diesem idealen Winkel wird noch die Ausbildung einer scharfen Würfelfläche beobachtet, allerdings ist der Parameterbereich erheblich eingeschränkt. Dies erlaubt den Rückschuß, daß die für die Texturierung verantwortlichen Prozesse eine Abweichung von der Ioneneinfallrichtung in dieser Größenordnung tolerieren.

Abbildung 5.5: Charakterisierung einer 100 nm dicken MgO-Schicht, hergestellt mit IBALD bei einem Ioneneinfallswinkel $\alpha = 65^\circ$ ($T = 500^\circ C$, $E = 400$ eV): (a) RHEED-Aufnahme; (b) $\langle 200 \rangle$-Polfigur; (c) $\langle 220 \rangle$-Polfigur

Es ist schon angeklungen, daß die Ionenergie E im untersuchten Bereich zwischen 400 und 800 eV bei einem Einfallswinkel von $\alpha = 45^\circ$ nur einen geringen Einfluß auf die Textur während der Keimbildung hat. Werden andere Ioneneinfallswinkel genutzt, ändert sich dieses Bild. Vor
5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

Eine Veränderung der Ionenstromdichte \(j \) bewirkt eine Änderung des Verhältnisses zwischen unterstützenden Ionen \(I \) und deponierten MgO-Molekülen \(A \). Gute Würfeltexturen wurden bei einem \(I/A \)-Verhältnis von 0,4 gefunden (für das ionenstrahlunterstützte Elektronenstrahlverdampfen wurde der optimale Wert mit 0,7 angegeben [Groves et al. 2001a]). Im Falle einer Absenkung der Ionenstromdichte (d.h. einem kleineren \(I/A \)) werden neben der Würzelfläche zusätzliche regellose texturierte Anteile in den RHEED-Aufnahmen sichtbar. Die verringerte Anzahl der Ionen und der damit geringere Energieeintrag reicht nicht mehr aus, die deponierten Atome und Moleküle vollständig umzuordnen und so die Schicht zu texturieren. Auf Grund der technischen Daten der Ionenquelle war der Wert für die Ionenstromdichte \(j \) bei hoher Ionenenergie nach oben begrenzt. Um das \(I/A \)-Verhältnis zu erhöhen, muß deshalb die Depositionsrate abgesenkt werden, wie es in Kapitel 5.1.3 eingehender diskutiert wird.

- **Wachstum**

Prozeß I: Mit wachsender Schichtdicke ist in diesem Fall eine kontinuierliche Änderung der intensitätsstärksten Reflexpositionen zu beobachten (Abbildung 5.6). Dies entspricht einer kontinuierlichen Orientierungsänderung von der Würzelfläche hin zur Texturkomponente \(A \), d.h. die \(\langle 100 \rangle \)-Richtung der Körner rotiert von der Substratnormalen zur Einfallsrichtung des Ionenstrahls. Nach Ausbildung der Würzelfläche startet dieser Prozeß mit einer Zunahme der out-of-plane Verteilung der Körner, was durch eine Verbreiterung der Reflexe tangential an einen Großkreis um den durchgehenden Strahl zu beobachten ist (vgl. Kapitel 3.2). Dabei wurde keine Korrelation mit der Richtung des einfallenden Ionenstrahls gefunden, d.h. die Zunahme der Halbwertsbreite erfolgt isotrop um die Substratnormale. Im Gegensatz zum Prozeß II kommt es zu keiner komplett regellosen Orientierungsverteilung. Vielmehr setzt mit wachsender Schichtdicke ein langsamer Orientierungsdrift ein, der zu der stabilen Komponente \(A \) führt. Anschließend erfolgt wieder eine Schärfung der out-of-plane Verteilung.

Der Prozeß I ist charakteristisch für Ioneneinfallswinkel \(\alpha \geq 55^\circ \), für hohe Ionenenergien (d.h. vor allem bei \(E = 800 \) eV) und große Ionenstromdichten \(j \). Dies sind Parameter, bei denen sowohl der Energieeintrag durch die Ionen als auch die durch die Ionen verursachten Schädi-
5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

Die Ioneneinfallswinkel

Prozeß II: Im Unterschied zum soeben diskutierten Fall wird bei einem Ioneneinfallswinkel \(\alpha \leq 45^\circ \) die Würffellage komplett von einer regelloser Textur abgelöst (Abbildung 5.7). Dabei nimmt zunächst, analog zu Prozeß I, die out-of-plane Verteilung immer weiter zu. Aus der so entstandenen regellosen Textur entwickeln sich im Anschluß mit wachsender Schichtdicke bevorzugte Orientierungen. Werden dabei hohe Ionenenergien verwendet, bildet sich die Textur-
komponente \(A \) und/oder \(B \) heraus. Dies kann über eine Wachstumsauslese begründet werden, die Körner mit einer \(\langle 100 \rangle \)-Richtung parallel zum Ionenstrahl bevorzugs. Mechanismen, die diese Auslese hervorrufen können, wie eine anisotrope Sputterrate oder anisotrope Ionenstrahlschäden, werden in Kapitel 5.2 näher diskutiert. Der Vergleich zwischen Abbildung 5.6d und 5.7d macht deutlich, dass dieser Ausleseprozess nur langsam abläuft. Im Vergleich zu Prozeß I ist bei Schichtdicken von 100 nm noch ein großer Anteil von regellos orientierten Körnern zu beobachten. Im Gegensatz zu dem gerade beschriebenen Szenario entwickeln sich bei niedriger Ionenenergie und niedriger Ionenstromdichte Fasertexturen. Hier tragen die Ionen zwar Energie in die Schicht ein, diese reicht allerdings nicht aus, biaxiale Texturen einzustellen.

Die Unterschiede zwischen den beiden beschriebenen Prozessen werden deutlicher, wenn man die Änderung der Reflexe mit wachsender Schichtdicke entlang ausgezeichneter Linien beobachtet. In Abbildung 5.8 wurden dazu die Reflexintensitäten entlang zweier Lauekreise im Zeitverlauf der Deposition aufgetragen. Bei beiden Prozessen entsteht die Würzelfläche in der Keimbildung. Mit wachsender Schichtdicke sind jedoch die Unterschiede in den Reflexverläufen sichtbar. Während in Abbildung 5.8b (Prozeß I) eine kontinuierliche Verschiebung der Reflexe zu beobachten ist, wurde bei Prozeß II (Abbildung 5.8c) zunächst eine weitgehend homogene Verteilung auf dem entsprechenden Lauekreis gefunden, aus der sich mit wachsender Schichtdicke wieder einzelne Reflexe herausbilden.

Oberhalb einer Schichtdicke von 200 nm sind kaum noch Veränderungen in den RHEED-Aufnahmen sichtbar, die eingestellte Textur (d.h. die Texturkomponente \(A \) oder \(B \)) wird beibehalten. Mittels Röntgentexturmessungen ist es möglich, die globale Textur der Schicht zu ermitteln. In Abbildung 5.9 ist dafür ein Beispiel dargestellt. In den meisten Fällen wurden biaxiale Texturen mit einer \(in-plane \) Halbwertsbreite zwischen 20° und 30° beobachtet.

