Dipl.-Inf. Niko Sünderhauf

Robust Optimization for Simultaneous Localization and Mapping

Dokumente und Dateien

Hinweis

Bitte nutzen Sie beim Zitieren immer folgende Url:

http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-86443

Kurzfassung in Englisch

SLAM (Simultaneous Localization And Mapping) has been a very active and almost ubiquitous problem in the field of mobile and autonomous robotics for over two decades. For many years, filter-based methods have dominated the SLAM literature, but a change of paradigms could be observed recently.
Current state of the art solutions of the SLAM problem are based on efficient sparse least squares optimization techniques. However, it is commonly known that least squares methods are by default not robust against outliers. In SLAM, such outliers arise mostly from data association errors like false positive loop closures. Since the optimizers in current SLAM systems are not robust against outliers, they have to rely heavily on certain preprocessing steps to prevent or reject all data association errors. Especially false positive loop closures will lead to catastrophically wrong solutions with current solvers. The problem is commonly accepted in the literature, but no concise solution has been proposed so far.

The main focus of this work is to develop a novel formulation of the optimization-based SLAM problem that is robust against such outliers. The developed approach allows the back-end part of the SLAM system to change parts of the topological structure of the problem\'s factor graph representation during the optimization process. The back-end can thereby discard individual constraints and converge towards correct solutions even in the presence of many false positive loop closures. This largely increases the overall robustness of the SLAM system and closes a gap between the sensor-driven front-end and the back-end optimizers. The approach is evaluated on both large scale synthetic and real-world datasets.

This work furthermore shows that the developed approach is versatile and can be applied beyond SLAM, in other domains where least squares optimization problems are solved and outliers have to be expected. This is successfully demonstrated in the domain of GPS-based vehicle localization in urban areas where multipath satellite observations often impede high-precision position estimates.

weitere Metadaten

übersetzter Titel
(Deutsch)
Robuste Optimierung für simultane Lokalisierung und Kartierung
Schlagwörter
(Deutsch)
Robotik, Robuste Optimierung, Ausreißer, Lokalisierung, Kartierung, SLAM-Verfahren
Schlagwörter
(Englisch)
Simultaneous Localization and Mapping, Pose Graph SLAM, Appearance-Based Place Recognition, Nonlinear Least Squares Optimization, Factor Graph, Robust Optimization, Outlier Rejection, GNSS-based Localization, Multipath Mitigation
SWD SchlagworteSLAM-Verfahren, Robuste Optimierung, Ausreißer <Statistik>, Lokalisierung <Robotik>, Autonomer Roboter
DDC Klassifikation620
Institution(en) 
HochschuleTU Chemnitz
FakultätFakultät für Elektrotechnik und Informationstechnik
ProfessurProzessautomatisierung
BetreuerProf. Dr.-Ing. Peter Protzel
GutachterProf. Dr.-Ing. Peter Protzel
Prof. Dr.-Ing. Jozef Suchy
DokumententypDissertation
SpracheEnglisch
Tag d. Einreichung (bei der Fakultät)14.02.2012
Tag d. Verteidigung / Kolloquiums / Prüfung19.04.2012
Veröffentlichungsdatum (online)25.04.2012
persistente URNurn:nbn:de:bsz:ch1-qucosa-86443

Hinweis zum Urheberrecht

Diese Website ist eine Installation von Qucosa - Quality Content of Saxony!
Sächsische Landesbibliothek Staats- und Universitätsbibliothek Dresden