M.Sc. Bassem Assfour

Hydrogen Storage In Nanostructured Materials

Dokumente und Dateien

Hinweis

Bitte nutzen Sie beim Zitieren immer folgende Url:

http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-65858

Kurzfassung in Englisch

Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions.
Such efforts need guidance from material science, which includes predictive theoretical tools.
Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy.
Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure.
We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn 2+) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its total hydrogen uptake at 77 K and 100 bar amounts to 7.8 wt.% comparable to the total uptake reported of MOF-177 (10 wt.%), which is a benchmark material for high pressure and low temperature H2 adsorption.
Covalent organic frameworks are new class of nanoporous materials constructed solely from light elements (C, H, B, and O). The number of adsorption sites as well as the strength of adsorption are essential prerequisites for hydrogen storage in porous materials because they determine the storage capacity and the operational conditions. Currently, to the best of our knowledge, no experimental data are available on the position of preferential H2 adsorption sites in COFs. Molecular dynamics simulations were applied to determine the position of preferential hydrogen sites in COFs. Our results demonstrate that H2 molecule adsorbed at low temperature in seven different adsorption sites in COFs. The calculated adsorption energies are about 3 kJ/mol, comparable to that found for MOF systems. The gravimetric uptake for COF-108 reached 4.17 wt.% at room temperature and 100 bar, which makes this class of materials promising for hydrogen storage applications.

weitere Metadaten

Schlagwörter
(Deutsch)
Kohlenstoffnanoröhren, Wasserstoffspeicherung, metallorganische Netzwerke
Schlagwörter
(Englisch)
Hydrogen storage, Carbon nanotubes, MOF, COF, ZIF, BIF
DDC Klassifikation541
RVK KlassifikationVE 9857
Institution(en) 
HochschuleTechnische Universität Dresden
FakultätFakultät Mathematik und Naturwissenschaften
BetreuerProf. Dr. rer. nat. habil. Gotthard Seifert
GutachterProf. Dr. rer. nat. habil. Gotthard Seifert
Prof. Dr. Florian Mertens
DokumententypDissertation
SpracheEnglisch
Tag d. Einreichung (bei der Fakultät)28.09.2010
Tag d. Verteidigung / Kolloquiums / Prüfung28.02.2011
Veröffentlichungsdatum (online)25.03.2011
persistente URNurn:nbn:de:bsz:14-qucosa-65858

Hinweis zum Urheberrecht

Diese Website ist eine Installation von Qucosa - Quality Content of Saxony!
Sächsische Landesbibliothek Staats- und Universitätsbibliothek Dresden