Abbildung 5.8: Texturentwicklung während der Deposition von IBALD-MgO, Reflexpositionen entlang von Großkreisen vom Start der Deposition bis zu einer Schichtdicke \(d = 75 \text{ nm} \): (a) Lage der Reflexe, (b) Prozeß I (Bilderserie in Abb. 5.6), (c) Prozeß II (Bilderserie in Abb. 5.7)
5. Ergebnisse der ionenstrahl unterstützten Laserdeposition von MgO

5.1.3 Einfluß der Ablationsparameter

Mit Hilfe dieser Vorgehensweise wurde die Größe des Resputterings im verwendeten IBALD-Prozeß abgeschätzt. Trifft neben dem Teilchenstrom des Depositionsprozesses ein unterstützender Ionenstrahl auf die wachsende Schicht, können schon adsorbierte oder in die Oberfläche eingebaute Atome und Moleküle wieder zerstäubt werden. Resultat dieses Resputterings ist eine reduzierte effektive Depositionsrate. Zur quantitativen Erfassung dieses Prozesses wurden Schichten unter den gleichen Ablationsbedingungen \((T = 400^\circ\text{C})\) jeweils mit und ohne Ionenstrahlunterstützung \((\alpha = 55^\circ, E = 800 \text{ eV}, j = 75 \mu\text{A/cm}^2)\) deponiert. Die abgeschiedenen Schichtdicken wurden ausgemessen und miteinander verglichen. In Abbildung 5.10 ist die relative Dicke der IBALD-Schicht (bezogen auf die Dicke der entsprechenden PLD-Schicht) über der Depositionsrate ohne Ionenstrahlunterstützung aufgetragen. Aus dem Kurvenverlauf wird deutlich, daß mit sinkender Depositionsrate ein wachsender Anteil deponierter Atome und Moleküle wieder abgesputtert wird. Mit den verwendeten Parametern wird eine untere Grenze bei ca. 1 \(\text{Å/s}\) beobachtet. In diesem Fall wird im IBALD-Prozeß effektiv keine Schicht deponiert. Statt dessen werden alle Atome und Moleküle nach Auftreffen auf das Substrat wieder vom Ionenstrahl abgetragen. Dieser Grenzwert entspricht in etwa einem \(I/A\)-Verhältnis von 0.9. Im
Bereich, in dem in der Keimbildung eine scharfe Würfellage beobachtet wird, ist grau unterlegt

Abbildung 5.10: Quantifizierung von Resputteringprozessen: relative Dicke der IBALD-MgO Schicht (bezogen auf die Schichtdicke ohne Ionenstrahlunterstützung) in Abhängigkeit von der Depositionsrate bei reiner PLD ($T = 400\,^\circ C, \alpha = 55^\circ, E = 800 \, eV, j = 75 \, \mu A/cm^2$); der Bereich, in dem in der Keimbildung eine scharfe Würfellage auftritt, wird (50 ± 20) % der ohne Ionenstrahlunterstützung deponierten Moleküle wieder abgetragen. Für das ionenstrahlunterstützte Elektronenstrahlverdampfen liegt die Größe des Resputterings mit 30 – 40 % in einer vergleichbaren Höhe [Groves et al. 2001a]. Aus diesem Ergebnis wird deutlich, daß Sputterprozesse für die Textur- und Strukturentwicklung während der Deposition nicht zu vernachlässigten sind.

Durch die soeben beschriebene Vorgehensweise (d.h. Änderung der Depositionsrate über die Änderung der Energie der Laserpulse) wird das Verhältnis zwischen unterstützenden Ionen und deponierten Molekülen (I/A-Verhältnis) verschoben. Wie in Kapitel 5.1.2 schon beschrieben, werden bei $E = 800 \, eV$ in der Keimbildung scharfe Würfeltexturen bei $I/A \approx 0,4$ gefunden. Bei einer hohen Depositionsrate und einem daraus resultierenden kleineren I/A-Verhältnis werden, wie im Zusammenhang mit dem Einfluß der Ionenstromdichte j diskutiert, nur undeutliche Würfellagen beobachtet. Für $E = 800 \, eV$ liegt dieser untere Grenzwert für eine gute Würfeltextur bei $I/A \approx 0,25$. Im entgegengesetzten Fall (d.h. bei großem I/A-Verhältnis) tritt keine Würzelflage mehr auf, vielmehr entsteht sofort das Beugungsbild einer regellosen Textur, aus der sich dann die Komponente A mit wachsender Schichtdicke entwickelt. Ursache ist der dominierende Einfluß von Resputteringprozessen, der wiederum zu einer sehr geringen effektiven Depositionsrate führt. Zusätzlich können verstärkt Mischprozesse an der Grenzfläche zwischen Schicht und Substrat eine Rolle spielen.

Eine weitere Möglichkeit, die Ablationsparameter zu modifizieren, besteht in der gleichzeitigen Änderung der Blendengröße (die die Größe des Laserspots auf der Targetoberfläche bestimmt) und der Pulsfrequenz des Lasers. Damit ist es möglich, die Energiedichte auf dem Target annähernd konstant zu halten. Gleichzeitig kann durch eine Erhöhung der Pulsfrequenz...
5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

der Teilchenstrom kontinuierlicher gestaltet werden, ohne die Depositionsrate zu ändern. Allerdings wird der nutzbare Bereich durch die technischen Parameter des Lasers begrenzt (d.h. auf die maximale Pulsfrequenz von 50 Hz). Innerhalb dieses Spielraumes wurde keine Verbesserung der Stabilität der Würfellage erreicht. Eine signifikante Verringerung der kinetischen Energie der ablazierten Teilchen ist vor allem über eine Erhöhung des Hintergrundgasdruckes möglich. Allerdings kollidiert dies mit dem Einsatz der Ionenquelle und war deshalb nicht durchführbar.

5.1.4 Substratabhängigkeit

Abbildung 5.11: RHEED-Aufnahmen einer 5 nm dicken würfelorientierten IBALD-MgO Schicht auf verschiedenen amorphen Substraten (α = 45°, T = 500°C, E = 400 eV): (a) Si₃N₄, (b) SiO₂, (c) Suprasil
5. Ergebnisse der ionenstrahl unterstützten Laserdeposition von MgO

Außerdem wurde im Rahmen dieser Arbeit deutlich, daß sowohl Verunreinigungen des Si$_3$N$_4$-Substrates, als auch des MgO-Targets die Keimbildung und damit den Existenzbereich der Würfeläge stark beeinflussen können. Um diese Einflüsse zu minimieren, wurde zum einen die Targetoberfläche unmittelbar vor jeder Deposition freigeschossen. Zum anderen wurde das Substrat vor der Deposition zusätzlich ca. 30 s mit dem Ionenstrahl gereinigt. Mit Hilfe von RHEED-Aufnahmen konnte nachgewiesen werden, daß diese Vorbehandlung keinen Einfluß auf die amorphe Struktur des Si$_3$N$_4$ hatte.

5.1.5 Mikrostrukturcharakterisierung

Abbildung 5.12: Oberflächen topographie von IBALD-MgO Schichten im AFM (T = 400°C, \(\alpha = 55^\circ\), \(E = 800\ eV, j = 75\ \mu A/cm^2, r = 1.5\ \AA/s\) bei einer Dicke von: (a) 10 nm, (b) 25 nm, (c) 100 nm, (d) 200 nm (Scanbereich jeweils 1 \times 1 \mu m^2)
5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

5.1.6 Zusammenstellung der Ergebnisse

Die zentrale Frage bei dem beschriebenen Szenario der Texturentwicklung im MgO ist, welche Mechanismen und treibenden Kräfte sowohl hinter der orientierten Keimbildung als auch hinter der anschließenden Texturänderung während des Wachstums stehen. Um dies zu klären, wurden eine Reihe von Untersuchungen mit MgO-Einkristallen durchgeführt, die im folgenden Abschnitt dargestellt werden.

5.2 Untersuchungen an MgO-Einkristallen

5.2.1 Sputteruntersuchungen

In einer ersten Versuchsreihe wurde die Abhängigkeit der Sputterrate von der Orientierung bei einem konstanten Ioneneinfallswinkel $\alpha = 55^\circ$ untersucht. Dazu wurden MgO-Einkristalle mit polierten {001}-, {011}- und {111}-Oberflächen verwendet. Durch eine Variation des in-plane Winkels β wurden verschiedene Richtungen parallel zum Ionenstrahl eingestellt und nach der oben beschriebenen Methode die jeweilige Sputterrate ermittelt. Entsprechend ihrer Orientierung bezüglich des Ionenstrahls sind diese Sputterraten in das stereographische Standarddreieck für die kubische Kristallsymmetrie eingetragen worden. Die dabei verwendeten Meßpunkte können Abbildung 5.15a entnommen werden. An einigen dieser Punkte wurde die Sputterrate mehrmals bestimmt, um eine bessere Genauigkeit zu erhalten. Aus den diskreten Werten wurde anschließend eine kontinuierliche Verteilung berechnet, wie sie in Abbildung 5.15b dargestellt ist. Dabei wird deutlich, daß das Minimum der Sputterrate an dem Punkt zu finden ist, an dem der Ionenstrahl parallel zu einer $\langle 100 \rangle$-Richtung liegt. Die Sputterrate von $0,45 \text{ Å/s}$ entspricht in diesem Fall einer Sputterausbeute von $Y = 1,1$. Demgegenüber befindet sich das Maximum parallel zu einer $\langle 111 \rangle$-Richtung. Die Sputterrate ist mit ca. 1 Å/s ($Y = 2,3$) in etwa doppelt so hoch.

