Uwe-Jens Görke, Sonja Kaiser, Anke Bucher, Reiner Kreißig

Ein Beitrag zur gemischten Finite-Elemente-Formulierung der Theorie gesättigter poröser Medien bei großen Verzerrungen

Dokumente und Dateien


Bitte nutzen Sie beim Zitieren immer folgende Url:


Kurzfassung in Englisch

This paper presents the theoretical background of
a phenomenological biphasic material approach at
large strains based on the theory of porous media
as well as its numerical realization within the
context of an adaptive mixed finite element formulation.
The study is aimed at the simulation of coupled
multiphysics problems with special focus on biomechanics.
As the materials of interest can be considered as
a mixture of two immiscible components (solid and
fluid phases), they can be modeled as saturated
porous media. For the numerical treatment of according
problems within a finite element approach, weak
formulations of the balance equations of momentum
and volume of the mixture are developed. Within this
context, a generalized Lagrangean approach is
preferred assuming the initial configuration of
the solid phase as reference configuration of the
mixture. The transient problem results in weak
formulations with respect to the displacement and
pore pressure fields as well as their time derivatives.
Therefore special linearization techniques are applied,
and after spatial discretization a global system for the
incremental solution of the initial boundary value
problem within the framework of a stable mixed U/p-c
finite element approach is defined. The global system
is solved using an iterative solver with hierarchical
preconditioning. Adaptive mesh evolution is controlled
by a residual a posteriori error estimator.
The accuracy and the efficiency of the numerical
algorithms are demonstrated on a typical example.

weitere Metadaten

alternativer Titel
A contribution to the finite element formulation of the theory of saturated porous media at large strains
Large Strains
Mixed formulation
Porous media
SWD SchlagworteFinite-Elemente-Methode
SWD SchlagwortePoröser Stoff
DDC Klassifikation510
DDC Klassifikation620
HochschuleTU Chemnitz
FakultätFakultät für Mathematik
Veröffentlichungsdatum (online)24.04.2009
persistente URNurn:nbn:de:bsz:ch1-200900691
QuelleChemnitz Scientific Computing Preprints, 09-02
Externe Referenzhttp://www.tu-chemnitz.de/mathematik/csc/preprints.php

Hinweis zum Urheberrecht

Diese Website ist eine Installation von Qucosa - Quality Content of Saxony!
Sächsische Landesbibliothek Staats- und Universitätsbibliothek Dresden