Abbildung 5.14: Geometrie der Sputterexperimente mit Definition des Ioneneinfallswinkels α (a) und des in-plane Winkels β (b) für den Fall eines {001} MgO-Einkristalls

Abbildung 5.15: Richtungsabhängigkeit der Sputterrate von MgO bei einem Einfallswinkel α von 55° ($E = 800 \text{ eV}, j = 75 \mu\text{A/cm}^2$): (a) Lage der Meßpunkte im stereographischen Standarddreieck; (b) berechnete kontinuierliche Verteilung der Sputterrate (in Å/s)
Der Wert für die \(\langle 110 \rangle \)-Richtung ist zwischen diesen beiden Extremen angeordnet. Ausgewählte Parallelmessungen, die mit einem Ioneneinfallswinkel \(\alpha = 45^\circ \) durchgeführt wurden, ergeben ein äquivalentes Bild. Aus diesen Zahlenwerten wird deutlich, daß bei Zugrundelegen einer typischen Depositionsrate \(r \) zwischen 1,5 und 2,5 Å/s, je nach Orientierung zwischen 20 und 70 % der deponierten Atome wieder abgesputtert werden. Dieser Fakt stimmt mit den Untersuchungen zum Resputtering in Kapitel 5.1.3 überein. Ursachen und Auswirkungen dieser starke Anisotropie in der Sputterrate von MgO werden im folgenden noch eingehender diskutiert.

In Kapitel 5.1.2 wurde gezeigt, daß bei einem Ioneneinfallswinkel von \(\alpha = 45^\circ \) die besten Voraussetzungen für die Bildung der Würfelflache in der Keimbildungsphase gegeben sind. Um die Ursachen für dieses Verhalten näher zu analysieren, wurde der Einfluß des Ioneneinfallswinkels \(\alpha \) auf die in-plane Sputterrate untersucht. Dazu wurden ausschließlich \{001\} MgO-Einkristalle verwendet, die bezüglich des Ionenstrahls mit einem in-plane Winkel \(\beta = 0^\circ \) und \(\beta = 45^\circ \) orientiert waren. In diesem Fall liegt bei \(\alpha = 45^\circ \) und \(\beta = 0^\circ \) eine \(\langle 110 \rangle \)-Richtung parallel zum Ionenstrahl, während \(\alpha = 55^\circ \) und \(\beta = 45^\circ \) einer \(\langle 111 \rangle \)-Richtung entsprechen. Aus den Ergebnissen in Abbildung 5.16 wird deutlich, daß die in-plane Sputterrate eine große Anisotropie aufweist. Der größte Unterschied zwischen den beiden untersuchten in-plane Orientierungen wird bei einem Winkel \(\alpha = 45^\circ \) beobachtet. Unter Verwendung eines anderen Einfalls winkels bleibt die Anisotropie zwar bestehen, jedoch ist das Verhältnis der beiden in-plane Sputteraten zueinander kleiner. Im Stadium der Keimbildung (in dem die \{100\}-Richtung parallel zur Substratnormalen thermodynamisch bevorzugt wird) ergibt sich für Atome und Moleküle auf Körnern, die eine \(\langle 110 \rangle \)-Richtung zum Ionenstrahl aufweisen, eine geringere Wahrscheinlichkeit, wieder abgesputtert zu werden. Dieser Mechanismus ermöglicht eine orientierte Keimbildung in diesem System.

Die Ergebnisse der vorgestellten Sputterexperimente stimmen qualitativ gut mit aktuellen molekular-dynamischen Simulationen von Dong et al. [2001] überein. Dabei wurde der Ar-Ionenbeschuß (mit einer Energie zwischen 400 und 800 eV) von MgO-Einkristallen untersucht, die mit einer \{001\}-Richtung parallel zur Substratnormale orientiert sind. Bei einem Einfallsvin-
Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

Kel $\alpha = 45^\circ$ weist die simulierte Sputterausbeute eine starke Anisotropie in der in-plane Richtung auf, wie sie auch experimentell beobachtet wurde (Abbildung 5.17). Während das Verhältnis $Y_{\beta=0}/Y_{\beta=45^\circ} = 0,6$ in Experiment und Simulation übereinstimmt, unterscheiden sich die absoluten Werte um den Faktor 3. Eine mögliche Ursache liegt in der Oberflächenstruktur des verwendeten Kristalls. Während in der Simulation die gesputterten Teilchen aus einer perfekten Oberfläche herausgelöst werden müssen, sind in der Realität vielfältige Defekte (z.B. Stufen, Versetzungen) vorhanden. Diese verringern die Bindungskraft der Atome und Moleküle in der Oberfläche und führen so zu einer höheren Sputterausbeute. Wie im Experiment wird auch in der Simulation der kleinste Wert für den Fall $\beta = 0^\circ$, d.h. für die $\langle 110 \rangle$-Richtung parallel zum Ionenstrahl gefunden. Um diese Richtung wird ein breites Minimum von $\pm 8^\circ$ beobachtet, bei der sich die Sputterausbeute nur um 5 % verändert. Dieses breite Minimum ist der begrenzende Faktor für die erreichbare minimale Halbwertsbreite der in-plane Orientierung einer IBAD MgO-Schicht.

Wird neben dem in-plane Winkel β zusätzlich der Ioneneinfallswinkel α variiert, ergibt sich eine Abhängigkeit der Sputterausbeute, wie sie exemplarisch in Abbildung 5.18 dargestellt ist. Anhand der Darstellung wird deutlich, daß bei einem Einfallswinkel $\alpha = 45^\circ$ die Unterschiede in der Sputterausbeute verschiedener in-plane Orientierungen am größten sind. Dieser Effekt wurde durch eigene Sputterexperimente bestätigt (vgl. Abbildung 5.16). Das Maximum in der Sputterausbeute, wie es in den Simulationen bei einem Winkel von $\beta = 0^\circ$ und $\alpha > 60^\circ$ zu finden ist, wurde dagegen in den experimentellen Untersuchungen nicht beobachtet. Mögliche Ursache ist die begrenzte Größe des MgO-Kristalls, der für die Simulationen verwendet wurde (10×10×7 MgO-Einheitszellen). Diese Beschränkung kommt vor allem bei großen Einfallswinkeln zum tragen. Neben den schon beschriebenen Ergebnissen stellten Dong et al. [2001] fest, daß die Sputterausbeute parallel zu einer $\langle 100 \rangle$-Richtung am geringsten ist. Auf Grund dieses Gradienten zwischen der $\langle 110 \rangle$ und der $\langle 100 \rangle$-Richtung wird von ihnen diskutiert, daß Körner im Verlaufe des Wachstums bestrebt sind, die Richtung mit der geringsten Sputterrate parallel zum Ionen-
5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

strahl einzustellen. Streuungen der out-of-plane Orientierung können dazu führen, daß Körner mit einem kleineren Winkel zwischen dem Ionenstrahl und der \(\langle 100 \rangle \)-Richtung weniger geschädigt werden als andere und auf diese Art und Weise den Wachstumsprozeß dominieren. Die dadurch begründete Wachstumsauslese deckt sich mit den Ergebnissen der ionenstrahlunterstützten Laserdeposition, die in Kapitel 5.1.2 dargestellt wurden.

Als mögliche Ursache für die beobachtete Anisotropie der Sputterrate kommen Channelingeffekte in Betracht. Eine einfache geometrische Betrachtung der MgO-Struktur zeigt, daß sowohl senkrecht der \{001\}-, als auch der \{011\}-Ebene offene Richtungen vorhanden sind, die als Kanäle dienen können. Dagegen ist senkrecht zur \{111\}-Ebene eine dichte Struktur zu beobachten (Abbildung 5.19). Für den Fall der \(\langle 110 \rangle \)-Richtung wurde das Channeling näher von Dong et al. [2001] untersucht. In der molekulardynamischen Simulation, die in Abbildung 5.20 dargestellt ist, zeigen sie, daß in dem betrachteten Energiebereich grundsätzlich ein Channeling möglich ist. Wird das Ion mit einer Energie von 600 eV parallel zu einer \(\langle 110 \rangle \)-Richtung eingeschossen, so channelt es etwa 7 \{110\}-Lagen tief, ehe es abgebremst wird. Die Energie des Ions wird damit in einer größeren Tiefe abgegeben, so daß es zu einem geringen Sputtereffekt an der Oberfläche kommt. Dagegen werden bei einer Abweichung von 20° gegenüber dieser Richtung schon in den obersten Lagen Schädigungsprozesse durch die Ionen beobachtet. In diesem Fall wird die Energie der Ionen im unmittelbaren Oberflächenbereich des Kristalls deponiert, wodurch die Wahrscheinlichkeit steigt, daß Atome oder Moleküle aus der obersten Lage herausgeschlagen werden. Als dritter Fall wurde eine Winkelabweichung von 5° zur \(\langle 110 \rangle \)-Richtung

Abbildung 5.18: Molekulardynamische Simulation der Sputterausbeute beim Beschuß von \{001\} MgO-Oberflächen mit Ar-Ionen (\(E = 600 \) eV): Abhängigkeit der mittleren Sputterausbeute (Fit für \(Y_m = (Y_{Mg} + Y_O)/2 \)) von der in-plane Orientierung \(\beta \) und dem Ioneneinfallswinkel \(\alpha \) [Dong et al. 2001], Verlauf für \(\alpha = 45° \) ist weiß markiert (vgl. Abbildung 5.17)
5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

... betrachtet. Dabei dringt das Ion immer noch mehrere Gitterebenen tief in das MgO ein, ehe es abgebremst wird. Dieses Verhalten ähnelt mehr dem Fall der direkten Channelrichtung. Durch diese Ergebnisse wird das breite Minimum in der \textit{in-plane} Sputterrate begründet, die auf den großen Öffnungswinkel für das Channeling zurückzuführen ist.

\textbf{Abbildung 5.19:} Schematische Darstellung verschiedener Flächen im MgO-Gitter zur Bestimmung offener Channelrichtungen (Ionenradien wurden zur besseren Erkennbarkeit bei festgehaltenem Gitterparameter leicht verkleinert). Blick auf: (a) \{001\}-Oberfläche, (b) \{011\}-Oberfläche, (c) \{111\}-Oberfläche

\textbf{Abbildung 5.20:} Molekulardynamische Simulation zum Channeling eines 600 eV Ar-Ions in \{001\} MgO unter einem Einfallswinkel $\alpha = 45^\circ$ und einem \textit{in-plane} Winkel β von: (a) 0°, (b) 5°, (c) 20° [Dong et al. 2001]

5.2.2 Ionenstrahlunterstütztes Wachstum

In Kapitel 4.4.2 wurden die Ergebnisse zum Wachstum von MgO auf {001} MgO-Einkristallflächen dargestellt. Unter anderem konnte gezeigt werden, daß oberhalb 300°C ein homoeptaktisches Wachstum mittels Laserdeposition möglich ist [Beyer 2000]. Auf Grundlage dieser Eigenschaft soll im folgenden das ionenstrahlunterstützte Wachstum eingehender untersucht werden. Dabei ist die zentrale Frage, ob und wie ein zusätzlich auftreffender Ionenstrahl das Epitaxieverhalten von MgO modifiziert. Aus diesem Grund wurden MgO-Schichten mit IBALD bei einer Temperatur von 500°C unter Verwendung eines Einfallswinkels α = 45° und unterschiedlicher Ionenenergien E auf {001} MgO-Einkristallflächen abgeschieden. Die Entwicklung der Oberflächentextur wurde während des Wachstums wiederum mit RHEED verfolgt. Für die Abscheidung wurde das Substrat bezüglich des Ionenstrahls in der Art und Weise orientiert, daß die Ionen parallel zu einer (110)-Richtung des Einkristalls einfallen (d.h. β = 0°). Diese Ausrichtung entspricht dem Minimum der in-plane Sputterrate für den Fall einer feststehenden (100)-Richtung parallel zur Substratnormalen. Im Ergebnis dieser Untersuchungen wurde eine deutliche Abhängigkeit der Texturentwicklung von der Ionenenergie beobachtet. Um diesen Einfluß besser charakterisieren zu können, wurden die Reflexpositionen im RHEED-Beugungsbild entlang eines Großkreises um den durchgehenden Strahl aufgenommen und über der Schichtdicke aufgenommen und über der Schichtdicke dargestellt (Abbildung 5.21). Die dabei sichtbaren Intensitätsschwankungen haben ihre Ursache in lokal auftretenden Schichtwachstum mit geringen Rauhigkeiten vorliegt. Durch den Energieeintrag
5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

Abbildung 5.21: Deposition von MgO mittels IBALD auf {001} MgO-Einkristalle ($T = 500\,^\circ\text{C}$, \(\alpha = 45\,^\circ\), \(j = 60\, \mu\text{A/cm}^2\)): Reflexverläufe entlang der im rechten Bild eingetragenen Grobkreise vom Beginn der Deposition (weißer Pfeil) bis zu einer Schichtdicke d von ca. 50 nm bei einer Ionenenergie E von: (a) 400 eV, (b) 600 eV, (c) 800 eV

5.3 Simulation von Strahlenschäden während des Ionenbeschusses

5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO

Qualitative Diskussion im Rahmen dieser Arbeit liefern die SRIM-Simulationen jedoch wichtige Erkenntnisse.

Bei näherer Betrachtung wird deutlich, daß in der Keimbildungsphase (MgO-Dicke < 5 nm) die unterstützenden Ionen vor allem im Si₃N₄ zur Ruhe kommen. Dies trifft um so mehr auf den

Abbildung 5.22: Simulation des Einfalls von 50 Ar-Ionen (E = 800 eV) auf eine 7,5 nm dicke MgO-Schicht unter einem Winkel α = 45° mit Hilfe des Programmpaketes SRIM-2000: (a) Trajektorien der Ionen mit Ruhepunkt der Ar-Atome (schwarze Punkte), (b) longitudinale Ausdehnung der Stoßkaskade, (c) laterale Ausdehnung der Stoßkaskade
Fall zu, in dem die Ionen entlang von Channelingrichtungen in die MgO-Inseln eindringen können. Die Energieabgabe an die Gitteratome führt dabei zu einer Erhöhung der Diffusion und unterstützt damit das Schichtwachstum und das Ausheilen von Gitterfehlern. In anders orientierten Inseln werden dagegen schon von Beginn an Gitterdefekte in der Nähe der Oberfläche erzeugt. Mit wachsender Schichtdicke findet der Hauptteil der Stoßprozesse im MgO statt. Dabei werden Gitterschäden auch in „gut“ orientierten Körnern erzeugt, was wiederum ein Dechanne-ling verursachen kann. Die daraus resultierenden Spannungen können der Ausgangspunkt für die beobachteten Texturänderungen sein.

Mit Hilfe dieser Simulationsergebnisse kann die Texturentwicklung von IBALD-MgO Schichten auf {001} MgO-Einkristallen, wie sie in Kapitel 5.2.2 dargestellt wurde, besser verstanden werden. Werden niedrige Ionenenergien benutzt, sind die Prozesse der Ionen-Festkörper-Wechselwirkungen lokal begrenzt. Durch die geringere Ausdehnung der betroffenen Bereiche geht bei einer Ionenenergie von $E \leq 400 \text{ eV}$ die Orientierungsinformation der Ein-kristalloberfläche nicht verloren. Vielmehr ist das Material durch den Energieeintrag über die Ionen und die thermische Anregung bei den verwendeten Depositionstemperaturen immer wieder in der Lage, Gitterdefekte abzubauen. Darin liegt auch die Begründung für die beobachtete Verbesserung des epitaktischen Wachstums. Mit steigender Ionenenergie werden demgegenüber größere Bereiche in Mitleidenschaft gezogen. Durch die Akkumulation der Gitterfehler kommt es schließlich zum Verlust der Strukturinformation. Im Resultat verhält sich die wachsende Schicht ähnlich dem auf amorphen Substraten deponierten IBALD-MgO, so daß ein äquivalenter Texturänderungsprozeß beobachtet wird.

Tabelle 1: Ergebnisse der Simulation von Stoßkaskaden und Ionenreichweiten beim Ar-Ionenbeschluß von MgO-Schichten auf Si_3N_4 mit Hilfe des Programmpaketes SRIM-2000

<table>
<thead>
<tr>
<th>Ionenenergie</th>
<th>800 eV</th>
<th>400 eV</th>
<th>100 eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>laterale Ausdehnung der Stoßkaskade (nm)</td>
<td>~50</td>
<td>~30</td>
<td>~20</td>
</tr>
<tr>
<td>longitudinale Ausdehnung der Stoßkaskade (nm)</td>
<td>~30</td>
<td>~20</td>
<td>~8</td>
</tr>
<tr>
<td>Ionenreichweite (nm)</td>
<td>15 ± 7</td>
<td>10 ± 5</td>
<td>5 ± 2</td>
</tr>
</tbody>
</table>
5. Ergebnisse der ionenstrahlunterstützten Laserdeposition von MgO
6 Wachstum auf IBALD-Schichten

In einem zweiten Teil des Kapitels werden Ergebnisse präsentiert, die bei der Deposition ohne Ionenstrahlunterstützung auf dickeren IBALD-Schichten gewonnen wurden. Durch diese Verfahrensweise war es möglich, die mittels RHEED beobachtete Oberflächentextur auf dickere Schichten zu übertragen und so eine Charakterisierung mit Röntgenmethoden durchzuführen. Ergänzende mikrostrukturelle Untersuchungen lassen zusätzlich Rückschlüsse auf die im Wachstum aktiven Mechanismen zu.

6.1 Wachstum auf würfelorientierten MgO-Keimschichten

Um die im vorhergehenden Abschnitt angesprochenen Diffusionsbarrieren herzustellen ohne die Strukturinformation zu verlieren, wurden im Rahmen dieser Arbeit mehrere Möglichkeiten untersucht, die würfelorientierte Keimbildungstextur des MgO auf dickere Schichten zu übertragen. Im folgenden werden die einzelnen Ergebnisse kurz vorgestellt und diskutiert.

- **Homoepitaktisches Wachstum von MgO**

In Kapitel 4.4.2 wurden die Ergebnisse der Untersuchungen zum homoepitaktischen Wachstum auf \{001\} MgO-Einkristallflächen zusammengefaßt. Dabei konnte gezeigt werden, daß unter den standardmäßig verwendeten Ablationsbedingungen des IBALD-Prozesses eine

bevorzugt Fasertexturen entwickeln und über eine Wachstumsauslese schließlich die Oberflächentextur dominieren. Ein gleiches Szenario ist denkbar, wenn der Anteil an Defekten und Korngrenzen in der würfeltexturierten Keimschicht groß ist und an diesen Stellen neue Keime gebildet werden.

Heteroepitaktische Abscheidung anderer Oxide

Heteroepitaktische Abscheidung von YBCO

Zusammenfassend muß festgestellt werden, daß es im Zusammenhang mit der epitaktischen Deposition auf MgO-Keimschichten noch viele offenen Fragen gibt. Um die ablaufenden Prozesse besser zu verstehen, ist insbesondere eine detaillierte Charakterisierung der IBALD-Keimschicht notwendig.
6.2 Wachstum auf dicken MgO-Schichten

Neben der epitaktischen Abscheidung auf würfelfeierte Keimschichten wurde das Wachstum von MgO mittels Laserdeposition auf dickeren IBALD-Schichten untersucht. In Kapitel 5.1 wurde gezeigt, daß es mit wachsender Schichtdicke zu einem Texturwechsel bei der ionenstrahlunterstützten Deposition von MgO kommt. Im Resultat dieser Texturänderung werden Texturkomponenten bevorzugt, die eine \(〈100〉 \) -Richtung parallel zum Ionenstrahl aufweisen (vgl. Komponenten \(A \) und \(B \) in Abbildung 5.1). Um diese mittels RHEED analysierten Texturen näher charakterisieren zu können, wurde bei einer Schichtdicke oberhalb von 50 nm der Ionenstrahl abgeschaltet und weiter ohne Ionenstrahlunterstützung deponiert. Mit Hilfe von \(\text{in-situ} \) RHEED-Untersuchungen wurde parallel dazu verfolgt, ob mit wachsender Schichtdicke die beobachteten Komponenten in der Oberflächentextur erhalten bleiben. Nach Abscheidung einer hinreichend dicken Schicht (in der Regel ca. 500 nm) schloß sich eine Texturcharakterisierung mit Hilfe von Röntgenmethoden an. Die so gewonnenen Ergebnisse wurden mit den Daten aus der RHEED-Analyse verglichen und können weitere Rückschlüsse auf das Wachstumsverhalten von MgO liefern.

Detailliertere Untersuchungen zu dem beschriebenen Wachstumprozeß auf dickeren IBALD MgO-Schichten wurden für die ionenstrahlunterstützte Deposition bei einem Ioneneinfallswinkel \(\alpha = 55° \) und einer Ionenergie \(E \geq 600 \) eV durchgeführt. Wie in Kapitel 5.1.2 beschrieben, wird in diesem Fall ein kontinuierlicher Texturübergang von der Würfellage zu den Texturkomponenten \(A \) und \(B \) beobachtet (Prozeß \(I \), vgl. Abbildung 5.6). Bei Ionenstromdichten \(j \geq 60 \mu \text{A/cm}^2 \) und Schichtdicken \(d \geq 100 \) nm können gleichzeitig die Texturkomponente \(A \) als auch die Komponente \(B \) vorhanden sein (vgl. indizierte RHEED-Aufnahme in Abbildung 5.1a+b). Wird auf
eine so präparierte Probe ohne Ionenstrahlunterstützung weiter MgO deponiert, kann eine Temperaturabhängigkeit der weiteren Texturentwicklung beobachtet werden. Entsprechend den gewählten Depositionsparametern wird eine der beiden Komponenten bevorzugt, d.h. in einer Wachstumsauslese setzt sich eine Komponente auf Kosten der anderen durch (Abbildung 6.4). Wird dabei eine Temperatur zwischen 300 und 500°C gewählt, tritt mit wachsender Schichtdicke die Komponente \(A \) in den Vordergrund, wobei immer noch Anteile der anderen Komponente sichtbar sind. Im Wachstum werden also Körner bevorzugt, deren \(\langle 011 \rangle \)-Richtung weitgehend parallel zur Substratnormalen ausgerichtet ist. Im Gegensatz dazu wird die Textur bei Temperaturen von 600°C mit wachsender Schichtdicke von der Texturkomponente \(B \) dominiert, d.h. von Körnern mit einer \(\langle 111 \rangle \)-Richtung parallel zur Substratnormalen. Die Ausrichtung der \(\langle 100 \rangle \)-Richtung parallel zum Ionenstrahl bleibt in beiden Fällen unverändert erhalten. Die Resultate der RHEED-Untersuchungen werden durch die Röntgentexturmessungen bestätigt (Abbildung 6.4c), wobei zu beachten ist, daß auf Grund der integralen Messung über die gesamte Schichtdicke im Gegensatz zum RHEED keine scharfen Reflexe beobachtet werden. Als Ursache für diese Temperaturabhängigkeit kommt wiederum eine Minimierung der Gesamtenergie in der Schicht in Frage, wie sie schon bei der Deposition ohne Ionenstrahlunterstützung auf amorphen Substraten diskutiert wurde (vgl. Kapitel 4.4.1). In beiden Fällen wird bei hohen Temperaturen eine Ausrichtung der \(\langle 111 \rangle \)-Richtung parallel zur Substratnormalen beobachtet.
Neben der Temperaturabhängigkeit wurde der Einfluß der Depositionsrate auf die Textur der IBALD-Schicht näher beleuchtet. Dazu wurde, wie schon in Kapitel 5.1.3 beschrieben, die Energie des einzelnen Laserpulses bei konstanter Spotgröße auf der Targetoberfläche verändert. Da mit sinkender Energie und damit geringerer Depositionsrate das Resputtering einen größeren Einfluß gewinnt, werden während des IBALD-Prozesses in gleichen Zeiten effektiv dünnere Schichten abgeschieden. Bei gleicher Pulszahl ist damit am Ende des IBALD-Schrittes der beschriebene Texturänderungsprozeß (Prozeß I in Kapitel 5.1.2) bei niedrigen Depositionsraten noch nicht komplett abgeschlossen. Wird auf diese Schichten im Anschluß weiter ohne Ionenstrahlunterstützung deponiert, bleibt die eingestellte Oberflächentextur weitgehend erhalten. In Abbildung 6.5 sind die aus dieser Vorgehensweise resultierenden Texturen anhand der Röntgenpolfiguren dargestellt. Je dünner die IBALD-Schicht ist, desto größer ist die Abweichung zwischen der \langle100\rangle-Richtung und der Einfallsrichtung des Ionenstrahls. Die Polfiguren spiegeln damit einen Teil des kontinuierlichen Übergangs in der Oberflächentextur wieder, wie er in der RHEED-Charakterisierung für den IBALD-Schritt beobachtet wurde.

Abbildung 6.5: (200)-Röntgenpolfiguren von MgO-Filmen mit IBALD-Schichtdicken ($\alpha = 55^\circ$, $T = 400^\circ\text{C}$, $E = 800 \text{ eV}$) von: (a) 200 nm, (b) 120 nm, (c) 90 nm, (d) 60 nm nach anschließender Deposition von jeweils 500 nm MgO mittels PLD ($T = 400^\circ\text{C}$, $r = 2,5 \text{ Å/s}$) (Projektion der Richtung des Ionenstrahls: \textbf{x})
Abbildung 6.6: Mikrostrukturcharakterisierung einer MgO-Schicht (d = 600 nm, r = 2,5 Å/s) deponiert mit PLD auf einer ca. 150 nm dicken IBALD MgO-Schicht (α = 55°, T = 400°C, E = 600 eV, r = 2 Å/s) mittels REM: (a) Aufnahme der Oberflächenstruktur; (b) Aufnahme einer Bruchkante

7.1 Keimbildung

Es wurde gezeigt, daß bei der Laserdeposition von MgO unter Verwendung eines unter- stützenden Ionenstrahls eine orientierte Keimbildung stattfindet. Dabei lassen sich zwei charakteristische Temperaturbereiche unterscheiden. Im Gegensatz zu den Ergebnissen von Wang et al. [1997] wird in der Keimbildungsphase unterhalb einer Temperatur von ca. 250°C keine Würfel- lage beobachtet. Vielmehr richtet sich die (111)-Richtung parallel zur Substratnormalen aus,

satz dazu kommt es bei einem Winkel von $\alpha = 65^\circ$ zwar noch zur Verbesserung der *out-of-plane* Ausrichtung, jedoch wird keine *in-plane* Texturierung beobachtet. Mit Abweichungen von $\pm 10^\circ$ vom optimalen Winkel wurden dagegen noch gute Ergebnisse erzielt. Dies gilt insbesondere für den Fall $\alpha = 55^\circ$. Der Bereich, in dem die Würfellage gefunden wurde, verschiebt sich lediglich zu höheren Temperaturen. Die schon angesprochenen molekulardynamischen Simulationen von Dong et al. [2001] bestätigten die Annahme, daß bei den verwendeten Ioneneenergien entlang der $\langle 110 \rangle$-Richtung ein Channeling von Ar-Ionen möglich ist. Die Winkelabweichung von dieser „idealen“ Richtung, bei der immer noch ein Channeling wahrscheinlich ist, wird von ihnen mit $\pm 8^\circ$ angegeben. Dies erklärt das breite Minimum in der Sputterrate, das um die $\langle 110 \rangle$-Richtung beobachtet wurde. Diese charakteristischen Eigenschaften führen einerseits zu der beobachteten Toleranz gegenüber Abweichungen des Ioneneinfallswinkels und ermöglichen somit die Bildung der Würfeltextur auch bei einem Winkel $\alpha = 55^\circ$. Gleichzeitig wird aber eine untere Grenze für die erreichbare *in-plane* Halbwertsbreite der Würfellage in der Schicht vorgegeben.

7.2 Wachstum

Wird die Ionenstrahlunterstützung während des weiteren Wachstums beibehalten, ist mit zunehmender Schichtdicke eine Texturänderung zu beobachten. Dabei wird die würfelorientierte MgO-Keimschicht von Texturkomponenten abgelöst, deren $\langle 100 \rangle$-Richtung parallel zum Ionenstrahl ausgerichtet ist. Der konkrete Ablauf des Texturwandels hängt entscheidend von den verwendeten Ionenstrahlparametern ab. In Kapitel 5.1.2 wurde grundsätzlich zwischen zwei Prozessen unterschieden. Beiden gemeinsam ist, daß am Beginn der Transformation in der Oberflächenschicht eine Vergrößerung der *out-of-plane* Orientierungsverteilung der Körner zu beobachten ist. Als Auslöser kommen dafür durch die Ionen induzierte Schädigungsprozesse in Frage. Mit Hilfe einer einfachen Simulation wurde in Kapitel 5.3 gezeigt, daß mit wachsender Dicke in der MgO-Schicht verstärkt Gitterdefekte durch die einfallenden Ionen erzeugt werden. Diese Gitterfehler können durch thermisch oder kinetisch aktivierte Diffusionsprozesse akkumulieren und so Defektstrukturen wie z.B. ein Subkorngefüge ausbilden. Dies ist außerdem mit einer zunehmenden inneren Spannung in der Schicht verbunden, die zusätzlich als treibende Kraft für eine Texturänderung in Frage kommt. Spannungen durch eingebaute Ar-Atome sind dagegen auf Grund der verwendeten Depositionstemperatur von bis zu 600°C wenig wahrscheinlich, sie können aber nicht ausgeschlossen werden. Ein weiterer Hinweis, daß Schädi-
gungsprozesse durch die Ionen für den Verlust der Orientierungsinformationen verantwortlich sind, ergibt sich aus den Ergebnissen der ionenstrahlunterstützten Laserdeposition auf {001} MgO-Einkristallflächen. In diesem Fall wurde für Ionenenergien oberhalb 400 eV eine Zerstörung der Homoepitaxie beobachtet. Da mit wachsender Ionenenergie die Größe der von den Schädigungsprozessen betroffenen Bereiche zunimmt, sind ab einem Schwellenwert die Erholungsprozesse nicht mehr in der Lage, eingebrachte Gitterdefekte während des Schichtwachstums abzubauen. Im Resultat finden neu deponierte Teilchen nur eine stark gestörte Oberfläche vor. Im Verlauf der Deposition geht auf diese Art und Weise die Orientierungsinformation des Einkristalls verloren.

Parallel zu den Texturmessungen durchgeführte Mikrostrukturuntersuchungen bestätigen das Bild einer Wachstumsauslese mit zunehmender Schichtdicke. Dabei erhalten diejenigen Köpfe einen Höhenvorteil, die eine geringere Sputterrate im Vergleich zu den umliegenden aufweisen. Die gemessene Richtungsabhängigkeit der Sputterprozesse (Abbildung 5.15) zeigt, welche Orientierungen im Wachstum bevorzugt werden. Insbesondere ist der beobachtete Gradient zwischen den Werten der Sputterrate für die 〈110〉-Richtung und die 〈100〉-Richtung von ent-
scheidender Bedeutung für die Texturentwicklung im MgO. In der Keimbildungsphase weisen die Körner zunächst eine (110)-Richtung parallel zum Ionenstrahl auf. Im anschließenden Wachstumsstadium wurde durch die RHEED-Untersuchungen eine Zunahme der out-of-plane Orientierungsverteilung gefunden. Unter der Vielzahl der nun bereitstehenden Körner haben im Ausleseprozeß diejenigen einen Vorteil, deren (100)-Richtung einen kleineren Winkel mit dem Ionenstrahl einschließt. Diese können wiederum anders orientierte Körner überwachsen und so die Oberflächentextur dominieren. Zum Abschluß dieses Prozesses nehmen die Körner eine stabile Lage mit einer (100)-Richtung parallel zum Ionenstrahl ein. In der Folge kommt es lediglich zu eine Abnahme der out-of-plane Verteilung durch eine entsprechende Wachstumsauslese.

7.3 Verallgemeinerung der Ergebnisse: das Vergleichssystem TiN

In der bisherigen Diskussion wurde gezeigt, daß strukturelle Eigenschaften des MgO einen entscheidenden Einfluß auf die beobachtete Texturentwicklung haben. Insbesondere bestimmen sie die würfelorientierte Keimbildung bei der ionenstrahlunterstützten Deposition, die das MgO bisher einzigartig gegenüber anderen im Rahmen eines IBAD-Prozesses untersuchten Oxiden macht. Der Stellenwert der Struktur legt nun die Annahme nahe, daß auch in anderen Systemen mit einem NaCl-Gitter ähnliche Texturierungseffekte zu beobachten sind. Diese Annahme wird insbesondere von den in Kapitel 2.4 angesprochenen Ergebnissen von Zeitler et al. [1997] an TiN unterstützt. In dieser Arbeit wurde unter einem Ioneneinfallsinkel $\alpha = 55^\circ$ die Bildung einer Würfellage in dünnen Schichten beobachtet. Mit wachsender Schichtdicke wird diese von einer Textur mit einer (100)-Richtung parallel zum Ionenstrahl und einer (111)-Richtung parallel zur Substratnormalen abgelöst.

Im Resultat der Experimente konnte gezeigt werden, daß auch im TiN eine orientierte Keimbildung stattfindet. Bei Raumtemperatur und Ionenenergien von ca. 800 eV wurde, wie bei der Verwendung von MgO, die Ausbildung der Texturkomponenten \(A \) und \(B \) beobachtet. Oberhalb 300°C entsteht analog zum IBALD-MgO eine Würfelfesttextur, die allerdings schon in dünnsten Schichten eine große \textit{out-of-plane} Verteilung aufweist (Abbildung 7.1a+b). Parallel zum Ionenstrahl ist wiederum eine \(\langle 110 \rangle \)-Richtung zu finden. Im Verlauf des weiteren Wachstums ist auch hier der schon beim MgO beschriebene Texturänderungsprozeß zu beobachten (Abbildung 7.1c+d). Dies führt zu einer regellosen Orientierungsverteilung oder zu einer Fasertextur. An dieser Stelle ist es wichtig festzuhalten, daß der gesamte Prozeß weder hinsichtlich der Depositionsrate, der Ionenstromdichte etc. für das TiN optimiert wurde. Die wenigen Experimente zeigen jedoch, daß dieses Material in dünnsten Schichten ein ähnliches Verhalten aufweist wie das MgO. Im Rahmen der Suche nach elektrisch leitfähigen Pufferschichten für den YBCO-Bandleiter (um die elektrische Stabilität bei sehr hohen Strömen zu gewährleisten [Aytug et al. 1999]) ist TiN somit ein möglicher Kandidat für einen IBAD-Prozeß. Außerdem geben die Ergebnisse Anlaß zur

7.4 Ausblick

Im Rahmen der vorliegenden Arbeit konnten wichtige Erkenntnisse zum Mechanismus der Textur- und Mikrostrukturentwicklung bei der ionenstrahlunterstützten Laserdeposition von MgO gewonnen werden. Dabei wurde der Einfluß der für die Texturausbildung relevanten Parameter aufgezeigt. Gleichzeitig tauchten aber neue Fragestellungen auf, die der weiteren Klärung bedürfen. Dies betrifft vor allem die folgenden Problemkreise:

- **Wachstum von MgO mit Laserdeposition ohne Ionenstrahlunterstützung**

 Durch die RHEED-Untersuchungen beim PLD-Wachstum wurde deutlich, daß die \langle 001 \rangle-Vorzugsorientierung mit wachsender Schichtdicke instabil ist. Dabei ist zu klären, was diese Texturänderung verursacht. Mittels Spannungsmessungen an den Schichten könnte abgeschätzt werden, ob der diskutierte spannungsinduzierte Übergang relevant ist und ob er mittels geeigneter Verfahrensweisen verhindert werden kann. Eine offene Frage bleibt weiterhin, wie sich dieser Texturübergang in der Texturentwicklung beim IBALD-Prozeß widerspiegelt.

- **Einfluß der Kinetik des Depositionsverfahrens auf die Textur- und Mikrostrukturentwicklung**

 In Kapitel 5.1.3 wurde dargelegt, daß eine Beeinflussung der kinetischen Eigenschaften des Laserplasmas bei konstant gehaltener Depositionsrate und Ionenstromdichte nur in einem engen Rahmen möglich war. Hier sind neue experimentelle Ideen wünschenswert, mit denen ein kontinuierlicher Übergang von den kinetischen Eigenschaften niedrigenergetischer Verfahren (z.B. Elektronstrahlverdampfen) zu hochenergetischen Verfahren (z.B. Laserdeposition) möglich ist. Mit ihrer Hilfe könnte der Einfluß der kinetischen Energie der Teilchen auf den Wachstumsprozeß besser charakterisiert werden. Im Rahmen der epitaktischen Abscheidung von Oxiden auf der würfeltexturierten Keimschicht kann außerdem getestet werden, ob durch die Verwendung der *off-axis* Laserdeposition eine Verbesserung zu erreichen ist [Holzapfel et al. 1992].

- **Einfluß der diskontinuierlichen Abscheidung bei der Laserdeposition**

 Durch die Verwendung der gepulsten Laserdeposition als Abscheideverfahren müssen im Schichtwachstumsprozeß zwei zeitliche Phasen unterschieden werden. Zum einen gibt es Zeiten, in denen ein hoher Materialstrom auf das Substrat trifft. Dagegen stehen längere Abschnitte, in denen allein der Ionenstrahl auf die Probe einwirkt. Die zentrale Frage ist, ob und wie sich das Wachstum ändert, wenn der Ionenstrahl in einer der beiden Phasen ausge-
blendet wird. Dies kann experimentell durch einen schnellen Shutter realisiert werden, der mit dem Laserpuls getriggert wird.

- **Detaillierte Untersuchungen mit Transmissionselektronenmikroskopie**

- **Quantifizierung der Textur in dünnsten Schichten**

- **Untersuchung anderer Materialien mit NaCl-Struktur**

8 Zusammenfassung

Bei der Abscheidung von MgO auf amorphen Substraten ohne Ionenstrahlunterstützung können zwei Temperaturbereiche unterschieden werden. Unterhalb von 250°C entwickelt sich mit wachsender Schichtdicke aus einer amorphen Keimschicht eine \(\langle 110 \rangle \)-Fasertextur. Oberhalb dieser Temperatur wird unmittelbar im Keimbildungsstadium eine \(\langle 100 \rangle \)-Fasertextur beobachtet. Mit wachsender Schichtdicke kommt es zu einem Texturwechsel, in dessen Ergebnis eine \(\langle 111 \rangle \)-Fasertextur entsteht. Als treibende Kraft für diesen Prozeß werden innere Spannungen angesehen.

Bei Verwendung eines unterstützenden Ionenstrahls findet eine orientierte Keimbildung statt, bei der es zur Ausbildung von biaxialen Texturen in der Schichtdicke unterhalb von 10 nm kommt. Im Temperaturbereich unterhalb von 250°C werden Texturkomponenten mit einer \(\langle 100 \rangle \)-Richtung parallel zum Ionenstrahl bevorzugt. Oberhalb dieser Schwellentemperatur wurde bei einem Ioneneinfallswinkel \(\alpha \) zwischen 35° und 55° und Ionenenergien \(E \) zwischen 400 und 800 eV eine Würfeltextur auf verschiedenen amorphen und glatten Substraten gefunden, deren \(\langle 110 \rangle \)-Richtung parallel zum Ionenstrahl ausgerichtet ist. Der optimale Ioneneinfallswinkel liegt bei einem Winkel \(\alpha = 45° \). In diesem Fall wurden Würfeltexturen mit in-plane Halbwertsbreiten von < 21° erreicht, zusätzlich ist die MgO-Gitterkonstante \(a_0 \) um 2 - 4% vergrößert. Ursache für die in-plane Texturierung ist eine anisotrope Sputterrate, die bei Experimenten an MgO-Einkristallen gefunden wurde. Ein Vergleich mit molekulardynamischen Simulationen zeigt, daß entlang der \(\langle 110 \rangle \)-Richtung ein Channeling möglich ist. Wird, wie in diesem Temperaturbereich beobachtet, die \(\langle 100 \rangle \)-Richtung parallel zur Substratnormalen thermodynamisch bevorzugt, werden Keime mit einer \(\langle 110 \rangle \)-Richtung parallel zum Ionenstrahl auf Grund dieses Channeling-effektes weniger gestört als anders orientierte Körner und dominieren somit die Oberflächentextur.

Oberhalb einer Schichtdicke von ca. 5 nm wird bei der ionenstrahlunterstützten Laserdeposition eine Texturänderung beobachtet. Im Resultat dieses Prozesses entstehen Texturkomponenten, die eine \(\langle 100 \rangle \)-Richtung parallel zum Ionenstrahl aufweisen. Der konkrete Ablauf des Texturwandels hängt entscheidend von den verwendeten Ionenstrahlparametern ab. Die starke Anisotropie der Sputterrate kann wiederum als treibende Kraft für diesen Prozeß verantwortlich gemacht werden. In Experimenten an Einkristallen wurde das Minimum der Sputterrate für eine Ausrichtung der \(\langle 100 \rangle \)-Richtung parallel zum Ionenstrahl gefunden. Als Auslöser für diese Texturänderung wird der Einbau von Defekten auf Grund der Ionenstrahlunterstützung angese-

Um dickere, würfelorientierte Schichten zu erhalten, wurde versucht, die Keimschicht epitaktisch weiterzuwachsen. Voruntersuchungen an Einkristallen zeigten, daß mit PLD eine Homoepitaxie ab einer Depositionstemperatur von 300°C möglich ist. Allerdings wurde bei der Deposition auf würfelorientierten MgO-Keimschichten ein Texturwandel zu (111)-Fasertexturen beobachtet. Als Ursache kommen Spannungen auf Grund der Kinetik des Prozesses oder eine schlechter Bedeckungsgrad der würfelorientierten Bereiche in Frage. Die heteroepitaktische Deposition anderer Oxide führte ebenfalls nicht zum Erfolg. Auf die MgO-Keimschichten direkt deponierte YBCO-Schichten wiesen dagegen biaxiale Texturen mit Halbwertsbreiten von ca. 40° auf.

In Vergleichsexperimenten mit TiN wurde in der Keimbildung ebenfalls eine Würfelorientierung gefunden. Dies weist darauf hin, daß die beobachteten Mechanismen der Texturentwicklung auf andere Substanzen mit NaCl-Struktur verallgemeinert werden können. Um dies zu bestätigen, sind Untersuchungen an weiteren Materialsystemen notwendig.
9 Literaturverzeichnis

Brewer, R. T. (2000) „Development and application of RHEED based biaxial texture analysis for discerning and controlling growth mechanisms of ion beam-assisted deposition of MgO“, Research report, California Institute of Technology, Pasadena, USA

Cheung, J. T., Gergis, I., James, M. und DeWames, R. E. (1992) „Reproducible growth of high quality YBa$_2$Cu$_3$O$_{7-x}$ film on (100) MgO with a SrTiO$_3$ buffer layer by pulsed laser deposition“, *Appl. Phys. Lett.* **60**, 3180-3182

Dzick, J. (2001) private Mitteilung

Gibson, A., Haydock, R. und LaFemina, J. P. (1992) „Electronic structure and relative stability of the MgO (001) and (111) surface“, J. Vac. Sci. Technol. A 10, 2361-2366

Landolt-Börnstein Neue Serie (1975), Gruppe III, Band 7b1, hrsg. von K.-H. Hellwege und A. M. Hellwege (Springer-Verlag Berlin) 26-30

10 Eigene Veröffentlichungen

Im Zusammenhang mit dieser Arbeit sind folgende Veröffentlichungen entstanden:

Danksagung

An erster Stelle gebührt der Dank meiner Frau Dorothea, die mich durch die Höhen und Tiefen der Promotionszeit liebevoll begleitet hat. Es hat einfach gut getan, nach Hause zu kommen und alle Freude und allen Frust mit ihr zu teilen!

Ein besonderer Dank gebührt meinem Doktorvater Prof. Dr. Werner Skrotzki für die interessante Themenstellung, seine Unterstützung und ständige Diskussionsbereitschaft.

Ganz herzlich bedanken möchte ich mich bei meinem Betreuer Dr. Bernhard Holzapfel (IFW) für die zahlreichen fachlichen Diskussionen, die vielfältigen Anregungen und Impulse und die experimentellen Möglichkeiten, die er mir in seiner Arbeitsgruppe geboten hat. Ihm danke ich auch für die kritische Durchsicht dieses Manuskriptes.

Prof. Dr. Ludwig Schultz (IFW) danke ich für die fachliche Unterstützung und die Übernahme eines Gutachtens. Gleichfalls bedanke ich mich bei Prof. Dr. Herbert C. Freyhardt (Universität Göttingen) für die Übernahme eines weiteren Gutachtens für diese Arbeit.

Ein weiteres Dankeschön geht an Dr. Sebastian Fähler (IFW), dem ich durch seine experimentellen Ideen und deren praktische Umsetzung viel zu verdanken habe. Auch wenn ich die Kammer in meiner Promotionszeit nicht voll automatisiert habe, ohne die mit seiner Hilfe realisierte in-situ RHEED-Charakterisierung und den neu konzipierten Heizer wäre so manches Ergebnis dieser Arbeit nicht entstanden.

Herrn Christoph Beyer danke ich für die Präparation einiger Schichten in seiner Zeit als studentische Hilfskraft. Bei der Betreuung seiner Studienarbeit zum PLD-Wachstum von MgO konnte ich selber noch manches dazulernen und einige Ergebnisse sind auch in diese Arbeit eingeflossen. Und so ganz nebenbei hat er auch meinen kulturellen (Theater-)Horizont erweitert.

Herr Dr. Volker Betz und Frau Dr. Silke Liesert haben mir gerade in der Anfangszeit der Promotion den Einstieg in das Thema leichter gemacht, dafür an der Stelle noch einmal ein Dankeschön.

Den Herren Dr. Carl-Georg Oertel, Dr. Kurt Richter, Roland Tamm (IKFP) und Norman Reger (IFW) danke ich für die Unterstützung bei den Texturmessungen.

Herr Dr. Bodo Wolf (IKFP) und Frau Dr. Ulrike Wolff (IFW) haben mich in die Tiefen der AFM-Messungen eingeführt und sind trotz abgebrochener Spitzen nie an mir verzweifelt.

Frau Laura Fernandez (IFW) danke ich für die bereitwillige Prüfung der YBCO-Schichten und Frau Ulrike Fiedler (IFW) für die vielen kleinen Hilfen im Laboralltag. Außerdem möchte ich den noch nicht genannten Mitgliedern und Ehemaligen der IFW-Arbeitsgruppe, Dr. Alexander Attenberger, Jens Hänisch, Kerstin Häse, Frank Schindler, Ulrich Hannemann, Stuart Wimbush, Dr. Bernd de Boer, Dr. Volker Neu und Dr. Heike Konrad, für alle Diskussionen und
das gute Arbeitsklima danken. Die Zeit bei euch hat mir Spaß gemacht und ich habe ein Gefühl dafür bekommen, was es heißt, in einem Team zu arbeiten.

Außerdem danke ich der Werkstatt um Herrn Lang (IFW) für die Fertigung meines neuen Probenhalters und meines neuen Heizers, der Mannschaft des Reinraums im IFW für die zahlreichen Schichtdickenmessungen und der REM-Crew des Instituts für Physikalische Metallkunde um Herrn Dr. Tirschler und Frau Siemroth für die Möglichkeit der Messungen an ihrem Gerät.

Nicht vergessen möchte ich, allen Mitgliedern des Graduiertenkollegs „Struktur- und Korrelationseffekte in Festkörpern“ zu danken, die mich auch fachlich in der Promotionszeit begleitet haben.

Ebenso möchte ich allen meinen Freunden und meiner Familie danken, die mich in den vergangenen Jahren auf vielfältige Art und Weise begleitet haben. Ich weiß nicht, ob ihr jemals richtig verstanden habt, was ich eigentlich gemacht habe und dennoch habt ihr immer wieder an meiner Seite gestanden und mich unterstützt.
Erklärung

Hiermit versichere ich, daß ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die vorliegende Dissertation wurde am Institut für Kristallographie und Festkörperphysik der TU Dresden in Zusammenarbeit mit dem Institut für Metallische Werkstoffe des IFW Dresden unter der wissenschaftlichen Betreuung von Herrn Prof. Dr. Werner Skrotzki angefertigt.

Dresden, den 03.08.2001
Ruben Hühne